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Section S1. Supplementary Notes: 
1.1 Graph convolution and graph deconvolution  
Graph convolution: Convolutional operation in graph is a special form of Laplacian smoothing. 
Graph convolution on signal 𝑋𝑋0 and 𝑋𝑋1 with a filter 𝑔𝑔𝑐𝑐 is defined as  

𝐻𝐻0 = 𝑋𝑋0 ∗ 𝑔𝑔𝑐𝑐 = 𝑋𝑋0𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔�𝑔𝑔𝑐𝑐(𝜆𝜆1), … ,𝑔𝑔𝑐𝑐(𝜆𝜆𝑁𝑁)�𝑈𝑈𝑇𝑇 , (1) 
𝐻𝐻1 = 𝑋𝑋1 ∗ 𝑔𝑔𝑐𝑐 = 𝑋𝑋1𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔�𝑔𝑔𝑐𝑐(𝜆𝜆1), … ,𝑔𝑔𝑐𝑐(𝜆𝜆𝑁𝑁)�𝑈𝑈𝑇𝑇 , (2) 

where {𝜆𝜆𝑖𝑖}𝑖𝑖=1𝑁𝑁  and 𝑈𝑈 represent the eigenvalues and eigenvectors of normalized Laplacian matrix 

𝐿𝐿 = 𝐼𝐼 − 𝐷𝐷−12𝐴𝐴𝐷𝐷−12 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇, respectively. Matrix 𝐴𝐴 is the relationship of samples. D denotes the 

degree matrix. * denotes convolutional operator. We use the convolutional operator of GCN as the 
convolution operation of this model (i.e., 𝑔𝑔𝑐𝑐(λ𝑖𝑖) = λ𝑖𝑖). 
Graph deconvolution: As an inverse to convolution, graph deconvolution aims to recover the gene 
expression 𝑋𝑋0  and 𝑋𝑋1  from the smoothed representation 𝐻𝐻0  and 𝐻𝐻1 . From the spectral 
perspective, graph deconvolution on a smoothed representation 𝐻𝐻0  and 𝐻𝐻1  with filter 𝑔𝑔𝑑𝑑  is 
defined as: 

𝑋𝑋0� = 𝐻𝐻0 ∗ 𝑔𝑔𝑑𝑑 = 𝐻𝐻0𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔�𝑔𝑔𝑑𝑑(𝜆𝜆1), … ,𝑔𝑔𝑑𝑑(𝜆𝜆𝑁𝑁)�𝑈𝑈𝑇𝑇 , (3) 
𝑋𝑋1� = 𝐻𝐻1 ∗ 𝑔𝑔𝑑𝑑 = 𝐻𝐻1𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔�𝑔𝑔𝑑𝑑(𝜆𝜆1), … ,𝑔𝑔𝑑𝑑(𝜆𝜆𝑁𝑁)�𝑈𝑈𝑇𝑇 , (4) 

In general, the deconvolutional operator 𝑔𝑔𝑑𝑑  is the inverse function of 𝑔𝑔𝑐𝑐 , e.g., 𝑔𝑔𝑑𝑑(λ𝑖𝑖) =
1/λ𝑖𝑖 . Due to the randomness of the latent representation in VAE, the general deconvolutional 
operators are not suitable for this model. 

Combining with the graph convolution, the representation 𝐻𝐻0  and 𝐻𝐻1  with stochastic 
disturbance are similarly defined as: 

𝐻𝐻0 = 𝑋𝑋0𝑈𝑈𝑔𝑔𝑐𝑐(𝑈𝑈)𝑈𝑈𝑇𝑇 + 𝜖𝜖0, (5) 
𝐻𝐻1 = 𝑋𝑋1𝑈𝑈𝑔𝑔𝑐𝑐(𝑈𝑈)𝑈𝑈𝑇𝑇 + 𝜖𝜖1, (6) 

where 𝜖𝜖0  and 𝜖𝜖1  are stochastic disturbance (i.e., 𝐸𝐸((𝜖𝜖0)𝑖𝑖) = 0,  𝐸𝐸((𝜖𝜖1)𝑖𝑖) = 0 ; 𝑉𝑉𝐴𝐴𝑉𝑉((𝜖𝜖0)𝑖𝑖) =
𝐸𝐸�(𝜖𝜖0)𝑖𝑖

2� = 𝜎𝜎02,𝑉𝑉𝐴𝐴𝑉𝑉((𝜖𝜖1)𝑖𝑖) = 𝐸𝐸�(𝜖𝜖1)𝑖𝑖
2� = 𝜎𝜎12) from the representation of VAE. 

Naturally, the gene expression data recovered by graph deconvolution are formulated by 
𝑋𝑋0� = 𝑋𝑋0𝑈𝑈𝑔𝑔𝑑𝑑(𝑈𝑈)𝑔𝑔𝑐𝑐(𝑈𝑈)𝑈𝑈𝑇𝑇 + 𝜖𝜖0𝑈𝑈𝑔𝑔𝑑𝑑(𝑈𝑈)𝑈𝑈𝑇𝑇 , (7) 
𝑋𝑋1� = 𝑋𝑋1𝑈𝑈𝑔𝑔𝑑𝑑(𝑈𝑈)𝑔𝑔𝑐𝑐(𝑈𝑈)𝑈𝑈𝑇𝑇 + 𝜖𝜖1𝑈𝑈𝑔𝑔𝑑𝑑(𝑈𝑈)𝑈𝑈𝑇𝑇 . (8) 

The reconstructed error is defined as 

𝑀𝑀𝑀𝑀𝐸𝐸 = 𝐸𝐸�𝑋𝑋0 − 𝑋𝑋0��2
2

+ 𝐸𝐸�𝑋𝑋1 − 𝑋𝑋1��2
2

= 𝐸𝐸�𝑋𝑋0𝑈𝑈 − 𝑋𝑋0�𝑈𝑈�2
2

+ 𝐸𝐸�𝑋𝑋1𝑈𝑈 − 𝑋𝑋1�𝑈𝑈�2
2

= ��𝑔𝑔𝑈𝑈(λ𝑈𝑈)𝑔𝑔𝑐𝑐(λ𝑈𝑈) − 1�
2𝐸𝐸 �(𝑋𝑋0𝑈𝑈)𝑖𝑖

2� + 𝑔𝑔𝑑𝑑2(𝜆𝜆𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

𝐸𝐸�(𝜖𝜖0𝑈𝑈)𝑖𝑖
2�

+��𝑔𝑔𝑈𝑈(λ𝑈𝑈)𝑔𝑔𝑐𝑐(λ𝑈𝑈) − 1�
2𝐸𝐸 �(𝑋𝑋1𝑈𝑈)𝑖𝑖

2� + 𝑔𝑔𝑑𝑑2(𝜆𝜆𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

𝐸𝐸�(𝜖𝜖1𝑈𝑈)𝑖𝑖
2�. (9)

 

Because of the existence of random perturbation terms (i.e., 𝜖𝜖0, 𝜖𝜖1), the inverse function of 
convolution as deconvolution (i.e., 𝑔𝑔𝑑𝑑(λ𝑖𝑖)𝑔𝑔𝑐𝑐(λ𝑖𝑖) = 1) cannot minimize the reconstruction errors. 
Considering the convexity of Eq. 9, 𝑀𝑀𝑀𝑀𝐸𝐸 is minimized by setting the derivative with respect to 
𝑔𝑔𝑑𝑑(𝜆𝜆𝑖𝑖) to zero and thus we obtain the graph deconvolution filter 𝑔𝑔𝑑𝑑(𝜆𝜆𝑖𝑖) as 

𝑔𝑔𝑑𝑑(λi) =
𝑔𝑔𝑐𝑐(λi)

𝑔𝑔𝑐𝑐2(𝜆𝜆𝑖𝑖) + 𝜎𝜎02 + 𝜎𝜎12

𝐸𝐸�(𝑋𝑋0𝑈𝑈)𝑖𝑖
2� + 𝐸𝐸�(𝑋𝑋1𝑈𝑈)𝑖𝑖

2�

=
𝑔𝑔𝑐𝑐(λi)

𝑔𝑔𝑐𝑐2(𝜆𝜆𝑖𝑖) + 𝜎𝜎02 + 𝜎𝜎12

𝐸𝐸�(𝑋𝑋0)𝑖𝑖
2� + 𝐸𝐸�(𝑋𝑋1)𝑖𝑖

2�

, (10)
 



where 𝜎𝜎02 = 𝑉𝑉𝐴𝐴𝑉𝑉((𝜖𝜖0)𝑖𝑖) = 𝐸𝐸�(𝜖𝜖0)𝑖𝑖
2� = 𝐸𝐸�(𝜖𝜖0𝑈𝑈)𝑖𝑖

2�,𝜎𝜎12 = 𝑉𝑉𝐴𝐴𝑉𝑉((𝜖𝜖1)𝑖𝑖) = 𝐸𝐸�(𝜖𝜖1)𝑖𝑖
2� =

𝐸𝐸�(𝜖𝜖1𝑈𝑈)𝑖𝑖
2�. The average values (i.e., 1

𝑁𝑁
∑ 𝐸𝐸 �(𝑋𝑋0)𝑖𝑖

2�𝑁𝑁
𝑖𝑖=1  and 1

𝑁𝑁
∑ 𝐸𝐸 �(𝑋𝑋1)𝑖𝑖

2�𝑁𝑁
𝑖𝑖=1 ) are used to 

approximate the values of 𝐸𝐸 �(𝑋𝑋0)𝑖𝑖
2�  and 𝐸𝐸 �(𝑋𝑋1)𝑖𝑖

2� , respectively. Due to the following 

statistical formula 

� 𝐸𝐸 �(𝑋𝑋0)𝑖𝑖
2�

𝑁𝑁

𝑖𝑖=1
= � 𝐸𝐸[(𝑋𝑋0)𝑖𝑖]2 + 𝑉𝑉𝐴𝐴𝑉𝑉[(𝑋𝑋0)𝑖𝑖]

𝑁𝑁

𝑖𝑖=1
, (9) 

� 𝐸𝐸 �(𝑋𝑋1)𝑖𝑖
2�

𝑁𝑁

𝑖𝑖=1
= � 𝐸𝐸[(𝑋𝑋1)𝑖𝑖]2 + 𝑉𝑉𝐴𝐴𝑉𝑉[(𝑋𝑋1)𝑖𝑖]

𝑁𝑁

𝑖𝑖=1
, (10) 

The values of 𝐸𝐸 �(𝑋𝑋0)𝑖𝑖
2� and 𝐸𝐸 �(𝑋𝑋1)𝑖𝑖

2� are estimated as follows: 

𝐸𝐸 �(𝑋𝑋0)𝑖𝑖
2� =

1
𝑁𝑁𝐷𝐷′ �‖𝑋𝑋

0‖𝐹𝐹2 + �𝑋𝑋0 −
1
𝑁𝑁
𝑋𝑋0𝟏𝟏�

𝐹𝐹

2

� , (11) 

𝐸𝐸 �(𝑋𝑋1)𝑖𝑖
2� =

1
𝑁𝑁𝐷𝐷′ �‖𝑋𝑋

1‖𝐹𝐹2 + �𝑋𝑋1 −
1
𝑁𝑁
𝑋𝑋1𝟏𝟏�

𝐹𝐹

2

� , (12) 

where 𝟏𝟏 ∈ RN×N  is all ones matrix and 𝐷𝐷′  is the feature size of the signal 𝑋𝑋0  and 𝑋𝑋1 . The 

variance 𝜎𝜎02, 𝜎𝜎12 are estimated by considering their neighborhoods as 

𝜎𝜎02 =
1
𝑁𝑁𝐷𝐷′ ‖𝑋𝑋

0 − 𝐷𝐷−1𝐴𝐴𝑋𝑋0‖𝐹𝐹2 , (13) 

𝜎𝜎12 =
1
𝑁𝑁𝐷𝐷′ ‖𝑋𝑋

1 − 𝐷𝐷−1𝐴𝐴𝑋𝑋1‖𝐹𝐹2 . (14) 

 
1.2 Graph embedding contrastive variational autoencoder: We build a graph embedding 
contrastive variational autoencoder to contrast the biological signals of each spot and its spatial 
neighbors for learning representation. There are three principal components: graph convolutional 
encoder, graph deconvolutional decoder and deep contrastive variational autoencoder. The main 
procedures can be stated as follows. 
• Graph convolutional encoder: We use graph convolutional network (GCN) as the encoder to 

learn representation with spatial constraint from the original and augmented expression data 
(i.e., 𝑋𝑋0 and 𝑋𝑋1). In general, graph convolutional operation can be interpreted as a special 
form of Laplacian smoothing [17]. From the spectral perspective, the 𝑡𝑡-th layer of the graph 
convolutional encoder for 𝑋𝑋0 and 𝑋𝑋1, denoted as 𝐻𝐻0

(𝑡𝑡) and 𝐻𝐻1
(𝑡𝑡), is defined as: 

𝐻𝐻0
(𝑡𝑡) =  𝜙𝜙0

(𝑡𝑡) �𝑊𝑊0
(𝑡𝑡)𝐻𝐻0

(𝑡𝑡−1) ∗ 𝑔𝑔𝑐𝑐(𝐿𝐿) + 𝑏𝑏0
(𝑡𝑡)�

= 𝜙𝜙0
(𝑡𝑡) �𝑊𝑊0

(𝑡𝑡)𝐻𝐻0
(𝑡𝑡−1)𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔 �𝑔𝑔𝑐𝑐(λ1), … ,𝑔𝑔𝑐𝑐(λ𝑁𝑁)�𝑈𝑈𝑇𝑇 + 𝑏𝑏0

(𝑡𝑡)� , 𝑡𝑡 = 1, … , 𝐽𝐽, (15)
 

𝐻𝐻1
(𝑡𝑡) =  𝜙𝜙1

(𝑡𝑡) �𝑊𝑊1
(𝑡𝑡)𝐻𝐻1

(𝑡𝑡−1) ∗ 𝑔𝑔𝑐𝑐(𝐿𝐿) + 𝑏𝑏1
(𝑡𝑡)�

= 𝜙𝜙1
(𝑡𝑡) �𝑊𝑊1

(𝑡𝑡)𝐻𝐻1
(𝑡𝑡−1)𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔 �𝑔𝑔𝑐𝑐(λ1), … ,𝑔𝑔𝑐𝑐(λ𝑁𝑁)�𝑈𝑈𝑇𝑇 + 𝑏𝑏1

(𝑡𝑡)� , 𝑡𝑡 = 1, … , 𝐽𝐽, (16)
 

where 𝐿𝐿 = 𝐼𝐼 − 𝐷𝐷−12𝐴𝐴𝐷𝐷−12 = 𝑈𝑈Λ𝑈𝑈𝑇𝑇 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔(𝜆𝜆1, … , 𝜆𝜆𝑁𝑁)𝑈𝑈𝑇𝑇  is the normalized Laplacian 

matrix, and {𝜆𝜆𝑖𝑖}𝑖𝑖=1𝑁𝑁  and 𝑈𝑈 are the eigenvalues and eigenvectors of matrix 𝐿𝐿. 𝐷𝐷 denotes the 



degree matrix. 𝜙𝜙0
(𝑡𝑡) and 𝜙𝜙1

(𝑡𝑡) are the activation functions of the 𝑡𝑡-th GCN encoder layer for 
𝑋𝑋0 and 𝑋𝑋1, respectively. 𝐽𝐽 is the number of encoder layers. * denotes convolutional operator. 
We use the convolutional operator of GCN as the convolution operation of this model (i.e., 
𝑔𝑔𝑐𝑐(λ𝑖𝑖) = λ𝑖𝑖 ). For convenience, we denote the gene expression matrix 𝑋𝑋0  and 𝑋𝑋1  as 𝐻𝐻0

(0) 
and 𝐻𝐻1

(0), respectively. 
• Graph deconvolutional decoder: Although graph convolution can effectively learn 

representation with local spatial information, the resulting smoothness affects the expression 
data reconstruction and weakens the global information of the learnable representation from 
the gene expression data. To solve this problem, we propose graph deconvolutional network 
(GDN) as the decoder to attenuate the effect of graph convolution, enabling efficient 
representation to be learned from the expression. As an inverse to graph convolution, the k-th 
layer (𝑘𝑘 = 𝐽𝐽 + 1, … , 𝐿𝐿 , 𝐿𝐿  is the number of GC-VAE layers) of the graph deconvolution 
decoder for 𝑋𝑋0 and 𝑋𝑋1, denoted as 𝐻𝐻0

(𝑘𝑘) and 𝐻𝐻1
(𝑘𝑘), is defined as: 

𝐻𝐻0
(𝑘𝑘) = 𝜓𝜓0

(𝑘𝑘) �𝑊𝑊0
(𝑘𝑘)𝐻𝐻0

(𝑘𝑘−1)𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔 �𝑔𝑔𝑈𝑈(λ1), … ,𝑔𝑔𝑈𝑈(λ𝑁𝑁)�𝑈𝑈𝑇𝑇 + 𝑏𝑏0
(𝑘𝑘)� , 𝑘𝑘 = 𝐽𝐽 + 1, … , 𝐿𝐿, (17) 

𝐻𝐻1
(𝑘𝑘) = 𝜓𝜓1

(𝑘𝑘) �𝑊𝑊1
(𝑘𝑘)𝐻𝐻1

(𝑘𝑘−1)𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑔𝑔 �𝑔𝑔𝑈𝑈(λ1), … ,𝑔𝑔𝑈𝑈(λ𝑁𝑁)�𝑈𝑈𝑇𝑇 + 𝑏𝑏1
(𝑘𝑘)� , 𝑘𝑘 = 𝐽𝐽 + 1, … , 𝐿𝐿, (18) 

where 𝜓𝜓0
(𝑘𝑘)  and 𝜓𝜓1

(𝑘𝑘)  are the activation functions of the 𝑘𝑘 -th GDN decoder layer for 𝑋𝑋0 
and 𝑋𝑋1, respectively. 𝑔𝑔𝑑𝑑(λ𝑖𝑖) is the deconvolutional operator of GDN.  

In general, the deconvolutional operator 𝑔𝑔𝑑𝑑 is the inverse function of 𝑔𝑔𝑐𝑐, e.g., 𝑔𝑔𝑑𝑑(λ𝑖𝑖) =
1/λ𝑖𝑖. Due to the randomness of the latent representation in GC-VAE, the general deconvolutional 
operator are not suitable for this model (Supplementary Note S1). Therefore, we adopt the 
following new deconvolution operators for the 𝑘𝑘-th layer decoder 𝐻𝐻0

(𝑘𝑘) and 𝐻𝐻1
(𝑘𝑘): 

𝑔𝑔𝑑𝑑
(𝑘𝑘)(𝜆𝜆𝑖𝑖) =

𝑔𝑔𝑐𝑐
(𝑘𝑘)(𝜆𝜆𝑖𝑖)

𝑔𝑔𝑐𝑐
(𝑘𝑘)(𝜆𝜆𝑖𝑖)2 +

𝜎𝜎0
(𝑘𝑘)2 + 𝜎𝜎1

(𝑘𝑘)2

𝐸𝐸 ��𝐻𝐻0
(𝑘𝑘)�

𝑖𝑖

2
� + 𝐸𝐸 ��𝐻𝐻1

(𝑘𝑘)�
𝑖𝑖

2
�

, 𝑘𝑘 = 𝐽𝐽 + 1, … , 𝐿𝐿, (19)
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where 𝟏𝟏 ∈ RN×𝑁𝑁 is the all ones matrix and 𝐷𝐷′ is the feature size of the 𝑘𝑘-th layer of decoder. The 

variance 𝜎𝜎0
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• Deep contrastive variational autoencoder: To balance spatial local information and global 
information from the original and augmented expression data, we present a deep contrastive 
strategy as the soft constraint during representation learning. The contrastive loss can be 
expressed as: 

ℒ𝑐𝑐𝑐𝑐𝑐𝑐 = ��𝐻𝐻0
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Combined with the loss (i.e., ℒ𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸0  and ℒ𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸1 ) of variational autoencoder (VAE) for the 
original data 𝑋𝑋0 and the augmented expression data 𝑋𝑋1, the overall loss function of SpaCAE is 
denoted as follows: 
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ℒ = ℒ𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸0 + ℒ𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸1 + 𝜆𝜆ℒ𝑐𝑐𝑐𝑐𝑐𝑐, (29) 

where the tunable parameter 𝜆𝜆 can be manually set and defaults to 1. 

 
1.3 Comparison with baseline methods 

To showcase the effectiveness of SpaCAE in spatial clustering, we compared SpaCAE with 
the state-of-the-art methods, including the SpaGCN, BayesSpace, GraphST and STAGATE. All 
methods were updated to the latest stable version and the detailed implementation for each method 
is listed as follows: 
 BayesSpace: We followed the workflow specified in the examples (BayesSpace analysis of 

DLPFC dataset) of BayesSpace documentation website 
(https://edward130603.github.io/BayesSpace/articles/maynard_DLPFC.html). Firstly, we 
created a SingleCellExperiment object using readVisium() function, and performed 
preprocessing using spatialPreprocess() function. Then, we performed spatial domain 
identification using spatialCluster() function, whose parameter q is set to the number of 
annotated labels for each dataset. 

 SpaGCN: We followed the workflow specified in the tutorial of the SpaGCN GitHub 
repository (https://github.com/jianhuupenn/SpaGCN/blob/master/tutorial/tutorial.md). Firstly, 
we created an AnnData object using raw counts, calculated adjacent matrix, and performed 
preprocessing on expression data using spg.calculate_adj_matrix(), spg.prefilter_genes(), 
spg.prefilter_specialgenes(), sc.pp.normalize_per_cell() and sc.pp.log1p() respectively. Then, 
we ran spg.search_l() and spg.search_res() to set hyper-parameters. Finally, we trained 
SpaGCN model and used it to identify spatial domains, which was implemented in 

https://edward130603.github.io/BayesSpace/articles/maynard_DLPFC.html
https://github.com/jianhuupenn/SpaGCN/blob/master/tutorial/tutorial.md


clf=spg.SpaGCN(), clf.train() and clf.predict(). We ran these functions with default parameters, 
and the parameter target_num was set to the number of annotated labels for each dataset. 

 STAGATE: We followed the workflow specified in the tutorials (Tutorial 1: 10x Visium 
(DLPFC dataset)) of STAGATE documentation website (https://stagate.readthedocs.io). 
Firstly, we created an AnnData object using sc.read_visium() function SCANPY package. 
Then, this AnnData object was normalized and log-transformed using sc.pp.normalize_total() 
and sc.pp.log1p() SCANPY package. After preprocessing, we sequentially constructed the 
spatial network and ran STAGATE using STAGATE.Cal_Spatial_Net() and 
STAGATE.train_STAGATE() respectively. Finally, we computed neighbor graph on the 
latent representation, identified spatial domains and performed UMAP visualization, which 
were implemented in sc.pp.neighbors(), sc.pp.leiden() and sc.tl.umap() from SCANPY 
package respectively. We ran these functions with default parameters, and the resolution was 
adjusted to match the number of annotated labels for each dataset. 

 GraphST: We followed the workflow specified in the tutorial (Tutorial 1: 10X Visium) of 
GraphST documentation website (https://deepst-tutorials.readthedocs.io). Firstly, we created 
an AnnData object using sc.read_visium() function SCANPY package. Then, we defined and 
trained the GraphST model using model=GraphST.GraphST() and model.train() respectively. 
Finally, we identified spatial domains using clustering() function from GraphST.utils module. 
We ran these functions with default parameters, and the number of clusters was adjusted to 
match the number of annotated labels for each dataset. 

 
  

https://stagate.readthedocs.io/en/latest/T1_DLPFC.html
https://deepst-tutorials.readthedocs.io/en/latest/Tutorial%201_10X%20Visium.html


Section S2. Supplementary Figures and Tables 
Supplementary Figure 1. The spatial domain identification on invasive ductal carcinoma (IDC) 
slice to investigate the influence of hyper-parameter 𝛼𝛼 . Cluster purity (i.e., purity) is used to 
evaluate the clustering performance. The purity increases as the value 𝛼𝛼 increases from 0 to 0.5 
and achieve the best performance when 𝛼𝛼=0.5 on SpaCAE. Nevertheless, the purity decreases as 
the 𝛼𝛼 goes beyond the optimal value. In summary, the purity indicates a trend of increasing first 
and then decreasing as hyper-parameter 𝛼𝛼 increases. Specifically, from the in-situ staining images, 
it can be observed that the clustering results becomes smoother with the increase of 𝛼𝛼. Obviously, 
the hyper-parameter 𝛼𝛼  plays a significant role in combining the node features and those of its 
neighbors with the graph. 

 



Supplementary Figure 2. The domain identification performance on Invasive Ductal Carcinoma 
(IDC) slice to investigate the influence of hyper-parameter λ with α fixed to 0.5. Cluster purity (i.e., 
purity) is used to evaluate the clustering performance. It is clear that the purity increases as the value 
λ increases from 0 to 1 and SpaCAE performs well with λ less than 2. 

 

  



Supplementary Figure 3. The spatial domain identification on the DLPFC dataset to investigate 
the influence of hyper-parameter λ with α set to 0.3. (A) The ground truth of slide 151509 (n=4,789 
spots) slice in DLPFC datasets. (B) Boxplots of the performance of SpaCAE on 12 slices with λ 
varies from 0 to 4. SpaCAE’ s performance demonstrates a trend of initial improvement followed 
by a decline, achieving the best performance at λ=1.5 (ARI=0.554±0.106). (C) Identification of 
spatial domains by SpaCAE with different λ. 

 
  



Supplementary Figure 4. Comparison of spatial domains by clustering assignments via SpaCAE, 
STAGATE, GraphST, BayesSpace, DeepST, SpaGCN, and manual annotation in the representative 
slices of the DLPFC dataset. 

 

  



Supplementary Figure 5. Comparison of spatial domains by clustering assignments via GraphST, 
3-layer AutoEncoder(with mclust) and GAE(with leiden) on SpaCAE-denoised spatial Mouse 
somatosensory cortex and imaging-based molecular MIBITOF data respectively. 

 
  



Supplementary Figure 6. The spatial domain identification on human HER2 breast cancer ST data. 
The identified spatial domains by SpaCAE and competing methods are distinguished by distinctive 
colors without correspondence. Adjusted Rand index (i.e., ARI) is used to evaluate the clustering 
performance. 

 

  



Supplementary Figure 7. The change of spatial expression patterns before and after denoising for 
the differentially expressed genes identified in each domain. Moran’s I measures the spatial 
autocorrelation of the gene expression for each spatial domain. 

 
  



Supplementary Figure 8. The change of spatial expression patterns before and after denoising 
(with SpaCAE and STAGATE) for the differentially expressed genes identified in the annotated 
tissue structure. Log2FC (i.e., log fold change) is used to evaluate the activities specificity of 
differential genes’ expression patterns between original and denoised data. 

 

  



Supplementary Figure 9. The change of spatial expression patterns before and after denoising 
(with SpaCAE and STAGATE) for the differentially expressed genes identified by the annotated 
tissue structure. Moran’s I is used to evaluate the spatial coherence of each annotated tissue structure. 

 
  



Supplementary Table 1. Detailed settings of parameters α and λ in the SRT data from 
different platforms. 

Dataset 𝛼𝛼 𝜆𝜆 
10x Visium brain slice 0.1~1 1~2 

osmFISH 0.8~1.5 1~3 
MIBI-TOF 0.5~1 1~3 

Slide-seq V2 2~5 1~3 
10x Visium cancer slice 0.3~1 1~3 

 
 


