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Supplementary Text

Cell culture

The mouse melanoma cells B16F10 and mouse breast cell 4T1 were purchased from the American
Type Culture Collection (ATCC) and maintained in Dulbecco’s modified Eagle’s medium
(DMEM) with 10 % fetal bovine serum (FBS, v/v), 100 U/ml penicillin and streptomycin in a
humidified atmosphere of 5 % COz at 37 °C.
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IH NMR (400 MHz, DMSO-ds, 8): 8.16 (t, J = 5.9 Hz, 1H, -CO-NH-CH2), 7.69 (t, 1H, -CH2-NH-
S02-), 7.67 (d, J = 7.9 Hz, 2H, Ar-H), 7.41 (d, J = 7.9 Hz, 2H, Ar-H), 6.17 (dd, J = 17.1, 10.0 Hz,
1H, CH2=CH-), 6.06 (dd, J = 17.1, 2.4 Hz, 1H, CH'H?=CH-), 5.58 (dd, J = 9.9, 2.4 Hz, 1H,
CH'H?=CH-), 3.17 (g, J = 6.5 Hz, 2H, -SO2-NH-CH>-), 2.78 (g, J = 6.6 Hz, 2H, -CO-NH-CH2-),
2.39 (s, 3H,-CH3) ppm.

13C NMR (400 MHz, DMSO-ds, J): 166.56, 143.72, 136.57, 130.58, 129.91, 127.09, 126.96,
43.05, 39.47, 21.58 ppm.

MS:[M+CI]: m/z: calcd. for (C12H16N203SCl):303.06, found 303.0573.

Investigation of the cellular uptake efficacy of NanolCD/BSA

In this study, B16F10 cells were seeded in 12-well plates at a density of 1 x 105 cells/well for a
day prior exposure to FITC-labeled nBSA, NanolCD/BSA-n (n = 10, 20, 30, 40), and (2)-
NanolCD/BSA-40 (Z= +6, +3, +1.5, 0, -2 mV). After incubation for 2 h, the cells were collected
and re-suspended in cold PBS for flow cytometry analysis. The concentration of all nanoparticles
used in this study was 1.5 pM, calculated based on the concentration of the BSA.

Investigation of the ER-targeting and retention capability of NanolCD/BSA-n

CLSM-based analysis was conducted to investigate the ER-targeting and retention capability of
NanolCD/BSA-n. Briefly, BI6F10 cells were seeded in a 35 mm confocal dish (® =15 mm) at a
density of 2 x 10% cells/well for a day prior exposure to FITC-labeled nBSA (1.5 uM),
NanolCD/BSA-10 (1.5 uM), NanoICD/BSA-20 (1.5 uM), NanoICD/BSA-30 (1.5 puM), and
NanolCD/BSA-40 (1.5 uM). After incubation for a certain period (2 h, 4 h, 6 h, or 8 h), the cells
were rinsed with PBS and incubated with ER-Tracker Red at 37 °C for 30 min according to the
manufacturer’s instructions. Subsequently, the cells were fixed in 4 % paraformaldehyde for 15
min. Finally, the cells were stained with 4, 6-diamidino-2-phenylindole dihydrochloride (DAPI)
for CLSM analysis, and the co-localization of the NanolCD/BSA-n with ER was quantitatively
assessed by analyzing the Manders’ coefficients M2 (fraction of NanoICD overlapping ER) using
ImageJ-JACoP.

Study of the endosome escape capability of NanolCD/BSA




In this study, B16F10 cells were seeded in a 35 mm confocal dish (® =15 mm) at a density of 2 x
10 cells/well for a day prior exposure to FITC-labeled nBSA (1.5 uM), NanoICD/BSA-10 (1.5
M), NanoICD/BSA-20 (1.5 uM), NanoICD/BSA-30 (1.5 uM), and NanoIlCD/BSA-40 (1.5 uM).
After incubation for 2 h, the cells were rinsed with PBS and incubated with Lysosome-Tracker
Red at 37 °C for 30 min following the manufacturer’s instructions. Subsequently, the cells were
fixed in 4 % paraformaldehyde for 15 min. Finally, the cells were stained with DAPI for CLSM
analysis.

Investigation of the mass of NanolCD bound to ER

The mass of NanolCD bound to ER were measured using a QCM-D. Briefly, the Au sensor chips
were first activated by immersing them in a solution of deionized water: ammonia water: 30%
hydrogen peroxide =5 : 1 : 1 (v/v/v) in an ice-water bath for 10 minutes. Following activation, the
chips were rinsed with deionized water and dried using nitrogen gas. Next, the chips were modified
with nanoparticles by immersing them in solutions of nBSA, NanolCD/BSA-20, NanolCD/BSA-
40, nCAT, or NanoICD/CAT (1.5 uM) for 24 hours at room temperature in the presence of 2-
imidothiolane hydrochloride (Traut’s Reagent, 24 uM) and tris(2-carboxyethyl)phosphate
hydrochloride (TCEP, 48 uM). Subsequently, the chips were rinsed with deionized water, dried
with nitrogen gas, and put into the standard flow module. Each sensor chip was washed with PBS
buffer for 1 h at a 10 pL/min flow rate, and then equilibrated at 2 pL/min until the baseline was
stable. Then, freshly extracted ER (according to the manufacturer’s instructions) in the flow buffer
was injected for 30 min at 2 pL/min. After the binding reached equilibrium, the flow phase was
replaced with PBS (flow rate 2 ul/min) to simulate the retro-translocation process of the ER. All
of the QCM experiments in this study were operated at 37 °C.

Detection of calreticulin (CRT)

Flow cytometric measurement and immunofluorescence staining were used to detect proapoptotic
CRT exposure on cell surfaces after different treatments. For flow cytometric-based analysis,
B16F10 cells were seeded in 12-well plates at a density of 1 x 10° cells/well for a day prior
exposure to PBS, PTX (15 uM), ETL (100 uM), nBSA (1.5 uM), NanoICD/BSA-n (n = 10, 20,
30, 40; 1.5 uM), (Z2)-NanolCD/BSA-40 (Z= +6, +3, +1.5, 0, -2 mV; 1.5 uM), NanoICD/CAT (1.5
uM), NanoICD/CAT-PCA (1.5 uM, pH 7.4), and NanolCD/CAT-PCA (1.5 uM, pH 6.5). After
incubation for 12 h, the cells were rinsed with PBS and incubated with ATTO488-conjugated
antibody and propidium iodide (PI) according to the manufacturer’s instructions for flow
cytometry analysis.

For immunofluorescence imaging, B16F10 cells were seeded in a 35 mm confocal dish (® =15
mm) at a density of 2 x 10% cells/well for a day prior exposure to PTX (15 uM), ETL (100 uM),
nBSA (1.5 uM), NanoICD/BSA (1.5 uM), NanoICD/CAT (1.5 uM), NanolCD/CAT-PCA (1.5
uM, pH 7.4), and NanoICD/CAT-PCA (1.5 uM, pH 6.5). After incubation for 12 h, the cells were
rinsed with PBS and fixed with 4% paraformaldehyde at room temperature for 15 min. Nonspecific
binding sites were blocked by pre-incubation with 5 % FBS in PBS for 30 min, followed by
incubation with primary antibody for 1 h, and then incubated with the Alexa488-conjugated
monoclonal secondary antibody for 30 minutes after three washes with PBS. Finally, the cells were
stained with DAPI and examined by CLSM.

Distribution of intracellular high mobility group box 1 (HMGB-1)




Immunofluorescence imaging was used to study the distribution of intracellular HMGB-1 after
different treatments. Briefly, B16F10 cells were seeded in 35 mm confocal dish (® =15 mm) at a
density of 2 x 10* cells/well for a day prior exposure to PBS, PTX (15 uM), ETL (100 uM), nBSA
(1.5 uM), and NanoICD/BSA (1.5 uM). After incubation for 12 h, the cells were rinsed with cold
PBS, fixed with 4% paraformaldehyde at room temperature for 15 min, and permeabilized with
0.1 % Triton X-100 for 10 min. Nonspecific binding sites were blocked by pre-incubation with 5
% FBS in PBS for 30 min, followed by incubation with the primary antibody for 1 h, and then
incubated with the Alexa594-conjugated monoclonal secondary antibody for 30 minutes after three
washes with PBS. Finally, the cells were stained with DAPI for CLSM analysis. The extracellular
content of HMGB-1 was evaluated by an HMGB-1 ELISA kit according to the manufacturer’s
instructions.

Secretion of ATP

The ATP secretion levels of the cells after different treatments were measured using a
commercially available ATP assay kit. Briefly, B16F10 cells were seeded in 12-well plates at a
density of 1 x 10° cells/well for a day prior exposure to PBS, PTX (15 uM), ETL (100 uM), nBSA
(1.5 uM), and NanoICD/BSA (1.5 uM). After incubation for 12 h, the supernatant of the cell
culture was collected, and the ATP content was measured using an ATP assay kit following the
manufacturer’s instructions.

Analysis of the signal pathway that induce ICD

Flow cytometric measurement and western blot-based analysis were employed to investigate the
signal pathway that NanolCD/BSA induces ICD. For flow cytometry, B16F10 cells were seeded
in 12-well plates at a density of 1 x 10° cells/well for a day prior exposure to PBS, PTX (15 uM),
ETL (100 uM), nBSA (1.5 uM), and NanoICD/BSA (1.5 uM). After incubation for 12 h, the cells
were rinsed with cold PBS, fixed with 4% paraformaldehyde at room temperature for 15 min, and
permeabilized with 0.1 % Triton X-100 for 10 min. Nonspecific binding sites were blocked by
pre-incubation with 5 % FBS in PBS for 30 min, followed by incubation with the primary antibody
for 1 h, and then incubated with the Alexa488-conjugated monoclonal secondary antibody for 30
minutes after three washes with PBS. Finally, the cells were stained with DAPI for CLSM analysis.
For western blot-based analysis, B16F10 cells were seeded in 6-well plates at a density of 2 x 10°
cells/well overnight and then treated with PBS, PTX (15 uM), ETL (100 uM), nBSA (1.5 uM),
and NanoICD/BSA (1.5 uM) for 24 h. After incubation, cells were rinsed with PBS and solubilized
in 1% Nonidet P-40 lysis buffer. Homogenates were clarified by centrifugation at 20000g for 15
min at 4 °C, and protein concentrations were determined with a BCA assay. Total protein lysates
were separated by SDS-PAGE on 10 % SDS acrylamide gels, which were then transferred to
PVDF membranes (Millipore, USA). The membranes were incubated with primary antibodies
against EIF2a, pEIF2a, and B-Actin (1:1000 dilution) overnight, followed by incubating with an
HRP-conjugated secondary antibody (1:2000 dilution) for 1 h.

BMDC-mediated phagocytosis of cancer cells

In this study, bone marrow-derived dendritic cells (BMDCs) were first generated from the bone
marrow of 8-week-old BALB/c mice. Next, B16F10 cells were stained with Calcein, AM (FITC
channel) and then seeded in 12-well plates at a density of 1 x 10° cells/well for a day prior exposure
to PBS, PTX (15 uM), ETL (100 uM), nBSA (1.5 uM), and NanoICD/BSA (1.5 uM). After
incubation for 12 h, B16F10 cells were collected and then co-cultured with 1 x 108 BMDCs (pre-




stained with Dil, APC channel) for another 4 h. The BMDCs-mediated phagocytosis of cancer
cells (FITC*APC*) was examined using flow cytometry measurement.

Antigen cross presentation and APC maturation

In this study, ovalbumin (OVA)-transfected B16F10 cells (B16F10-OVA) was employed as the
cancer cell model. B16F10-OVA cells were first seeded in 12-well plates at a density of 1 x 10°
cells/well overnight and then treated with PBS, PTX (15 uM), ETL (100 uM), nBSA (1.5 uM),
and NanoICD/BSA (1.5 uM) for 12 h. After incubation, B16F10-OVA cells were collected and
co-cultured with 1 x 10® BMDCs for another 48 h. Finally, BMDCs were stained with anti-
SIINFEKL-MHCI-PE and anti-CD11c-APC for antigen cross presentation detection, or anti-
CD11c-APC, anti-CD86-FITC and anti-CD80-PE for APC maturation detection.

Anti-tumor analysis

The female C57BL/6 mice and Balb/C mice at 6-8 weeks were purchased from Vital River
Laboratory Animal Technology (Beijing, China). The anti-tumor efficacy of NanolCD/BSA was
evaluated in a B16F10-bearing mice model. Briefly, 1 x 106 B16F10 cells were inoculated
subcutaneously into the lower flank of 6-week-old female C57BL/6 mice. One week later, 200 puL.
of PBS, PTX (15 uM), ETL (100 uM), nBSA (1.5 uM), and NanoICD/BSA (1.5 uM) were injected
intratumorally every 3 days for a total of 3 doses. The mice were sacrificed on 22 days post-
treatment, and the tumors, tumor-draining lymph nodes (TDLNSs), and spleen were collected for
flow cytometric analysis.

The anti-tumor efficacy of NanolCD/CAT-PCA was evaluated in a 4T1-bearing mice model.
Briefly, 1 x 108 4T1 cells were inoculated subcutaneously into the left mammary fat pad of 6-
week-old female Balb/C mice. One week later, 200 pL of PBS, nCAT-PCA (4 uM, 10 mg/kg),
NanolCD/BSA-PCA (4 uM, 2.66 mg/kg), and NanolCD/CAT-PCA (4 uM, 10 mg/kg) were
injected intravenously every 2 days for a total of 5 doses. The mice were sacrificed on 22 days
post-treatment, and the tumors, TDLNs, and spleen were collected for immunofluorescence
staining and flow cytometric analysis.

Anti-metastasis assays

The ability of NanolCD/BSA to prevent tumor metastasis was evaluated using a vaccine assay.
Briefly, 1 x 10% B16F10 cells were first incubated with ETL (100 uM), PTX (15 uM), nBSA (1.5
uM), and NanoICD/BSA (1.5 uM) for 24 h, then washed and resuspended in PBS. Subsequently,
the treated cells and PBS (no vaccination control) were inoculated subcutaneously into the lower
flank of 6-week-old female C57BL/6 mice (vaccination). One week later, the mice were
intravenously injected with 1 x 10° untreated B16F10 cells. The mice were sacrificed on 10 days
post-treatment, the lung was collected to evaluate the anti-metastasis ability of NanolCD/BSA.
The ability of NanolCD/CAT-PCA to prevent tumor recurrence was evaluated with a similar
vaccine assay using a different type of cancer cells. Briefly, 1 x 108 4T1 cells were inoculated
subcutaneously into the left mammary fat pad of 6-week-old female BALB/c mice. One week
later, 200 puL of PBS, nCAT-PCA (4 uM, 10 mg/kg), NanolCD/BSA-PCA (4 uM, 2.66 mg/kg),
and NanolCD/CAT-PCA (4 uM, 10 mg/kg) were injected intravenously every 2 days for a total of
3 doses. Subsequently, the mice were intravenously injected with 1 x 10° untreated B16F10 cells.
The mice were sacrificed on 10 days post-treatment, the lung was collected to evaluate the anti-
metastasis ability of NanolCD/CAT-PCA.




Flow cytometry analysis
Freshly harvested TDLNSs, spleen, and tumor tissues were minced and homogenized using a

GentleMACs Dissociator, and then passed through a 70 x 1078 m cell strainer to obtain single-cell
suspensions. The collected cells were diluted to 1x107 cells/mL, and 100 uL of cells were stained
with a cocktail of fluorescently conjugated antibodies. For intracellular staining, cells were first
permeabilized with 100 pL fixation/permeabilization buffer before adding the antibody cocktail.
After staining, the cells were fixed with 4 % paraformaldehyde and analyzed using a flow

cytometer.
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Fig. S1. *H NMR spectrum of ETL in DMSO-de, 400 MHz, 25 °C.
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Fig. S2. 3C NMR spectrum of ETL in CDCla.
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Fig. S4. Size distribution and TEM images of NanolCD/BSA. The scale bar is 50 nm.
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Fig. S5. A, UV-Vis spectra of ETL (ranging from 68.5-2192.2 uM). B, The standard curve of ETL.
C, UV-Vis spectra of nBSA, NanolCD/BSA-n (n = 10, 20, 30, 40), and (+6)-NanolCD/BSA at the

same concentration of BSA at 7.5 uM.
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Fig. S6. Flow cytometric analysis of intracellular delivery of nBSA and NanolCD/BSA-n (n = 10,
20, 30, 40) to B16F10 after 2 h of incubation (A) and the corresponding representative flow
cytometry plots (B). Flow cytometric analysis of intracellular delivery of (Z)-NanolCD/BSA (Z =
-2, 0, +1.5, +3, +6) to B16F10 after 2 h of incubation (C) and the corresponding representative
flow cytometry plots (D). Data are presented as mean + s.d. from three biological replicates (n =
3).
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Fig. S7. Endosomal escape of nBSA and NanolCD/BSA-n (n =10, 20, 30, 40). Endosomes were
stained with Lysosome-Tracker Red, and the nuclei were stained with DAPI (blue). The scare bar

is 20 um.



>
N
8
(v y)

150
® (2-NanoicDiBsa A  (1:5)-NanolCD/IBSA A NanolCD/BSA-20
- B (0)}NanolCD/BSA (3)-NanolCD/BSA —_ e nesA ¥  NanolCD/BSA-30
= 150 ¢ (6)-NanolCD/BSA § ®  NanolCDBSA10 . NanolcDIBSA40
E\ '? 100
2 10018, o
3 ! S
= . 2 50
O 50— : Q
o o
0- 0

) ) ) ) o o ) “ ) ) N o
U SN o o o USSP, o O ©
S R T R SR SO R G
Concentration (ug/mL) Concentration (pg/mL)

Fig. S8. The cytotoxicity of (Z)-NanolCD/BSA (A, Z = -2, 0, +1.5, +3, and +6), NanolCD-n (n =
10, 20, 30, and 40), and nBSA (B) to B16F10 cells. Data are presented as mean % s.d. from three

biological replicates (n = 3).
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B16F10 cells.
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Fig. S14. Representative flow cytometry plots display the BMDC-mediated phagocytosis of
B16F10 cells after being treated with PBS, PTX, ETL, nBSA, and NanolCD/BSA (a) and the
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replicates (n = 3).
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Fig. S15. Representative flow cytometry plots display the cross presentation of B16F10-OVA after
being treated with PBS, PTX, ETL, nBSA, and NanolCD/BSA (a) and the corresponding
quantitative results (b). Data are presented as mean * s.d. from three biological replicates (n = 3).
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Fig. S17. Serum HMGB-1 levels in B16F10-bearing mice following treatment with PBS, PTX,
ETL, nBSA, and NanolCD/BSA. Data are presented as mean = s.d. from three biological replicates
(n=3).
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Fig. S18. Representative flow cytometry plots of mature DCs (gated on CD80*CD86™ cells) within

the TDLNs from mice treated with PBS, PTX, ETL, nBSA, and NanolCD/BSA.
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Fig. S19. Representative flow cytometry plots of effector memory cells (gating on CD3*CD8*)
within the spleen from mice treated with PBS, PTX, ETL, nBSA, and NanolCD/BSA.
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Fig. S20. Representative flow cytometry plots of CD8* T cells (gated on CD45*CD3* cells) within
the tumors from mice treated with PBS, PTX, ETL, nBSA, and NanolCD.
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Fig. S21. Representative flow cytometry plots of Ki67* T cells (gated on CD45*CD3" cells) within

the tumors from mice treated with PBS, PTX, ETL, nBSA, and NanolCD.
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Fig. S22. Representative flow cytometry plots of GzmB*CD8* T cells (gated on CD45*CD3* cells)

within the tumors from mice treated with PBS, PTX, ETL, nBSA, and NanolCD.
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presented as mean = s.d. from three biological replicates (n = 3).
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Fig. S24. Zeta potentials of NanolCD/CAT and NanolCD/CAT-PCA under different conditions.

Data are presented as mean * s.d. from three biological replicates (n = 3).
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Fig. S25. Flow cytometric analysis of the 4T1 cells after incubated with NanolCD/CAT and
NanolCD/CAT-PCA under different conditions.
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Fig. S26. CLSM images display the exposure of CRT on cell surface after treated with
NanolCD/CAT and NanolCD/CAT-PCA under different conditions. The scale bars are 50 pm.
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Fig. S27. The levels of ATP in cellular supernatants after different treatment. Data are presented

as mean % s.d. from three biological replicates (n = 3).
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Fig. S28. Individual tumor growth kinetics in different groups. Growth curves were stopped

when the first mouse of the corresponding group died.
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Fig. S29. H&E staining analysis of major organs from the mice in each treatment group. The

scale bar is 200 pum.
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Fig. S30. Representative flow cytometry plots of Ki67* T cells (gated on CD45*CD3* CD8*cells)
within the tumors from mice treated with PBS, nCAT-PCA, NanolCD/BSA-PCA, and

NanolCD/CAT-PCA.
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Fig. S31. Representative flow cytometry plots of GzmB*CD8* T cells (gated on CD45*CD3* cells)
within the tumors from mice treated with PBS, nCAT-PCA, NanolCD/BSA-PCA, and

NanolCD/CAT-PCA.
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Fig. S32. Representative flow cytometry plots of M2-like TAMs (gated on CD45*CD11b* cells)

within the tumors from mice treated with PBS, nCAT-PCA, NanolCD/BSA-PCA, and
NanolCD/CAT-PCA.
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Fig. S33. Representative flow cytometry plots of Tregs (gated on CD45*CD4* cells) within the
tumors from mice treated with PBS, nCAT-PCA, NanolCD/BSA-PCA, and NanolCD/CAT-PCA.
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Fig. S34. Representative flow cytometry plots of MDSCs (gated on CD45* cells) within the tumors

from mice treated with PBS, nCAT-PCA, NanolCD/BSA-PCA, and NanolCD/CAT-PCA.
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Fig. S35. IL-10 (a) and TGF-B (b) levels within the tumors from mice treated with PBS, nCAT-
PCA, NanolCD/BSA-PCA, and NanolCD/CAT-PCA. Data are presented as mean * s.d. from

three biological replicates (n = 3).
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Fig. S36. Immunofluorescence staining images showing the surface translocation of CRT in
tumors of mice treated with PBS, nCAT-PCA, NanolCD/BSA-PCA, and NanolCD/CAT-PCA.

The scale bar is 100 um.
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Fig. S37. Representative flow cytometry plots of mature DCs (gated on CD80*CD86* cells) within
the TDLNs from mice treated with PBS, nCAT-PCA, NanolCD/BSA-PCA, and NanolCD/CAT-

PCA.
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Fig. S38. Representative flow cytometry plots of effector memory cells (gating on CD3*CD8*)

within the spleen from mice treated with PBS, nCAT-PCA, NanolCD/BSA-PCA, and
NanolCD/CAT-PCA.
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Fig. S39. The ICD-inducing activity of NanolCD/BSA in various human cell lines. a, Pre-
apoptotic CRT exposure on cell surface (U87MG and SK-Br-3) after treatment with PBS and
NanolCD/BSA. b, ATP levels in cellular supernatants (U87MG and SK-Br-3) after treatment with
PBS and NanolCD/BSA. c, Extracellular concentrations of HMGB-1 after treating the cells
(UB7MG and SK-Br-3) with PBS and NanolCD/BSA. Data are presented as mean + s.d. from

three biological replicates (n = 3).



Table S1. The molar ratio for the preparation of different NanoI[CD/BSA

BSA AAm APm ETL BIS APS

nBSA 1 2500 500 0 300 450

S n=10 1 2500 500 50 300 450
% n=120 1 2500 500 100 300 450
(2) n =30 1 2500 500 150 300 450
:‘Z% n =40 1 2500 500 200 300 450
(6)-NanoICD/BSA 1 2500 750 200 300 450




Table S2. The molar ratio for the preparation of NanolCD/CAT

CAT AAm APm ETL BIS APS

nCAT 1 3500 550 0 420 350

NanoICD/CAT 1 3500 550 200 420 350




Table S3. Characterization of different NanolCD and the pro-apoptotic CRT exposure on cell

surface (PI"CRT™ cells) after treatment

Amount of . Zeta PI
Sample ETL Size (nm) potential PDI CRT*
(mV) (%)
nBSA - 152+1.79 3.0+0.30 0.236 1.55
j: n=10 10.5+£0.73 195+1.77 2.82+0.39 0.214 1.75
@ n=20 20.6+£2.12 15.7+£183 3.43+0.52 0.173 291
g(; n=230 31.2+232 172+1.24 3.21+£0.35 0.223 24.0
czCd n=40 | 412+239 169+0.73 3.05+0.15 0.117 38.3
5, Z=-2 41.2+2.39 169+0.73 -1.93+0.30 0.117 141
% Z=0 41.2 +2.39 169+0.73 0.03+0.44 0.117 2.33
2 1z=15| 412+239 1694073 1564013 0117 142
fj Z=6 42.0+1.45 175+£1.78 6.32+£0.56 0.213 5.55
NCAT - 19.6+123 3.78+030 0128 191
NanolCD/CAT| 40.2+1.74 225+156  5.40+0.55 0.230 25.80




Table S4. Abbreviations

Abbreviations Full names ETL Zeta.
amount potential
aBSA Nanoparticles incorporating APm onto 0 “3mV
BSA surface
nCAT Nanoparticles incorporating APm onto 0 3 mV
CAT surface
Nanoparticles incorporating APm and
NanolCD/BSA ETL onto BSA surface 40 3 my
Nanoparticles incorporating APm and
NanolCD/CAT ETL onto CAT surface 40 +3 mV
NanolCD/BSA-10 NanoICD/BSA \ylth 10 ETL integrated 10 3 mV
onto its surface
NanolCD/BSA-20 NanolCD/BSA Wlth 20 ETL integrated 20 3 mV
onto its surface
NanolCD/BSA-30 NanoICD/BSA Wlth 30 ETL integrated 30 3 mV
onto its surface
NanolCD/BSA-40 NanoICD/BSA Wlth 40 ETL integrated 40 3 mV
onto its surface
(-2)-NanolCD/BSA NanolCD/BSA w1t$1ne\1/ zeta potential of -2 40 S mV
(0)-NanolCD/BSA NanoICD/BSA ngi {a/ zeta potential of 0 40 0mV
(+3)-NanolCD/BSA NanolCD/BSA WIﬂrlni/ zeta potential of +3 40 3 mv
. . N
(+6)-NanolCD/BSA NanolCD/BSA Wlﬂrlni/ zeta potential of +6 40 6 mV
nCAT-PCA nCAT that coated with PCA 0 -10 mV
NanolCD/CAT-PCA NanoICD/CAT that coated with PCA 40 -10 mV
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