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Supplementary Fig. 1 Ultrastructures of different NsMJs containing 

different types of presynaptic-like vesicles. (a-c) Additional four NsMJs, 

each with six serial SBF-SEM images, on the other two p-arterioles (PA-2 and 

PA-3). Top left: Large views of the somatosensory cortex (300 nm/pixel 

resolution). Bottom left: Higher magnification of areas in the dashed box 

labeled the corresponding top panels with depths of 90 μm or 480 μm from pia. 

The NsMJ in a shows small, clear vesicles and a solitary small dense core 

vesicle (SDVC) with an average size of approximately 50 nm; the left NsMJ in 

b contains small, clear vesicles only, while the right one in b has many SDVCs; 

the NsMJ in c contains large DVCs (LDVCs), with an average size of 

approximately 120 nm. NsMJs are highlighted with pseudo colors labeling 

axonal bouton, basal membrane, and aSMCs. (d-e) Zoomed-in SEM images 

of NsMJs in b-4 and c-4, Each representative type of vesicle is marked. All 

representative images of a-e were replicated independently with 2 p-arterioles 

from one mouse. (f) Histogram graph for the sizes of vesicles from three 

additional axonal boutons that formed NsMJs, with small, clear vesicles. NsMJ 

1, 310 vesicles; NsMJ 2, 96 vesicles; NsMJ 3, 89 vesicles. Averaged 

distribution of all the vesicles, brown. Fitting curves represent the estimated 

normal distribution for vesicle sizes near 50 nm in each NsMJ. 
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Supplementary Fig. 2 Ultrastructural characterizations of postjunctional 

membrane and junctional cleft for NsMJs.  (a) One section of serial SEM 

sections from an NsMJ from Supplementary Fig. 1a-5. Electronic density 

analysis for the postjunctional site as well as the neighboring sites. (b) Density 

quantification for both sites in a. N = 26 postjunctional and 50 neighboring sites 

of 26 NsMJs from 3 p-arterioles. (c) The measurements for the size of the 

putative junctional cleft of NsMJs per depth (50 μm) from pia. N = 247 NsMJs 

from 3 p-arterioles. Data are mean ± s.e.m.; nested, unpaired, two-tailed t-test. 
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Supplementary Fig. 3 Different specificities to aSMCs in different 

promoter driver lines. (a-t) Representative brain images from SM22iCre:Ai14 

mice (a-c), SMACre:Ai14 (d-f), Myh11CreER:Ai14 (g-m), and 

PDGFRβCreER:Ai14 (n-t). Zeiss Z1 light sheet images of SMACre:Ai14 

mouse brain after tissue clearing (d-e) and confocal image of brain slice (f). 

Confocal images of brain sections with immunostaining of anti-a-SMA and/or 

CD 13 antibodies and counterstaining of DAPI (j-t). CD13 antibody labels 

nearly all aSMCs and pericytes, while a-SMA antibody only labels aSMCs. (u) 

Percentage of tdTomato+ cells in total pericytes. (v) Pericyte and aSMC 

percentages in tdTomato+ cells. (w) CD13 marker labeled the vast majority of 

tdTomato+ cells, including nearly all aSMCs and all pericytes. (x) Summary of 

the labeling specificities of five driver lines. (y) The efficiency of labeling 

aSMCs across the five driver lines. End, endothelial cell; Ast, astrocyte; Neu, 

neuron. Gray depicts no labeling at all, blue means labeling with high efficiency, 

and light blue means minimally labeling in x. N = 3 mice per promoter driver 

lines. 
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Supplementary Fig. 4 The procedure of conducting two-photon live 

imaging-based CLEM for the Glu-NsMJ identification. (a) Procedure 

outlines six steps. (b) Image-illustration of each step shown in a. The 

schematic brain in b-(3) was created with BioRender.com. S1-S4 indicates 

four laser-burned locations closing to the edge of the stitched four field-of-view 

(Area a-d) that had been 2P live-imaged, with a center area imaged deeply. A 

1×1×1.5 mm3 tissue block was precisely dissected and subjected to OTO 

staining and 3view SEM imaging. (c-h) Images were taken when the mouse 

was alive. (c) The photograph shows the NG2DsRedBAC:Thy1-YFP double 

Tg mouse with a cranial window subjected to 2P live imaging. (d) Low 

magnification image of the DsRed-positive aSMCs and YFP-positive 

glutamatergic neurons (5X objective). High magnification of live imaging was 

performed in e, which was stitched from 4 field-of-views by 509×509×200 μm3 

(Area a-d). (f) ‘Center area’ was imaged again by 509×509×820 μm3. The 

surface rendering of the projected z-stack image (g) and the side view (h) of 

the ‘center area’ in f. (i-l) Images taken after the mouse was perfused by PFA. 

N = 3 mice for e to h, among these 3 samples, two of them proceeded from i to 

l. The 4 laser-burned spots (S1-S4) were identified back in the perfused brain 

(i) in both fluorescent (j), bright-field image (k), and their merged images (l). 

(m-n) The specimen on XRM setup and 3view SEM setup. The magenta arrow 

points to the installation site of the specimen. 
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Supplementary Fig. 5 Recapitulation of NsMJ formation and maintenance 

in vitro. (a) Illustration of the timeline for generating a co-culture system of 

primary pial or parenchymal aSMCs of SMACreER:Ai14 mouse brains with 

primary neurons. Right panel was created with BioRender.com. One week 

before adding neurons, tamoxifen was first added to the culture medium to 

induce tdTomato expression. (b) Serial live images of parenchymal 

tdTomator+ aSMCs with primary neurons. Time-lapse imaging started at 4 

hours after seeding neurons and continued for 95 min. The neuronal soma 

extends a neurite towards aSMCs, forming a potential NsMJ in vitro. N = 18 

culture dishes from three independent experiments. (c-h) Determination of 

tdTomato– cell identity in the primary mixed leptomeningeal cells culture in 

SMCM for 14 days when primary neurons were added. Immunofluorescent 

staining of CD31 (c), Collagen I (d), PDGFRα (e), Iba-1 (f), GFAP (g). (h) 

Statistic analysis of the proportion of cell components in these mixed cultures 

in c-g. N = 30 FOVs from 10 cell culture dishes examined from 3 independent 

experiments. Data are mean ± s.e.m. (i) Epifluorescence with bright field 

image of the co-culture at DIV 14 for neurons, while in terms of aSMC, it was at 

DIV 28. White arrows pointed to the putative NsMJs. N = 14 FOVs from 5 

dishes from 5 independent co-culture experiments.    
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Supplementary Fig. 6 TEM-CLEM of the primary neuron and the sorted 

parenchymal tdTomato+ aSMC coculture in vitro. (a-f) Correlated LSM with 

TEM for identifying the ultrastructure of NsMJ. (a) Trimmed TEM sample block 

of co-culture matched the correlated fluorescent image. (b) Magnified 

fluorescent image with our targeted tdTomato+ aSMCs pointed by the green 

arrow. (c) Correlated TEM of b. (d) Magnification of the region in the green box 

labeled by d in c. (e) High-power image of the region in the magenta box 

labeled by e in d. (f) The blue arrow pointed NsMJ with higher resolution is 

shown in Fig. 2g. N = 14 FOVs from 5 dishes from 5 independent co-culture 

experiments.    
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Supplementary Fig. 7 Parenchymal arteriolar SMCs sorting with strict 

exclusion of EC contaminations. (a) Flow cytometry sorted EGFP+ aSMCs 

derived from enriched parenchymal vessels with minimally containing 

capillaries. SMACreER:Ai47 mice received tamoxifen at adult. CD45 and 

CD31 negative selections were used to exclude contaminations from immune 

cells and ECs. (b) Ai47 single-positive mice were used as control during the 

flow cytometry. APC stands for allophycocyanin, an intensely bright 

phycobiliprotein; PE for phycoerythrin. Averaged cell numbers of the obtained 

parenchymal EGFP+ aSMCs with high purity (c). RT-PCR of Pecam1 (CD31) 

and Acta2 (α-SMA) genes in the cortex and sorted EGFP+ aSMCs (d). (e) 

Quantification for d. N = 4 mice. Data are mean ± s.e.m.; nested, unpaired, 

two-tailed t-test.  
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Supplementary Fig. 8 GluN1 expression in parenchymal arteriolar SMCs. 

(a) RT-PCR of Grin1 gene in cerebral cortex lysates and sorted parenchymal 

aSMCs from adult brains, with statistic quantification in b. N = 3 mice 

(SMACreER:Ai47). (c) GluN1 protein with equivalent expression in the 

cerebral cortex of control (Grin1f/f) and aSMC-cKOGrin1 (SMACreER:Grin1f/f) 

mice, with statistic quantification in d. N = 3 mice for each genotype. Data are 

mean ± s.e.m.; nested, unpaired, two-tailed t-test (b, d). 
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Supplementary Fig. 9 Postsynaptic density 95 (PSD95) mRNA expression 

in aSMCs. (a) Single-cell RNA sequencing data shows PSD95 mRNA 

expression across mouse brain vascular and glial cells. Data credit: Christer 

Betsholtz lab in Sweden23. 

https://betsholtzlab.org/VascularSingleCells/database.html. (b) Bulk RNA 

sequencing data from this study and the previous study 

http://www.brainrnaseq.org/. 
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Supplementary Fig. 10 GluN1 puncta are adjacent to αSMA filament in 

primary pial aSMCs. (a) Representative immunofluorescent images of the 

subcellular relationship of GluN1 with α-SMA. (b) Zoomed-in image of the 

region in the upper box in a. (c) Zoomed-in image of the region in the bottom 

box in a. GluN1 puncta closely associated with α-SMA filaments are pointed by 

green arrows. (d) The line histogram of two proteins pixel intensity along the 

white arrow in c. (e) Co-localization analysis of GluN1 with α-SMA. (f) 

Quantified distribution of the GluN1 puncta colocalized to α-SMA versus total 

puncta number (n = 10 cells). Data are mean ± s.e.m.; nested, unpaired, 

two-tailed t-test (e). 
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Supplementary Fig. 11 Illustrative representation of the approximate size 

scale of immunogold complexes relative to the GluN1 cognate target. 

The sketch was created with BioRender.com. 
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Supplementary Fig. 12 Effective Two-photon optogenetics did not cause 

brain injury. (a) Representation of optogenetics and imaging strategy. A brain 

section from NG2DsRed mouse injected two viruses 

(AAV2/9-CaMKIIα-ChR2-mCherry and AAV2/9-CMV-GCamp6s) on one side 

and a cranial window was created on the other side. (b) A representative live 

image of the ChR2-mCherry positive axon terminals in the contralateral 

hemisphere was scanned at the 1100-nm laser wavelength which is optimal to 

image the mCherry signal while not activating ChR2, N = 6 mice. (c) 

Correlation plot of the measured laser beam powers of varied wavelengths at 

the focal plane versus the power output settings (%) in the operating software. 

(d) Quantification of Ca2+ events observed in the axonal terminals upon an 

1100-nm laser scanning and the increasing laser powers at 920 nm. N = 3 

mice, data are mean ± s.e.m.; statistical tests were determined by a one-way 

ANOVA with a post hoc Bonferroni multiple comparison adjustment. (e) Upper 

left: diagram of heat injury detection experiment. Bottom left: immunolabeled 

sections of mouse brain illuminated at 80 mW, 920 nm for continuous 5 

minutes, fixed 24 hours after two-photon stimulation. The schematic was 

created with BioRender.com. High magnification of the illuminated area is 

shown in the right panel, N = 3 mice. 
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Supplementary Fig. 13 No detectable arteriolar diameter changes in 

control mice that did not express ChR2 in response to two-photon 

illuminations. 

(a) Time-lapse images of a penetrating arteriole in NG2DsRed mouse at the 

focal plane 100.5 μm below pia, scanned by 1100 nm (before OG) and 960 nm 

at 25, 45, and 80 mW. Bottom, Kymographs for the re-slicing of the 

time-course images. (b) Time course of delta D/D0 (Diameter changes in a) 

when illuminated at 1100 nm and 960 nm at different powers. (c) Maximum 

vasodilation quantification for a and b. N = 3 mice, 5 arterioles. Data are mean 

± s.e.m.; nested, unpaired, two-tailed t-test. 
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Supplementary Fig. 14 Two-photon line-optogenetics on axons and 

dendrites did not cause neighboring neuron activation, but soma did. 

Neural Ca2+ event frequency in the whole field of views, excluding the events 

that occurred in the line-scanned areas, before and after the 500-ms high 

power photostimulation, comparing light green dots to dark green dots. Each 

view size is 6400 μm2. N = 3 mice, n = 3 field of views per group. Data are 

presented in mean ± s.e.m.; nested, unpaired, two-tailed t-test.  
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Supplementary Fig. 15 Comparable contractile proteins expression 

levels and the aSMC coverage on penetrating arterioles. (a) RT-PCR for 

SMC contractile proteins’ mRNA expression, including Acta2, Smtn, Tagln in 

the sorted cells from littermate control (SMACreER:Ai47), and aSMC-cKOGrin1 

(SMACreER:Ai47:Grin1f/f) mice whose aSMCs were labeled by EGFP, and 

adult mouse cerebral cortices (Left). Four replicates were performed for Acta2, 

and three replicates were performed for Smtn and Tagln independently (Right). 

(b) Immunostaining of SMC contractile protein smoothelin in the penetrating 

arterioles from mice of both genotypes. N = 3 mice, n = 10 arterioles. (c) 

Two-photon live images of penetrating arterioles, of which aSMCs were labeled 

green by including Ai47 reporter into both littermate control and aSMC-cKOGrin1 

mice (upper). Quantification of coverage was calculated by counting aSMC cell 

number per 100 μm arteriole in length. N = 3 mice, n = 30 arterioles per group. 

Tamoxifen was given to adult mice (2-3 months old) one month before animal 

sacrifice in panels b and c. Data are mean ± s.e.m.; statistical tests were 

determined by a one-way ANOVA with a post hoc Bonferroni multiple 

comparison adjustments for a, a two-tailed t-test for b and c. 
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Supplementary Fig. 16 Glu-NsMJ transmission mediates neurovascular 

coupling independently of postsusynaptic the COX2-PGE2 pathway. (a) 

Schematic showing whisker stimulation and CBF recording setups. Time 

course (b) and maximum percentage (c) of CBF changes in the barrel cortex 

from littermate control (Grin1f/f) and aSMC-cKOGrin1 (SMACreER:Grin1f/f) upon 

stimulations. Mice in both genotypes were injected with vehicle or COX2 

inhibitor (NS-398). N = 6 mice per group, 3 stimulations for each mouse. The 

horizontal gray line shows the duration of whisker stimulation. The results of 

Grin1f/f  (the first bar) and SMACreER:Grin1f/f  (the second bar) mice shared 

the same data as in Fig. 6p. Data are mean ± s.e.m.; one-way ANOVA with a 

post hoc Bonferroni multiple comparison adjustment.  
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Supplementary Fig. 17 The uncropped scans of all blots and gels in 

RT-PCR and WB are presented in the main, extended data, and 

supplementary figures. 


