Supplementary Information

A cost-effective sequencing method for genetic studies combining high-depth whole exome and low-depth whole genome

Claude Bhérer^{1,2,3}, Robert Eveleigh^{2,4}, Katerina Trajanoska^{1,2,3}, Janick St-Cyr², Antoine Paccard², Praveen Nadukkalam Ravindran^{2,3}, Elizabeth Caron², Nimara Bader Asbah^{1,2}, Peyton McClelland^{1,2,3}, Clare Wei^{2,3}, Iris Baumgartner^{5,6}, Marc Schindewolf^{5,6}, Yvonne Döring^{5,6,7}, Danielle Perley^{2,4}, François Lefebvre^{2,4}, Pierre Lepage², Mathieu Bourgey⁸, Guillaume Bourque^{1,2,4}, Jiannis Ragoussis^{1,2}, Vincent Mooser^{1,2,3}, Daniel Taliun^{1,2,3}

¹ Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada

- ² Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, Québec, Canada
- ³ Canada Excellence Research Chair in Genomic Medicine, McGill University, Montréal, Québec, Canada
- ⁴ Canadian Centre for Computational Genomics, McGill University, Montréal, Québec, Canada
- ⁵ Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ⁶ Department for BioMedical Research (DBMR), University of Bern, Switzerland
- ⁷ Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Pettenkoferstr 9, 80336, Munich, Germany
- ⁸ Mila Quebec AI Institute, Montréal, Québec, Canada

Correspondence: daniel.taliun@mcgill.ca

Supplementary figures and tables

Supplementary Figure 1. Data processing diagram. WGS and WES alignment, deduplication and base recalibration steps were performed using GATK best practices. WGS and WES BAM files were then merged using samtools. Merged WEGS data was used for variant calling and imputation with GLIMPSE and local haplotype reference panel. The resulting imputed WEGS VCF was then used to merge imputed positions with WEGS data, hence obtaining the final WEGS VCF.

individual. DP includes only paired mapped reads and base pairs with minimal Phred-scaled mapping and base qualities of 20. Each point corresponds to a single target region. In total, there were 208,817 non-overlapping autosomal regions. The X-axis shows the median of average DPs in the target region across all individuals sequenced in 4-plex (panel A) and 8-plex (panel B) experiments. The Y-axis shows the median of average DPs in the target region across all individuals sequenced without multiplexing. The darker color represents the higher density of the points. The vertical bar on the right of each panel shows the number of points corresponding to each color. The dotted black line corresponds to the 1:1 ratio between DP in the experiments.

Supplementary Figure 3. Average depths of coverage across all targeted regions in autosomal chromosomes stratified by library preparation batch. The average depth of coverage (DP) was computed across target regions in Agilent V7 capture using paired mapped reads and counting only base pairs with minimal Phred-scaled mapping and base qualities of 20. The solid black line corresponds to the linear regression line, and the dashed black lines correspond to the 95% confidence interval. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IQR$ beyond the box. The horizontal line within the box indicates the median value. Open rectangles and diamonds are data points corresponding to the average DP across individual exome in batches 1 and 2, respectively. A) The DP is stratified by the library preparation batch in experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The DP in the first library preparation batch. C)

supprementary Figure 4. Number of reads in autosonial chromosonies in sequencing experiments with and without multiplexing. The figure shows only paired reads in autosomal chromosomes, excluding reads that are non-primary or supplementary alignments or failed platform/vendor quality checks. The solid black line corresponds to the linear regression line, and the dashed black lines correspond to the 95% confidence interval. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IQR$ beyond the box. The horizontal line within the box indicates the median value. Open circles are data points corresponding to the sequenced individual exomes. A) Number of paired reads in millions in sequencing experiments without sample multiplexing and when simultaneously sequencing four (4-plex) and eight (8-plex) samples. B) Percent of reads flagged as PCR or optical duplicates. C) Percent of unmapped reads. D) Average Phred-scaled base quality score across all reads in a sequenced sample.

Supplementary Figure 5. The number of paired reads in autosomal chromosomes stratified by library preparation batch. The figure shows only paired reads in autosomal chromosomes, excluding reads that are non-primary or supplementary alignments or failed platform/vendor quality checks. The solid black line corresponds to the linear regression line, and the dashed black lines correspond to the 95% confidence interval. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IQR$ beyond the box. The horizontal line within the box indicates the median value. Open rectangles and diamonds are data points corresponding to the number of paired reads across individual exome in batches 1 and 2, respectively. A) The number of paired reads is stratified by the library preparation batch in experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The number of paired reads in the first library preparation batch. C) The number of paired reads in the second library preparation batch.

Supplementary Figure 6. Percent of reads flagged as PCR or optical duplicates in autosomal chromosomes stratified by library preparation batch. The figure shows only paired reads in autosomal chromosomes, excluding reads that are non-primary or supplementary alignments or failed platform/vendor quality checks. The solid black line corresponds to the linear regression line, and the dashed black lines correspond to the 95% confidence interval. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IQR$ beyond the box. The horizontal line within the box indicates the median value. Open rectangles and diamonds are data points corresponding to the percent of duplicated reads across individual exomes in batches 1 and 2, respectively. A) The percent of duplicated reads is stratified by the library preparation batch in experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The percent of duplicate reads in the first library preparation batch. C) The percent of duplicate reads in the second library preparation batch.

Supplementary Figure 7. Percent of unmapped reads in autosomal chromosomes stratified by library preparation batch. The figure shows only paired reads in autosomal chromosomes, excluding reads that are non-primary or supplementary alignments or failed platform/vendor quality checks. The solid black line corresponds to the linear regression line, and the dashed black lines correspond to the 95% confidence interval. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IQR$ beyond the box. The horizontal line within the box indicates the median value. Open rectangles and diamonds are data points corresponding to the percent of unmapped reads across individual exome in batches 1 and 2, respectively. A) The percent of unmapped reads is stratified by the library preparation batch in experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The percent of unmapped reads in the first library preparation batch. C) The percent of unmapped reads in the second library preparation batch.

Supplementary Figure 8. The average quality of reads in autosomal chromosomes stratified by library preparation batch. The figure shows only paired reads in autosomal chromosomes, excluding reads that are non-primary or supplementary alignments or failed platform/vendor quality checks. The average read quality was computed as the average of Phred-scaled base qualities. The solid black line corresponds to the linear regression line, and the dashed black lines correspond to the 95% confidence interval. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IQR$ beyond the box. The horizontal line within the box indicates the median value. Open rectangles and diamonds are data points corresponding to the average read quality is stratified by the library preparation batch in experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The average read quality in the first library preparation batch. C) The average read quality in the second library preparation batch.

Supplementary Figure 9. Average depths of coverage across all targeted regions in autosomal chromosomes processed with and without UMI-aware deduplication. The average depth of coverage (DP) was computed across target regions in Agilent V7 capture using paired mapped reads and counting only base-pairs with minimal Phred-scaled mapping and base qualities of 20. The box bounds the IQR and Tukey-style whiskers extend to a maximum of $1.5 \times$ IQR beyond the box. The horizontal line within the box indicates median value. Open circles, up-pointing and down-pointing triangles are data points corresponding to the average DP across individual exome processed without, with LocatIt and GATK's UmiAwareMarkDuplicatesWithMateCigar UMI-aware deduplication, respectively.

Supplementary Figure 10. Recall and precision of the SNVs and InDels called in sequencing experiments without and with multiplexing. The figure represents variant calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. The solid black line corresponds to the linear regression line, and the dashed black lines correspond to the 95% confidence interval. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IQR$ beyond the box. The horizontal line within the box indicates the median value. Open circles are data points corresponding to the sequenced individual exomes. A) Recall rates of the called SNVs. B) Precision of the called SNVs. C) Recall rates of the called InDels. D) Precision of the called InDels.

Supplementary Figure 11. The recall of the SNVs and InDels called in sequencing experiments without and with multiplexing stratified by library preparation batch. The figure represents variant calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. The solid black line corresponds to the linear regression line, and the dashed black lines correspond to the 95% confidence interval. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IOR$ beyond the box. The horizontal line within the box indicates the median value. Open rectangles and diamonds are data points corresponding to the recall across individual exome in batches 1 and 2, respectively. A) The recall of SNVs is stratified by the library preparation batch in experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The recall of SNVs in the first library preparation batch. C) The recall of SNVs in the second library preparation batch. D) The recall of InDels is stratified by the library preparation batch in experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. E) The recall of InDels in the first library preparation batch. F) The recall of InDels in the second library preparation batch.

and Tukey-style whiskers extend to 1.3×10 R beyond the box. The horizontal line within the box indicates the median value. Open rectangles and diamonds are data points corresponding to the precision across individual exome in batches 1 and 2, respectively. A) The precision of SNVs is stratified by the library preparation batch in experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. B) The precision of SNVs in the first library preparation batch. C) The precision of SNVs in the second library preparation batch. D) The precision of InDels is stratified by the library preparation batch in experiments without multiplexing, with 4-plexing and 8-plexing experiments. The p-values above each experiment pair correspond to the one-tailed Wilcoxon rank-sum test. E) The precision of InDels in the first library preparation batch. F) The precision of InDels in the second library preparation batch.

of true positive (TP) SNV calls in sequencing experiments without sample multiplexing and when simultaneously sequencing four (4-plex) and eight (8-plex) samples. B) Number of false positive (FP) SNV calls. C) Number of false negative (FN) SNV calls. D) Number of TP InDel calls. E) Number FP InDel calls. F) Number of FN InDel calls.

Supplementary Figure 14. Recall and precision of the single nucleotide variations (SNVs) in sequencing experiments without and with UMI-aware read deduplication. The figure represents SNV calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. Open circles, up-pointing and down-pointing triangles are data points corresponding to the recall and precision in individual exomes processed without, with LocatIt and GATK's UmiAwareMarkDuplicatesWithMateCigar UMI-aware deduplication, respectively. The solid black lines connect pairs of individual exomes with the same underlying sequencing data (i.e. same sequenced sample) but different deduplication approaches. The p-values above experiments with varying levels of multiplexing correspond to the one-tailed Wilcoxon signed-rank test between UMI agnostic and UMI-aware deduplication. A) Recall rates of the called SNVs without UMI-aware compared to UMIaware deduplication using LocatIt. B) Precision of the called SNVs without UMI-aware compared to UMI-aware deduplication using LocatIt. C) Recall rates of the called SNVs without UMI-aware compared to UMI-aware deduplication using GATK's UmiAwareMarkDuplicatesWithMateCigar. D) Precision of the called SNVs without UMI-UMI-aware deduplication GATK's aware compared to using UmiAwareMarkDuplicatesWithMateCigar.

Supplementary Figure 15. Variant recall and precision rates in WES experiments with multiplexing before and after adding 2X WGS data. The figure represents variant calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. Open circles and up-pointing triangles are data points corresponding to the recall and precision in individual multiplexed WES before and after adding 2X WGS data, respectively. The solid black lines connect pairs of individual exomes with the same underlying WES data (i.e. same sequenced sample). The p-values above experiments with varying levels of multiplexing correspond to the one-tailed Wilcoxon signed-rank test between UMI agnostic and UMI-aware deduplication. A) Recall rates of the called SNVs with and without 2X WGS. B) Precision rates of the called SNVs with and without 2X WGS. D) Precision rates of the called InDels with and without 2X WGS.

Supplementary Figure 16. Variant recall and precision rates in WES experiments with multiplexing before and after adding 5X WGS data. The figure represents variant calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. Open circles and up-pointing triangles are data points corresponding to the recall and precision in individual multiplexed WES before and after adding 5X WGS data, respectively. The solid black lines connect pairs of individual exomes with the same underlying WES data (i.e. same sequenced sample). The p-values above experiments with varying levels of multiplexing correspond to the one-tailed Wilcoxon signed-rank test between UMI agnostic and UMI-aware deduplication. A) Recall rates of the called SNVs with and without 5X WGS. B) Precision rates of the called SNVs with and without 5X WGS. D) Precision rates of the called InDels with and without 5X WGS.

Supplementary Figure 17. SNVs calling precision and recall rates in no-plexing WES compared to WEGS stratified by library preparation batch. The figure represents SNV calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IQR$ beyond the box. The horizontal line within the box indicates the median value. Open rectangles and diamonds are data points corresponding to the individual WES and WEGS in batches 1 and 2, respectively. The p-values above each pair of batches or sequencing methods correspond to the one-tailed Wilcoxon rank-sum test. A) Precision rates of the called SNVs in batch 1. C) Precision rates of the called SNVs in batch 2. D) Recall rates of the called SNVs in batches 1 and 2. E) Recall rates of the called SNVs in batch 1. F) Recall rates of the called SNVs in batch 2. Supplementary Table 7 shows average values and standard errors.

Supplementary Figure 18. InDel calling precision and recall rates in no-plexing WES compared to WEGS stratified by library preparation batch. The figure represents InDel calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IQR$ beyond the box. The horizontal line within the box indicates the median value. Open rectangles and diamonds are data points corresponding to the individual WES and WEGS in batches 1 and 2, respectively. The p-values above each pair of batches or sequencing methods correspond to the one-tailed Wilcoxon rank-sum test. A) Precision rates of the called InDels in batch 1. C) Precision rates of the called InDels in batch 2. D) Recall rates of the called InDels in batches 1 and 2. E) Recall rates of the called InDels in batch 2. F) Recall rates of the called InDels in batch 2. Supplementary Table 7 shows average values and standard errors.

HG002 control sample in PAD study when using WEGS_{8P,4X}. The HG002 sample was used as a control during the sequencing of PAD samples, which resulted in 10 replicates. We calculated the variant recall and precision rates for each HG002 replicate against the GIAB reference data. The box bounds the IQR, and Tukey-style whiskers extend to $1.5 \times IQR$ beyond the box. The horizontal line within the box indicates the median value. An open circle represents the precision or recall values for an individual HG002 replicate. Supplementary Table 1 lists the mean values and standard errors.

Supplementary Table 1. Precision and recall of variant calls in ten replicates of HG002 control sample in PAD study when using WEGS_{8P,4X}. The HG002 sample was used as a control during the sequencing of PAD samples, which resulted in 10 replicates. We calculated the variant recall and precision rates for each HG002 replicate against the GIAB reference data.

Category	SNVs Recall (SE)	SNVs Precision (SE)	InDel Recall (SE)	InDel Precision (SE)
Target regions	0.9788 (0.0006)	0.9685 (0.0003)	0.8955 (0.0036)	0.8490 (0.0020)
Genome-wide	0.5274 (0.0379)	0.8513 (0.0148)	0.3515 (0.0293)	0.7028 (0.0094)

Supplementary Table 2. The average changes in read properties after UMI-aware read deduplication steps relative to the UMI agnostic approach.

Number of samples	UMI-aware	Averag	e difference compared	to UMI agnostic app	roach
sequenced together (multiplexed)	deduplication tool	% of QC fail reads (SE)	% of PCR/optical duplicates (SE)	% of unmapped reads (SE)	Avg. Phred-scaled read quality (SE)
1	LocatIt	6.45 (0.16)	-1.20 (0.04)	-0.068 (0.00223)	2.60 (0.12)
1	GATK	0.00(0.00)	-0.36 (0.01)	0.003 (0.00003)	0.35 (0.06)
4	LocatIt	5.19 (0.16)	-1.42 (0.04)	-0.069 (0.00159)	2.87 (0.05)
4	GATK	0.00(0.00)	-0.39 (0.01)	0.003 (0.00005)	0.49 (0.05)
8	LocatIt	4.38 (0.10)	-1.56 (0.03)	-0.069 (0.00175)	2.70 (0.14)
8	GATK	0.00 (0.00)	-0.40 (0.01)	0.003 (0.00004)	0.57 (0.03)

Supplementary Table 3. Variant calling in whole exome sequencing experiments with and without multiplexing. The table represents variant calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. TP - true positives, FP - false positives, FN - false negatives.

				SNVs			InDels					
Number of samples sequenced together (multiplexed)	N (SE)	TP (SE)	FP (SE)	FN (SE)	Recall (SE)	Precision (SE)	NT (SE)	P (SE)	FP (SE)	FN (SE)	Recall (SE)	Precision (SE)
1	22,648	22,241	406	384	0.9830	0.9821	683	631	53	41	0.9390	0.9232
	(33)	(30)	(7)	(8)	(0.0004)	(0.0003)	(7)	(6)	(2)	(2)	(0.0029)	(0.0028)
4	22,632	22,214	418	411	0.9818	0.9815	682	629	54	43	0.9360	0.9220
	(28)	(24)	(6)	(11)	(0.0005)	(0.0002)	(7)	(5)	(2)	(2)	(0.0031)	(0.0021)
8	22,592	22,177	415	446	0.9803	0.9816	679	623	56	50	0.9261	0.9186
	(28)	(23)	(6)	(9)	(0.0004)	(0.0003)	(6)	(4)	(2)	(2)	(0.0028)	(0.0027)

Supplementary Table 4. The average number of SNVs missed in multiplexing experiments but correctly identified across all no-plexing experiments. For each multiplexing experiment, we computed the number of false negative (FN) SNV calls that were true positive (TP) in all three no-plexing experiments for the corresponding individual.

	TP across all no-plexing	gWES
	All N (SE)	Higher DP N (SE)
FN in 4-plexing WES	45 (6)	40 (6)
FN in 8-plexing WES	65 (6)	61 (6)

Supplementary Table 5. The average changes in SNV calling in whole exome sequencing experiments with UMI-aware read deduplication relative to the UMI agnostic approach. The table represents SNV calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. The star symbols represent statistically significant differences when using a one-tailed Wilcoxon signed-rank test: * - P-value < 0.05, ** - P-value < 0.01, *** - P-value < 0.001.

Number of samples sequenced together (multiplexed)	UMI-aware deduplication tool	N (SE)	TP (SE)	FP (SE)	FN (SE)	Recall (SE)	Precision (SE)
1	LocatIt	-17 (3) **	-14(1)**	-4 (4)	14(1)**	-0.0006 (0.0001) **	0.0002 (0.0002)
1	GATK	9 (3) **	0 (0)	8 (2) **	-0 (0)	0.0000 (0.0000)	-0.0004 (0.0001)**
4	LocatIt	-16 (3) ***	-13 (2) ***	-3 (3)	13 (2) ***	-0.0006 (0.0001)***	0.0001 (0.0001)
4	GATK	24 (3) ***	4(1) **	20 (3) ***	-4 (1) **	0.0002 (<0.0001) **	-0.0009 (0.0001)***
8	LocatIt	-20 (4) ***	-17 (2) ***	-2 (3)	17 (2) ***	-0.0008 (0.0001)***	0.0001 (0.0001)
8	GATK	39 (2) ***	6 (1) ***	33 (2) ***	-6 (1) ***	0.0003 (<0.0001)***	-0.0014 (0.0001)***

Supplementary Table 6. The average changes in SNVs and InDels calling in whole exome sequencing experiments when adding additional whole genome sequencing reads relative to pure whole exome sequencing experiments. The table represents SNV and InDel calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. The star symbols represent statistically significant differences when using a one-tailed Wilcoxon signed-rank test: * - P-value < 0.05, ** - P-value < 0.01, *** - P-value < 0.001.

Number of samples	WGS DP	/GS SNVs					InDels							
sequenced together (multiplexed)	sequenced together (multiplexed) 4		N (SE)	TP (SE)	FP (SE)	FN (SE)	Recall (SE)	Precision (SE)	N (SE)	TP (SE)	FP (SE)	FN (SE)	Recall (SE)	Precision (SE)
4	2X	62 (8) ***	54 (7) ***	8 (3) *	-54 (7) ***	0.0024 (0.0003) ***	-0.0003 (0.0001) *	6 (1) **	9 (1) ***	-3 (1) **	-9 (1) ***	0.0133 (0.0015) ***	0.0049 (0.0010) ***	
8	2X	76 (6) ***	70 (5) ***	6 (4)	-70 (5) ***	0.0031 (0.0002) ***	-0.0002 (0.0002)	6 (2) ***	10 (1) ***	-3 (1) ***	-10 (1) ***	0.0146 (0.0017) ***	0.0055 (0.0009) ***	
4	5X	85 (9) ***	77 (9) ***	8 (4) *	-77 (9) ***	0.0034 (0.0004) ***	-0.0003 (0.0002)	8 (1) ***	13 (1) ***	-5 (1) ***	-13 (1) ***	0.0192 (0.0020) ***	0.0080 (0.0013) ***	
8	5X	104 (8) ***	100 (7) ***	3 (5)	-100 (7) ***	0.0044 (0.0003) ***	-0.0001 (0.0002)	10 (2) ***	15 (1) ***	-6 (1) ***	-15 (1) ***	0.0229 (0.0018) ***	0.0092 (0.0011) ***	

Supplementary Table 7. Average variant recall and precision rates in no-plexing WES and WEGS. The table represents variant calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions. The star symbols represent statistically significant differences between WES and WEGS when using a one-tailed Wilcoxon rank-sum test: * - P-value < 0.05, ** - P-value < 0.01, *** - P-value < 0.001. WEGS values in bold font are higher than the corresponding values in WES.

Sequencing	Number of	WGS DP	SN	Vs	InDels		
metnoa	samples sequenced together (multiplexed)		Recall (SE)	Precision (SE)	Recall (SE)	Precision (SE)	
WES	1	_	0.9830 (0.0004)	0.9821 (0.0003)	0.9390 (0.0029)	0.9232 (0.0028)	
WEGS _{4P,2X}	4	2	0.9842 (0.0002)**	0.9812 (0.0002)*	0.9493 (0.0028)*	0.9269 (0.0024)	
WEGS _{4P,5X}	4	5	0.9852 (0.0001)***	0.9812 (0.0002)*	0.9552 (0.0019)***	0.9300 (0.0024)*	
WEGS _{8P,2X}	8	2	0.9834 (0.0002)	0.9814 (0.0003)	0.9407 (0.0026)	0.9240 (0.0024)	
WEGS _{8P,5X}	8	5	0.9847 (0.0001)***	0.9816 (0.0002)	0.9490 (0.0020)**	0.9277 (0.0027)	

Supplementary Table 8. Average variant recall and precision rates in no-plexing WES and WEGS stratified by library preparation batch. The star symbols represent statistically significant differences between WES and WEGS in the same batch when using a one-tailed Wilcoxon rank-sum test: * - P-value < 0.05, ** - P-value < 0.01, *** - P-value < 0.001. WEGS values in bold font are higher than the corresponding values in WES in the same batch.

				SNV	/s	InDels		
Batch	Label	Number of samples	WGS DP					
		sequenced together (multiplexed)	-	Recall (SE)	Precision (SE)	Recall (SE)	Precision (SE)	
1	WES	1	0	0.9840 (0.0004)	0.9813 (0.0006)	0.9426 (0.0041)	0.9241 (0.0054)	
1	WEGS _{4P,2X}	4	2	0.9846 (0.0002)	0.9812 (0.0003)	0.9515 (0.0028)*	0.9289 (0.0031)	
1	WEGS _{4P,5X}	4	5	0.9854 (0.0002)**	0.9811 (0.0003)	0.9569 (0.0020)**	0.9315 (0.0032)	
1	WEGS _{8P,2X}	8	2	0.9838 (0.0003)	0.9818 (0.0004)	0.9434 (0.0036)	0.9257 (0.0030)	
1	WEGS _{8P,5X}	8	5	0.9849 (0.0002)*	0.9819 (0.0004)	0.9506 (0.0029)	0.9293 (0.0040)	
2	WES	1	0	0.9826 (0.0004)	0.9824 (0.0003)	0.9371 (0.0038)	0.9228 (0.0036)	
2	WEGS _{4P,2X}	4	2	0.9835 (0.0002)	0.9813 (0.0003)**	0.9450 (0.0062)	0.9229 (0.0029)	
2	WEGS _{4P,5X}	4	5	0.9849 (0.0002)**	0.9814 (0.0003)*	0.9519 (0.0040)*	0.9271 (0.0035)	
2	$WEGS_{8P,2X}$	8	2	0.9830 (0.0002)	0.9811 (0.0004)**	0.9380 (0.0036)	0.9223 (0.0038)	
2	WEGS _{8P,5X}	8	5	0.9845 (0.0002)**	0.9812 (0.0003)**	0.9474 (0.0028)*	0.9262 (0.0039)	

Supplementary Table 9. Average variant recall and precision rates in 30X WGS, 2X WGS, 5X WGS, WES, and WEGS. The table represents variant calls inside the target regions in Agilent V7 capture and the GIAB high-confidence regions.

e :		SNV	Vs		InDels					
method	TP	FP	FN	Precision	Recall	TP	FP	FN	Precision	Recall
	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)
30X WGS	22,338 (19)	260 (5)	287 (5)	0.9885 (0.0002)	0.9873 (0.0002)	661 (5)	12 (1)	11 (1)	0.9823 (0.0017)	0.9841 (0.0011)
2X WGS	12,387	3,158	10,238	0.7966	0.5474	359	257	313	0.5833	0.5344
	(433)	(107)	(399)	(0.0075)	(0.0183)	(10)	(13)	(5)	(0.0083)	(0.0040)
5X WGS	17,347	1,857	5,278	0.9031	0.7667	494	280	177	0.6398	0.7354
	(489)	(57)	(466)	(0.0052)	(0.0209)	(20)	(9)	(7)	(0.0161)	(0.0151)
WES	22,241	406	384	0.9821	0.9830	631	53	41	0.9232	0.9390
	(30)	(7)	(8)	(0.0003)	(0.0004)	(6)	(2)	(2)	(0.0028)	(0.0029)
WEGS _{4P,2X}	22,268	426	357	0.9812	0.9842	638	51	34	0.9269	0.9493
	(24)	(6)	(5)	(0.0002)	(0.0002)	(5)	(2)	(2)	(0.0024)	(0.0028)
WEGS _{4P,5X}	22,291	427	334	0.9812	0.9852	642	49	30	0.9300	0.9552
	(25)	(6)	(3)	(0.0002)	(0.0001)	(5)	(2)	(1)	(0.0024)	(0.0019)
WEGS _{8P,2X}	22,247	421	376	0.9814	0.9834	633	52	40	0.9240	0.9407
	(21)	(6)	(4)	(0.0003)	(0.0002)	(4)	(2)	(2)	(0.0024)	(0.0026)
WEGS _{8P,5X}	22,277	418	346	0.9816	0.9847	638	50	34	0.9277	0.9490
	(21)	(6)	(3)	(0.0002)	(0.0001)	(4)	(2)	(2)	(0.0027)	(0.0020)

Supplementary Table 10. Average genome-wide variant recall and precision rates in 30X WGS, 2X WGS, 5X WGS, and WEGS. The table represents variant calls in genetic regions overlapping with the GIAB high-confidence regions genome-wide.

			SNV		InDel					
Sequencing	TP	FP	FN	Precision	Recall	TP	FP	FN	Precision	Recall
method	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)
30X WGS	3,309,667 (4,295)	15,268 (174)	26,097 (82)	0.9954 (0.0001)	0.9922 (0.0000)	500,728 (2,382)	5,605 (35)	9,757 (111)	0.9889 (0.0001)	0.9809 (0.0002)
2X WGS	1,190,984	322,983	2,144,781	0.7852	0.3572	115,029	52,321	395,456	0.6860	0.2257
	(108,702)	(12,296)	(117,113)	(0.0099)	(0.0336)	(12,911)	(4,272)	(16,488)	(0.0069)	(0.0269
5X WGS	1,830,718	250,804	1,505,046	0.8780	0.5490	189,542	65,847	320,943	0.7404	0.3718
	(144,541)	(7,048)	(153,117)	(0.0113)	(0.0449)	(19,319)	(3,181)	(22,545)	(0.0103)	(0.0404)
WEGS _{4P,2X}	1,333,840	303,452	2,001,925	0.8137	0.4000	132,918	56,441	377,567	0.7010	0.2607
	(44,603)	(4,673)	(48,123)	(0.0033)	(0.0138)	(5,359)	(1,663)	(6,801)	(0.0025)	(0.0112)
WEGS _{4P,5X}	1,909,331	240,392	1,426,434	0.8869	0.5726	201,593	68,206	308,892	0.7457	0.3954
	(58,921)	(3,054)	(62,566)	(0.0043)	(0.0183)	(7,908)	(1,221)	(9,249)	(0.0041)	(0.0166)
WEGS _{8P,2X}	1,326,086	307,039	2,008,327	0.8109	0.3979	131,783	56,193	378,097	0.7001	0.2588
	(39,124)	(4,029)	(42,308)	(0.0029)	(0.0121)	(4,687)	(1,460)	(6,013)	(0.0022)	(0.0098)
WEGS _{8P,5X}	1,914,743	240,678	1,419,670	0.8870	0.5745	201,995	68,102	307,885	0.7463	0.3967
	(51,710)	(2,681)	(54,999)	(0.0038)	(0.0161)	(6,927)	(1,067)	(8,174)	(0.0036)	(0.0146)

Supplementary Table 11. Precision and recall rates of variants imputed using the TOPMed reference panel inside WES target regions. P - precision. R - recall. For WEGS, this table reports average numbers for each sample. Each sample was sequenced 4 times using WEGS_{4P,2X}. HG002 and HG004 were sequenced 5 times using WEGS_{8P,5X}. HG003 was sequenced 6 times using WEGS_{8P,5X}. The percent of missed true variants is equal to (1 - recall) * 100.

TOPMed imputed							WEGS 4P, 2X					WEGS 8P, 5X			
Sample	ТР	FN	FP	Р	R	TP (SE)	FN (SE)	FP (SE)	P (SE)	R (SE)	TP (SE)	FN (SE)	FP (SE)	P (SE)	R (SE)
						~ /	S	SNVs	~ /	~ /	()	. ,	. ,	()	. ,
HG002	21,458	1,285	165	0.9924	0.9435	22,379 (7)	364 (7)	446 (6)	0.9805 (0.0002)	0.9840 (0.0003)	22,390 (5)	3534 (5)	49 (7)	0.9803 (0.0003)	0.9845 (0.0002)
HG003	21,477	1,112	111	0.9949	0.9508	22,231 (9)	358 (9)	425 (4)	0.9813 (0.0001)	0.9841 (0.0004)	22,249 (6)	3404 (6)	06 (5)	0.9821 (0.0002)	0.9850 (0.0003)
HG004	21,228	1,315	181	0.9915	0.9417	22,195 (9)	348 (9)	406 (7)	0.9820 (0.0003)	0.9846 (0.0004)	22,197 (5)	3464 (5)	02 (3)	0.9822 (0.0001)	0.9847 (0.0002)
							Ь	nDels	· · · · ·					· · · · ·	
HG002	271	411	8	0.9713	0.3974	648 (3)	34 (3)	57 (1)	0.9197 (0.0017)	0.9498 (0.0050)	647 (2)	35 (2)	58 (3)	0.9177 (0.0038)	0.9481 (0.0028)
HG003	257	433	8	0.9698	0.3725	649 (2)	41 (2)	52 (2)	0.9254 (0.0019)	0.9409 (0.0027)	651 (1)	39 (1)	52 (1)	0.9265 (0.0018)	0.9432 (0.0019)
HG004	259	384	7	0.9738	0.4028	616 (2)	28 (2)	43 (2)	0.9357 (0.0035)	0.9572 (0.0026)	615 (2)	28 (2)	40 (2)	0.9393 (0.0033)	0.9568 (0.0031)

Supplementary Table 12. Precision and recall rates of variants imputed using the TOPMed reference panel genome-wide. P - precision. R - recall. For WEGS, this table reports average numbers for each sample. Each sample was sequenced 4 times using WEGS_{4P,2X}. HG002 and HG004 were sequenced 5 times using WEGS_{8P,5X}. HG003 was sequenced 6 times using WEGS_{8P,5X}. The percent of missed true variants is equal to (1 - recall) * 100.

	ТОРМ	Med imputed		W	EGS 4P,2X		WEGS 8P,5X					
Sample	TP	Р	R	TP (SE)	P (SE)	R (SE)	TP (SE)	P (SE)	R (SE)			
				SN	Vs							
HG002	3,212,631	0.9934	0.9582	1,323,307 (13,949)	0.8183 (0.0023)	0.3947 (0.0042)	1,873,500 (1,770)	0.8853 (0.0002)	0.5588 (0.0005)			
HG003	3,181,715	0.9947	0.96	1,518,733 (9,194)	0.8236 (0.0013)	0.4583 (0.0028)	2,151,757 (2,243)	0.9040 (0.0002)	0.6493 (0.0007)			
HG004	3,202,593	0.9936	0.9587	1,159,478 (6,227)	0.7991 (0.0011)	0.3471 (0.0019)	1,671,569 (3,941)	0.8684 (0.0005)	0.5004 (0.0012)			
				InD	els							
HG002	199,347	0.9896	0.3816	132,493 (1,957)	0.7043 (0.0008)	0.2536 1 (0.0037)	98,767 (351)	0.7447 (0.0003)	0.3805 (0.0007)			
HG003	195,885	0.9909	0.3911	154,695 (1,172)	0.7091 (0.0003)	0.3089 2 (0.0023)	32,882 (368)	0.7624 (0.0002)	0.4650 (0.0007)			
HG004	197,298	0.9899	0.3882 1	11,566 (788)	0.6897 (0.0004)	0.2195 1 (0.0015)	68,158 (651)	0.7287 (0.0002)	0.3308 (0.0013)			

Supplementary Table 13. Imputed variants, their allele frequencies, and overlap with true positive (TP) variants in WEGS outside WES target regions. The arrows \hat{U} and \mathbb{Q} denote the increase and decrease in AF fold-change (AF ASJ / AF TOPMed) compared to variants where the number of imputed alleles matched the number of true alleles.

	# of imputed	N imputed	Γ	Median AF (Q1-Q3)	Mean % of variants which were TP in WEGS (SE)		
Sample	true alleles	variants	ASJ	TOPMed	Fold-change	WEGS 4P,2X	WEGS 8P,5X
HG002	Same	3,258,732	0.460 (0.239-0.703)	0.442 (0.231-0.680)	1.042 (0.925-1.197)	38.44 (0.42)	55.16 (0.05)
HG002	Smaller	15,233	0.234 (0.059-0.483)	0.215 (0.043-0.453)	û 1.136 (0.926-1.509)	41.85 (0.48)	59.31 (0.11)
HG002	Greater	17,161	0.329 (0.147-0.536)	0.340 (0.157-0.539)	↓ 1.007 (0.840-1.209)	90.55 (0.05)	92.75 (0.02)
HG003	Same	3,225,810	0.461 (0.239-0.704)	0.443 (0.231-0.681)	1.043 (0.927-1.198)	44.84 (0.28)	64.45 (0.07)
HG003	Smaller	12,665	0.222 (0.051-0.496)	0.215 (0.033-0.458)	1.129 (0.930-1.537)	46.75 (0.34)	67.09 (0.08)
HG003	Greater	13,855	0.302 (0.134-0.477)	0.318 (0.145-0.501)	↓1.006 (0.822-1.210)	92.38 (0.04)	94.60 (0.03)
HG004	Same	3,247,624	0.457 (0.237-0.702)	0.440 (0.230-0.679)	1.041 (0.923-1.196)	33.65 (0.19)	49.22 (0.12)
HG004	Smaller	15,357	0.219 (0.056-0.465)	0.205 (0.042-0.440)	1.114 (0.915-1.565)	38.89 (0.30)	55.00 (0.12)
HG004	Greater	16,457	0.325 (0.142-0.534)	0.330 (0.153-0.539)	↓1.022 (0.841-1.239)	89.38 (0.05)	91.94 (0.02)

Supplementary Table 14. Precision and recall rates of GLIMPSE-imputed and called variants combined when using WEGS. P - precision. R - recall. This table reports the average number for each sample. Each sample was sequenced 4 times using WEGS_{4P,2X}. HG002 and HG004 were sequenced 5 times using WEGS_{8P,5X}. HG003 was sequenced 6 times using WEGS_{8P,5X}. The WES target regions are based on the Agilent V7 capture. Only variants inside the GIAB high-confidence regions were used for estimating precision and recall rates. The percent of missed true variants equals (1 - recall) * 100. The local imputation reference panel combines haplotypes from the 1000 Genomes Project and Human Genome Diversity Project (see Methods). The precision and recall rates for imputed variants when using low depth WGS data only are in Supplementary Tables 20 and 21.

	G	LIMPSE-imj	outed + call	ed WEGS 4I	GLIMPSE-imputed + called WEGS 8P,5X					
Sample	TP	FN	FP	P	R	TP	FN	FP	P	R
	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)
				SNVs gei	nome-wide					
HG002	2,453,91	898,768	135,769	0.9476	0.7319	2,766,979	585,700	121,292	0.9580	0.8253
	2 (7,229)	(7,229)	(624)	(0.0004)	(0.0022)	(947)	(947)	(298)	(0.0001)	(0.0003)
HG003	2,671,67	642,473	149,397	0.9470	0.8061	2,941,974	372,168	111,323	0.9635	0.8877
	0 (3,330)	(3,330)	(194)	(0.0001)	(0.0010)	(658)	(658)	(132)	(0.0000)	(0.0002)
HG004	2,288,27	1,052,199	134,772	0.9444	0.6850	2,627,490	712,981	124,847	0.9546	0.7866
	2 (2,807)	(2,807)	(174)	(0.0001)	(0.0008)	(1,760)	(1,760)	(343)	(0.0001)	(0.0005)
				InDels ge	nome-wide					
HG002	232,386	290,004	47,280	0.8310	0.4449	285,889	236,500	60,931	0.8243	0.5473
	(1,580)	(1,580)	(661)	(0.0010)	(0.0030)	(275)	(275)	(123)	(0.0002)	(0.0005)
HG003	254,637	246,156	53,284	0.8270	0.5085	308,620	192,173	64,760	0.8266	0.6163
	(814)	(814)	(451)	(0.0008)	(0.0016)	(243)	(243)	(153)	(0.0002)	(0.0005)
HG004	209,493	298,781	42,164	0.8325	0.4122	258,240	250,034	55,351	0.8235	0.5081
	(584)	(584)	(395)	(0.0009)	(0.0011)	(489)	(489)	(264)	(0.0004)	(0.0010)
				SNVs inside	target regions					
HG002	22,422	321	442	0.9807	0.9859	22,432	311	446	0.9805	0.9863
	(1)	(1)	(7)	(0.0003)	(0.0001)	(5)	(5)	(8)	(0.0003)	(0.0002)
HG003	22,291	298	422	0.9814	0.9868	22,301	288	404	0.9822	0.9872
	(3)	(3)	(5)	(0.0002)	(0.0001)	(4)	(4)	(4)	(0.0002)	(0.0002)
HG004	22,246	298	402	0.9823	0.9868	22,240	303	398	0.9824	0.9865
	(6)	(6)	(6)	(0.0003)	(0.0003)	(3)	(3)	(3)	(0.0001)	(0.0001)
				InDels inside	target regions	r				
HG002	649	33	58	0.9185	0.9512	647	35	59	0.9165	0.9490
	(3)	(3)	(2)	(0.0025)	(0.0045)	(2)	(2)	(3)	(0.0038)	(0.0024)
HG003	649	41	54	0.9241	0.9409	652	38	52	0.9259	0.9447
	(1)	(1)	(2)	(0.0019)	(0.0018)	(1)	(1)	(1)	(0.0019)	(0.0014)
HG004	618	25	42	0.9363	0.9615	619	24	40	0.9402	0.9633
	(1)	(1)	(2)	(0.0032)	(0.0022)	(2)	(2)	(2)	(0.0034)	(0.0028)

Supplementary Table 15. Precision and recall rates of variants imputed using the GLIMPSE method and WEGS. P - precision. R - recall. This table reports the average number for each sample. Each sample was sequenced 4 times using WEGS4P,2X. HG002 and HG004 were sequenced 5 times using WEGS8P,5X. HG003 was sequenced 6 times using WEGS8P,5X. The WES target regions are based on the Agilent V7 capture. Only variants inside the GIAB high-confidence regions were used for estimating precision and recall rates. The percent of missed true variants equals (1 - recall) * 100. The local imputation reference panel combines haplotypes from the 1000 Genomes Project and Human Genome Diversity Project (see Methods). The precision and recall rates for imputed variants when using low depth WGS data only are in Supplementary Tables 20 and 21.

	(GLIMPSE-in	nputed W	EGS 4P,2X	GLIMPSE-imputed WEGS 8P,5X					
Sample	TP	FN	FP	P	R	TP	FN	FP	P	R
	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)
				SNVs gei	nome-wide					
HG002	2,374,106	978,573	14,526	0.9939	0.7081	2,650,201	702,478	11,347	0.9957	0.7905
	(5,976)	(5,976)	(105)	(0.0001)	(0.0018)	(769)	(769)	(20)	(0.0000)	(0.0002)
HG003	2,585,159	728,984	14,954	0.9942	0.7800	2,814,345	499,798	10,790	0.9962	0.8492
	(2,514)	(2,514)	(78)	(0.0000)	(0.0008)	(432)	(432)	(23)	(0.0000)	(0.0001)
HG004	2,220,297	1,120,174	15,322	0.9931	0.6647	2,526,333	814,138	12,130	0.9952	0.7563
	(2,243)	(2,243)	(56)	(0.0000)	(0.0007)	(1,400)	(1,400)	(55)	(0.0000)	(0.0004)
				InDels ge	nome-wide					
HG002	173,796	348,592	1,960	0.9889	0.3327	192,324	330,065	1,671	0.9914	0.3682
	(456)	(456)	(20)	(0.0001)	(0.0009)	(58)	(58)	(8)	(0.0000)	(0.0001)
HG003	186,398	314,395	1,923	0.9898	0.3722	200,140	300,653	1,611	0.9920	0.3996
	(148)	(148)	(14)	(0.0001)	(0.0003)	(35)	(35)	(5)	(0.0000)	(0.0001)
HG004	161,474	346,800	1,878	0.9885	0.3177	181,722	326,552	1,725	0.9906	0.3575
	(133)	(133)	(4)	(0.0000)	(0.0003)	(101)	(101)	(7)	(0.0000)	(0.0002)
			SNI	Vs inside WE	S targeted rea	gions				
HG002	20,875	1,868	30	0.9986	0.9179	20,878	1,865	31	0.9985	0.9180
	(1)	(1)	(1)	(0.0000)	(0.0000)	(1)	(1)	(2)	(0.0001)	(0.0001)
HG003	20,869	1,720	29	0.9986	0.9239	20,871	1,718	29	0.9986	0.9240
	(1)	(1)	(1)	(0.0000)	(0.0000)	(1)	(1)	(1)	(0.0000)	(0.0000)
HG004	20,746	1,797	28	0.9987	0.9203	20,746	1,797	29	0.9986	0.9203
	(2)	(2)	(1)	(0.0000)	(0.0001)	(1)	(1)	(1)	(0.0000)	(0.0000)
			InDe	els inside WE	ES targeted re	egions				
HG002	308	374	4	0.9856	0.4509	307	375	4	0.9859	0.4504
	(0)	(0)	(1)	(0.0021)	(0.0004)	(0)	(0)	(0)	(0.0013)	(0.0003)
HG003	292	398	2	0.9932	0.4232	293	397	2	0.9932	0.4242
	(0)	(0)	(0)	(0.0000)	(0.0000)	(0)	(0)	(0)	(0.0000)	(0.0003)
HG004	306	337	2	0.9935	0.4755	306	337	2	0.9922	0.4759
	(0)	(0)	(0)	(0.0000)	(0.0004)	(0)	(0)	(0)	(0.0008)	(0.0007)

Supplementary Table 16. Precision and recall rates of variants imputed using the Minimac4 method genome-wide. The percent of missed true variants equals (1 - recall) * 100. The local imputation reference panel combines haplotypes from the 1000 Genomes Project and Human Genome Diversity Project (see Methods).

		Minima	c4-imputed	l SNVs	Minimac4-imputed InDels						
Sample	TP	FN	FP	Precision	Recall	ТР	FN	FP	Precision	Recall	
HG002	2,942,195	410,484	316,718	0.9028	0.8776	326,360	196,029	47,144	0.8738	0.6247	
HG003	2,908,634	405,509	317,430	0.9016	0.8776	317,001	183,792	46,494	0.8721	0.633	
HG004	2,934,901	405,570	313,069	0.9036	0.8786	320,526	187,748	45,098	0.8767	0.6306	

Supplementary Table 17. **Overview of genome-wide significant loci associated with peripheral artery disease (PAD) in the 862 WEGS sequenced patients**. Abbreviations: chr-chromosome; alt-alternative; ref-reference; freq-frequency; EUR-Europeans; AA-African Americans; EAS-East Asians; DP-average depth; GSA-global screening array (24v3). This table reports the allele frequency and average depth of known genome-wide significant peripheral artery disease loci in the WEGS. The ancestry specific frequency was derived from gnomAD (v3.1.2).

rsid	chr	position	Alt	Ref	Alt Freq	EUR Freq	AA Freq	EAS Freq	MID Freq	DP	Annotation	Gene /Locus	Present on the GSA array
rs7528419	1	109274570	G	Α	0.16	0.22	0.27	0.06	0.10	7	3' UTR variant	CELSR2/SO RT1	+
rs6025	1	169549811	Т	С	0.05	0.03	0.004	0.000	0.06	44	Missense variant	F5	+
rs118039278	6	160564494	А	G	0.08	0.07	0.01	0.001	0.01	7	Intron variant	LPA	-
rs3130968	6	31097294	Т	С	0.11	0.14	0.15	0.001	0.05	9	Regulatory region variant	HLA-B	-
rs2107595	7	19009765	А	G	0.14	0.16	0.21	0.34	0.22	5	Regulatory region variant	HDAC9	-
rs4722172	7	22746913	А	G	0.74	0.79	0.96	1.000	0.91	7	Intergenic variant	IL6	-
rs322	8	19961706	С	А	0.22	0.27	0.40	0.20	0.28	4	Intron variant	LPL	-
rs505922	9	133273813	Т	С	0.56	0.65	0.65	0.56	0.66	7	Intron variant	ABO	+
rs1537372	9	22103184	Т	G	0.35	0.48	0.14	0.52	0.63	6	Intron variant	<i>CDKN2B-</i> <i>AS1/</i> 9p21	
rs7903146	10	112998590	Т	С	0.17	0.29	0.29	0.03	0.40	3	Intron variant	TCF7L2	+
rs7476	11	46321284	С	А	0.22	0.21	0.84	0.46	0.41	4	Intron variant	MMP3	-
rs566125	11	102839740	Т	С	0.12	0.13	0.02	0.07	0.13	5	3' UTR variant	CREB3L1	-
rs4842266	12	79557786	Α	G	0.50	0.44	0.07	0.002	0.37	4	Intron variant	PTPN11	+
rs11066301	12	112433568	G	А	0.34	0.44	0.07	0.002	0.37	111	Upstream gene variant	RP11- 359M6.3	-
rs1975514	13	110176544	С	Т	0.37	0.37	0.28	0.30	0.31	8	Intron variant	COL4A1	-
rs55784307	14	70034647	А	С	0.15	0.18	0.05	0.39	0.13	5	Downstream gene variant	SMOC1	+
rs10851907	15	78623522	А	G	0.34	0.42	0.43	0.07	0.44	5	Upstream gene variant	CHRNA3	-
rs138294113	19	11081053	Т	С	0.09	0.12	0.14	0.01	0.16	6	Intergenic variant	LDLR	-

Supplementary Table 18. Genome-wide significant loci associated with peripheral artery disease (PAD) and the number of variants within the loci present in WEGS and TOPMed. For each locus, we counted the number of variants surrounding the lead variant (rsid) within ± 500 kilobase (kb) distance.

					# of WEGS SNVs absent from TOPMed								
rsid	chr	position	# of SNVs in WEGS	# of SNVs in TOPMed	Total	Synon	Non-synon	Stop/Splice	Frameshift	Inframe			
rs7528419	1	109274570	17,631	258,859	4,481	17	35	2	2	0			
rs6025	1	169549811	14,663	254,419	3,310	9	8	3	0	0			
rs118039278	6	160564494	15,028	272,156	3,141	1	17	0	0	0			
rs3130968	6	31097294	32,930	255,957	6,085	24	64	5	10	10			
rs2107595	7	19009765	14,424	322,455	2,379	4	2	0	0	0			
rs4722172	7	22746913	15,796	276,263	3,505	3	7	1	3	0			
rs322	8	19961706	17333	333,151	3,251	4	10	1	0	0			
rs505922	9	133273813	14,233	290,358	4,274	9	29	1	1	3			
rs1537372	9	22103184	20,034	324,269	2,731	3	2	0	0	0			
rs7903146	10	112998590	14,599	268,399	3,304	1	3	0	0	0			
rs566125	11	46321284	16,485	262,361	4,932	8	34	1	0	0			
rs7476	11	102839740	15,023	274,797	3,198	4	23	0	1	0			
rs11066301	12	79557786	55,094	262,291	3,143	1	3	0	0	0			
rs4842266	12	112433568	16,233	250,632	5,016	3	9	2	0	0			
rs1975514	13	110176544	17,779	288,888	3,274	7	25	1	0	2			
rs55784307	14	70034647	15,766	264,425	3,387	4	12	0	0	0			
rs10851907	15	78623522	18,510	275,484	4,514	7	25	1	0	2			
rs62084752	17	68093252	21,373	285,583	5,903	7	11	0	2	0			
rs138294113	19	11081053	25,994	306,166	7,227	21	34	3	4	2			

Supplementary Table 19. Precision and recall rates of variants imputed from 2X and 5X WGS using the GLIMPSE method. P - precision. R – recall. Each sample was sequenced one time using 5X WGS with reads split into two lanes. The WES target regions are based on the Agilent V7 capture. Only variants inside the GIAB high-confidence regions were used for estimating precision and recall rates. The percent of missed true variants equals (1 - recall) * 100. The local imputation reference panel combines haplotypes from the 1000 Genomes Project and Human Genome Diversity Project (see Methods).

		GLIMPSE	-imputed 2	X WGS	GLIMPSE-imputed 5X WGS					
Sample	ТР	FN	FP	Р	R	ТР	FN	FP	Р	R
				SNVs g	enome-wide	2				
HG002	2,307,826	1,044,853	15,652	0.9933	0.6884	2,623,366	729,313	11,810	0.9955	0.7825
HG003	2,542,792	771,351	15,847	0.9938	0.7673	2,801,288	512,855	11,235	0.9960	0.8453
HG004	2,141,392	1,199,079	16,572	0.9923	0.6410	2,493,060	847,411	12,636	0.9950	0.7463
				InDels g	genome-wid	e				
HG002	168,584	353,805	1,995	0.9883	0.3227	190,138	332,251	1,753	0.9909	0.364
HG003	183,474	317,319	2,039	0.9890	0.3664	199,136	301,657	1,670	0.9917	0.3976
HG004	155,368	352,906	1,941	0.9877	0.3057	179,054	329,220	1,779	0.9902	0.3523
			S	NVs inside W	VES target i	egions				
HG002	18,993	3,750	130	0.9932	0.8351	19,966	2,777	86	0.9957	0.8779
HG003	19,594	2,995	157	0.9921	0.8674	20,467	2,122	85	0.9959	0.9061
HG004	18,360	4,183	152	0.9918	0.8144	19,509	3,034	91	0.9954	0.8654
			In	Dels inside V	WES target	regions				
HG002	285	397	13	0.9564	0.4179	296	386	12	0.9610	0.434
HG003	275	415	9	0.9683	0.3986	285	405	9	0.9694	0.413
HG004	275	368	11	0.9617	0.4277	288	355	10	0.9666	0.4479

Supplementary Table 20. Precision and recall rates of GLIMPSE-imputed and called variants combined when using 2X and 5X WGS. P - precision. R – recall. Each sample was sequenced one time using 5X WGS with reads split into two lanes. The WES target regions are based on the Agilent V7 capture. Only variants inside the GIAB high-confidence regions were used for estimating precision and recall rates. The percent of missed true variants equals (1 - recall) * 100. The local imputation reference panel combines haplotypes from the 1000 Genomes Project and Human Genome Diversity Project (see Methods).

	GI	LIMPSE-im	puted + cal	lled 2X WGS	GLIMPSE-imputed + called 5X WGS					
Sample	ТР	FN	FP	Р	R	ТР	FN	FP	Р	R
				SNVs ge	enome-wide	2				
HG002	2,375,840	976,839	144,901	0.9425	0.7086	2,734,168	618,511	125,112	0.9562	0.8155
HG003	2,618,513	695,630	158,730	0.9428	0.7901	2,923,651	390,492	114,796	0.9622	0.8822
HG004	2,197,878	1,142,593	142,826	0.939	0.6580	2,588,113	752,358	128,663	0.9526	0.7748
				InDels g	enome-wid	e				
HG002	217,227	305,162	42,767	0.8355	0.4158	277,580	244,809	58,603	0.8257	0.5314
HG003	243,239	257,554	49,387	0.8313	0.4857	302,734	198,059	63,071	0.8276	0.6045
HG004	194,140	314,134	37,167	0.8393	0.3820	249,665	258,609	52,795	0.8255	0.4912
				SNVs inside W	ES target r	egions				
HG002	19,763	2,980	1,861	0.9139	0.8690	21,116	1,627	1,315	0.9414	0.9285
HG003	20,342	2,247	2,092	0.9067	0.9005	21,517	1,072	1,266	0.9444	0.9525
HG004	19,069	3,474	1,943	0.9075	0.8459	20,536	2,007	1,324	0.9394	0.911
			1	nDels inside 🕅	VES target	regions				
HG002	490	192	274	0.6423	0.7185	571	111	276	0.6749	0.8372
HG003	483	207	247	0.6616	0.7000	574	116	267	0.6833	0.8319
HG004	457	186	231	0.6647	0.7107	527	116	295	0.6442	0.8196