OMTN, Volume 35

Supplemental information

Preclinical evaluation of CRISPR-based therapies

for Noonan syndrome

caused by deep-intronic *LZTR1* variants

Carolin Knauer, Henrike Haltern, Eric Schoger, Sebastian Kügler, Lennart Roos, Laura C. Zelarayán, Gerd Hasenfuss, Wolfram-Hubertus Zimmermann, Bernd Wollnik, and Lukas Cyganek

Figure S1: Allele-specific targeting of the deep-intronic variant in *LZTR1* intron 16 by different CRISPR/Cas9 combinations in patient-specific iPSCs. (A,B) Sanger sequencing of *LZTR1* intron 16 for WT (A) and NS1 (B). (C-G) Analysis of editing efficiencies of iPSCs from patient NS1 3-4 days post-transfection by Sanger sequencing for allele-specific disruption of the cryptic splice site using SpCas9 with guide RNA A (C), SpCas9 with guide RNA B (D), SpCas9 with guide RNA C (E), SpCas9 with guide RNA D (F), and SaCas9 with guide RNA A (G).

Figure S2: Evaluation of editing specificity of the different CRISPR/Cas9 combinations targeting *LZTR1* **intron 16 in WT iPSCs. (A-C)** Analysis of off-target editing of the nonmutated *LZTR1* intron 16 locus in WT iPSCs 3-4 days post-transfection using amplicon sequencing and computational prediction of splice site motifs for SpCas9 and guide RNA A (A), for SpCas9 and guide RNA B (B), and for SaCas9 and guide RNA A (C).

Figure S3: Generation of isogenic iPSCs with top indel variants upon CRISPR/Cas9 editing of *LZTR1* intron 16 in patient-specific iPSCs. (A) Generation of monoclonal CRISPR-edited iPSCs harboring the top indel variants for SpCas9/SaCas9 with guide RNA A and SpCas9 with guide RNA B by singularization of transfected bulks. (**B**,**C**) Sanger sequencing of unedited and CRISPR-edited iPSCs harboring the top indel variants 9-base pair deletion (del9) and 1-base pair insertion of adenosine (insA) derived from patients NS1 (B) and NS2 (C). (**D**,**E**) Patient-specific and CRISPR-edited iPSCs derived from patients NS1 (D) and NS2 (E) showed a typical human stem cell-like morphology and expressed the key pluripotency markers OCT3/4 and NANOG as assessed by light microscopy and immunocytochemistry; nuclei were counter-stained with Hoechst 33342 (blue); scale bar: 100 μm. (**F**,**G**) Flow cytometry analysis of pluripotency marker TRA-1-60 revealed homogeneous populations of pluripotent cells in generated iPSC lines derived from patients NS1 (F) and NS2 (G). Gray peaks represent the negative controls. (**H**,**I**) Molecular karyotyping using a genome-wide microarray demonstrated chromosomal stability after genome editing of iPSCs derived from patients NS1 (H) and NS2 (I). CNV: copy number variation, LOH: loss of heterozygosity.

Figure S4: Off-target screening in CRISPR-edited iPSCs. (A,B) Sanger sequencing of the top ten predicted off-target regions, ranked by the CFD off-target score using CRISPOR, revealed no off-target editing of CRISPR/Cas9 in CRISPR-edited iPSCs compared to patient-derived cells for SpCas9 and guide RNA A (A) and SpCas9 and guide RNA B (B).

Figure S5: Gene expression analysis in patient-specific and CRISPR-edited iPSC-CMs. (**A-D**) Quantitative gene expression analysis of *LZTR1* (A), *LZTR1* transcript including the cryptic exon (B), and LZTR1 substrates *MRAS* (C), and *RIT1* (D) in patient-specific and CRISPR-edited iPSC-CMs at day 30 of differentiation, assessed by real-time PCR, revealed no expression differences at transcriptional level across all iPSC lines; samples were analyzed in triplicates and data were normalized to *GAPDH*, *RPL37A*, and *TUBB5* expression and WT controls; n=3 independent differentiations per iPSC line. Data were analyzed by nonparametric Kruskal-Wallis test with Dunn's correction and are presented as mean \pm SEM (A-D).

Figure S6: Restoration of LZTR1 function and normalization of MRAS levels upon CRISPR/Cas9 editing of *LZTR1* **intron 16 compared to parents' iPSC-CMs. (A) Representative blots of LZTR1 and MRAS levels, assessed by Western blot, in patient-specific iPSC-CMs and CRISPR-corrected iPSC-CMs in comparison to iPSC-CMs from the father (NS-R1) and the mother (NS-R2) at day 30 of differentiation; Vinculin served as loading control.**

Figure S7: Restoration of LZTR1 function and normalization of RAS GTPase levels upon CRISPR/Cas9 editing of *LZTR1* **intron 16 in differentiated bulks. (A) Representative blots of LZTR1 and RAS GTPase levels, assessed by Western blot, in iPSC-CMs at day 30 of differentiation transfected at iPSC level in comparison to unedited and monoclonal CRISPRedited iPSC-CMs from the patients; Vinculin served as loading control.**

Guide RNA	Target sequence
guide RNA A	(G)CTTGATCATGAGGTCAGTGA
guide RNA B	GCTTGATCATGAGGTCAGTG
guide RNA C	TTGATCATGAGGTCAGTGAG
guide RNA D	TGATCATGAGGTCAGTGAGG

Table S1: Guide RNA	target sequenc	es targeting LZT	<i>R1</i> intron 16.
	the Set Bequeine	co tai getting BBI	

Gene (gDNA) **Primer** LZTR1 In16 TGTAATGTCACAGGCCCCTT / TGTTGCTGCCCTGAACAAAA Guide RNA A GCATAAAAGAAATGCCCACAA / Off-target 1 GAAAGTAAATACAGGGAACAGAAAGC Guide RNA A ATGGGTCACACCCCTCTTC / Off-target 2 CATGTTCAGTGCTGAGTACCAA Guide RNA A GCTCCAAGTTTCCTGAATAGTTT / Off-target 3 TCTTCCGATCCAGTGTTGTG Guide RNA A CTACAAGGAACCCCCAAAGG / Off-target 4 TGAGCTCTGTGCTCTATGCAG TGTCACCTTTGCCCTTCTTT / Guide RNA A CCGCCACATCTGTCTTCC Off-target 5 TGAGGCTCTCAAGACACTGC / Guide RNA A Off-target 6 AGAAACTTGCCAACCGTGCT Guide RNA A CATCCCCTGCCAGTCTAAAA / Off-target 7 GCACAAGTCTGCAATAAATGG Guide RNA A GACAACTAGGAAGCTCTTTTTGG / Off-target 8 GGAGGAGATTCAGGACAGCA Guide RNA A TCAATTGTGGCAGTGGTTTC / Off-target 9 GGGCCCATAGCTGTTTCTTT Guide RNA A TGGGGACACGTTAGTGAACA / Off-target 10 AGGGCACCAATGATGTGTCT Guide RNA B TGGGGAGAGGAATTCATGCA / Off-target 1 CCTACAACTGCCGGTCATTG Guide RNA B GCACCTCTCAATCCTCTGCT / Off-target 2 AGCCCATCCACCAAAAGAAGA Guide RNA B CGTCAAATGAGACTGAATCCCTCTA / Off-target 3 GCCTCCCATAGTGCTAGGATTAC Guide RNA B GGGCGCCACATGTTTGTATT / Off-target 4 TGCCCCTCATCATCTCTTGC Guide RNA B AAGCCTCTTCCCTGCACTAA / Off-target 5 GCAAGGAAGGTGTTGTACTCC Guide RNA B ATTTTTCAAGCCCTGTGGTAAC / Off-target 6 AGAGACTTTTGCAATGTTCCAGT Guide RNA B AGAGGCGCTGCAGTGAATTA / Off-target 7 CAGGAACCAAGGGAAAGGCT

Table S2: Primer sequences used for PCR, reverse transcriptase PCR and real-time PCR.

Guide RNA B	CTGCCCCAATCCATTTTGCC /
Off-target 8	TCCTGGGAATGGACTGACCT
Guide RNA B	CCACAGCTGAAAAGCATCCC /
Off-target 9	TGTTGGTGAGAGCCAGACAC
Guide RNA B	GTGTGGGGACAGATAAGTGGA /
Off-target 10	CCTTCCTGGGAGCTTGTGTT
Gene (RT-PCR)	Primer
GAPDH	AGAGGCAGGGATGATGTTCT /
	TCTGCTGATGCCCCCATGTT
LZTR1 Ex16-17	GTAAAGGAGTCCCACTTCAAC /
	GCAACAGAGTGATGTCACAG
LZTR1 Ex1	ATGGCTGGACCGGGCAGCA /
	ACCCACGAACTCGTCGCAGG
Gene (real-time)	Primer
GAPDH	GGAGCGAGATCCCTCCAAAAT /
GAPDH	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG
GAPDH LZTR1 Ex6-7	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG GCAACGCCAGGTTGAATGAC /
GAPDH LZTR1 Ex6-7	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG GCAACGCCAGGTTGAATGAC / GAGCAGGTGTTCAGTTGGGA
GAPDH LZTR1 Ex6-7 LZTR1 In16-Ex17	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG GCAACGCCAGGTTGAATGAC / GAGCAGGTGTTCAGTTGGGA GGACATTGGCCCCTTCATTC /
GAPDH LZTR1 Ex6-7 LZTR1 In16-Ex17	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG GCAACGCCAGGTTGAATGAC / GAGCAGGTGTTCAGTTGGGA GGACATTGGCCCCTTCATTC / TGTGCCTCATGATCAAGCCC
GAPDH LZTR1 Ex6-7 LZTR1 In16-Ex17 MRAS	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG GCAACGCCAGGTTGAATGAC / GAGCAGGTGTTCAGTTGGGA GGACATTGGCCCCTTCATTC / TGTGCCTCATGATCAAGCCC CCACCATTGAAGACTCCTACCTG /
GAPDH LZTR1 Ex6-7 LZTR1 In16-Ex17 MRAS	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG GCAACGCCAGGTTGAATGAC / GAGCAGGTGTTCAGTTGGGA GGACATTGGCCCCTTCATTC / TGTGCCTCATGATCAAGCCC CCACCATTGAAGACTCCTACCTG / ACGGAGTAGACGATGAGGAAGC
GAPDH LZTR1 Ex6-7 LZTR1 In16-Ex17 MRAS RIT1	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG GCAACGCCAGGTTGAATGAC / GAGCAGGTGTTCAGTTGGGA GGACATTGGCCCCTTCATTC / TGTGCCTCATGATCAAGCCC CCACCATTGAAGACTCCTACCTG / ACGGAGTAGACGATGAGGAAGC TTCATCAGCCACCGATTCCC /
GAPDH LZTR1 Ex6-7 LZTR1 In16-Ex17 MRAS RIT1	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG GCAACGCCAGGTTGAATGAC / GAGCAGGTGTTCAGTTGGGA GGACATTGGCCCCTTCATTC / TGTGCCTCATGATCAAGCCC CCACCATTGAAGACTCCTACCTG / ACGGAGTAGACGATGAGGAAGC TTCATCAGCCACCGATTCCC / GCAGGCTCATCATCAATACGG
GAPDH LZTR1 Ex6-7 LZTR1 In16-Ex17 MRAS RIT1 RPL37A	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG GCAACGCCAGGTTGAATGAC / GAGCAGGTGTTCAGTTGGGA GGACATTGGCCCCTTCATTC / TGTGCCTCATGATCAAGCCC CCACCATTGAAGACTCCTACCTG / ACGGAGTAGACGATGAGGAAGC TTCATCAGCCACCGATTCCC / GCAGGCTCATCATCAATACGG GTGGTTCCTGCATGAAGACAGTG /
GAPDH LZTR1 Ex6-7 LZTR1 In16-Ex17 MRAS RIT1 RPL37A	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGGGCAACGCCAGGTTGAATGAC / GAGCAGGTGTTCAGTTGGGAGGACATTGGCCCCTTCATTC / TGTGCCTCATGATCAAGCCCCCACCATTGAAGACTCCTACCTG / ACGGAGTAGACGATGAGGAAGCTTCATCAGCCACCGATTCCC / GCAGGCTCATCATCAATACGGGTGGTTCCTGCATGAAGACAGTG / TTCTGATGGCGGACTTTACCG
GAPDH LZTR1 Ex6-7 LZTR1 In16-Ex17 MRAS RIT1 RPL37A TUBB5	GGAGCGAGATCCCTCCAAAAT / GGCTGTTGTCATACTTCTCATGG GCAACGCCAGGTTGAATGAC / GAGCAGGTGTTCAGTTGGGA GGACATTGGCCCCTTCATTC / TGTGCCTCATGATCAAGCCC CCACCATTGAAGACTCCTACCTG / ACGGAGTAGACGATGAGGAAGC TTCATCAGCCACCGATTCCC / GCAGGCTCATCATCAATACGG GTGGTTCCTGCATGAAGACAGTG / TTCTGATGGCGGACTTTACCG CTGGACCGCATCTCTGTGTACT /

Primary antibody	Supplier	Resource ID
α-actinin monoclonal mouse	Sigma-Aldrich	RRID:AB_476766
β-actin monoclonal mouse	Santa Cruz	RRID:AB_1119529
Cas9 polyclonal rabbit	Diagenode	RRID:AB_2715516
HA-Tag monoclonal rabbit	Cell Signaling	RRID:AB_2798368
LZTR1 monoclonal rabbit	Abcam	RRID:AB_3076250
MLC2V polyclonal rabbit	Proteintech	RRID:AB_2147453
MRAS polyclonal rabbit	Proteintech	RRID:AB_10950895
NANOG monoclonal mouse	Thermo Fisher Scientific	RRID:AB_2536677
OCT3/4-PE monoclonal human	Miltenyi Biotec	RRID:AB_2784442
pan-RAS monoclonal mouse	Merck Millipore	RRID:AB_2121151
RIT1 polyclonal rabbit	Abcam	RRID:AB_882379
TRA-1-60-Alexa488 monoclonal mouse	BD Biosciences	RRID:AB_1645379
Vinculin monoclonal mouse	Sigma-Aldrich	RRID:AB_477629
Secondary antibody	Supplier	Resource ID
Alexa488 polyclonal goat anti-rabbit	Thermo Fisher Scientific	RRID:AB_143165
Alexa555 polyclonal donkey anti-mouse	Thermo Fisher Scientific	RRID:AB_2536180
HRP polyclonal donkey anti-rabbit	Sigma-Aldrich	RRID:AB_2722659
HRP polyclonal donkey anti-mouse	Sigma-Aldrich	RRID:AB_772210

Table S3: Antibodies used for Western blot, immunocytochemistry and flow cytometry.

Table S4: Plasmids used for virus production.

Plasmid	Supplier	Resource ID
Lenti_SaCRISPR_GFP	Addgene	RRID:Addgene_118636
LentiCRISPRv2GFP	Addgene	RRID:Addgene_82416
pMD2.G	Addgene	RRID:Addgene_12259
psPAX2	Addgene	RRID:Addgene_12260
pAAV-CMV-SauriCas9	Addgene	RRID:Addgene_135964
pAAV-TNNT2-SauriCas9-U6-sgRNA	This study	-
pAAV-TNNT2-SaCas9-U6-sgRNA	This study	-
pAAV-TNNT2-SlugCas9-U6-sgRNA	This study	-