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Supplementary Material 
 
We expand on the following four topics from the main text in this document:  

1. An assessment of CRISPRi-DR, MAGeCK and MAGeCK-MLE on datasets with simulated noise (p. 
1) 

2. Comparison of CRISPRi-DR to other analysis methods using CGI datasets (p. 15) 
3. Analysis of E. coli CRISPRi screens using CRISPRi-DR (p. 23) 
4. The minimum number of sgRNAs recommended per gene in CRISPRi-DR. (p. 27) 

 
1. Assessment of CRISPRi-DR, MAGeCK and MAGeCK-MLE on datasets with simulated 

noise 
 
Simula(on Design 
 
To beVer understand the differences in performance, between CRISPRi-DR, MAGeCK-RRA, and MAGeCK-
MLE, and asses their sensiXvity to various sources of noise, we developed a hierarchical simulaXon 
model.   
 
In this experiment, we simulated 1000 genes with 20 sgRNAs each. The first 50 genes are chosen as true 
negaXve interacXon (with a virtual drug), the second 50 as posiXve interacXons, and the last 50 as 
negaXve controls (for MAGeCK-RRA and MAGeCK-MLE). We simulated exposure to a virtual inhibitor over 
4 concentraXons (1µM, 2µM, 4µM, and 8µM), 3 replicates each.  Our objecXve was to quanXfy how 
much noise in the counts, both within concentraXons and between concentraXons, affects the precision 
and recall of each method. 
 
We sample parameters for baseline abundances, sgRNA efficiencies, and drug sensiXviXes 
(concentraXon-dependence) from prior distribuXons. Then, we use the dose-response model (sigmoid 
transformaXon of linear model) to generate mean counts for each sgRNA at each concentraXon (see Eq. 
1 below). Finally, we draw mulXple replicates of actual counts surrounding these means from a NegaXve 
Binomial distribuXon while creaXng variance/noise in the observaXons (Eq. 2 below). 
 
Sampling Baseline Counts  
 
Baseline barcode counts were generated for each sgRNA j by sampling from a LogNormal distribuXon:   
 

𝐵! 	~	𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝑠ℎ𝑎𝑝𝑒 = 𝑒𝑥𝑝(5), 𝑠𝑐𝑎𝑙𝑒 = 1) 
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This produces baseline counts in the range of single digits up to a few thousand, with a mean count in 
the hundreds (see histogram), which is typical of what is seen in real CRISPRi sequencing datasets. 

 
 
Sampling sgRNA efficiencies 
 
To simulate the effect of CRISPRi depleXon, an efficiency is chosen for each individual sgRNA 𝑗 in each 
gene 𝑖 from a uniform distribuXon: 

𝑆"!~𝑈(−25,0) 
 
This range was chosen based on the data from the Mtb CRISPRi library in the Li, Poulton (1) paper, which 
was based on empirical esXmates of growth rates (fitness defects), fit to a piecewise linear model and 
extrapolated to predicted LFCs at 25 generaXons [2]. Since sgRNA efficiencies empirically span a range of 
-25 to 0, and we want 0 to represent no depleXon and -25 to represent high depleXon (in induced vs. 
uninduced).  
 
Sampling concentraXon-dependent slopes 
 
Next, concentraXon-dependent coefficients (slopes) are chosen for each gene 𝑖.  For interacXng genes, 
slopes are chosen from a Normal distribuXon around +K2 or –K2, where K2 is a parameter.  For non-
interacXng genes, slopes are chosen from a Normal distribuXon around 0, with a standard deviaXon of 
𝜎#$.  The larger the variance, the more risk there is the slopes of non-interacXng genes overlapping with 
interacXng genes. 
 

𝑀" 	~ A
N(0, 𝜎#$$ )	if	𝑖	is	a	non − interacting	gene
N(+K$, 𝜎#$$ )	if	𝑖	is	a	positive	interaction
N(−K$, 𝜎#$$ )	if	𝑖	is	a	negative	interaction	

R 
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Using K2=0.8 and sK2=0.2, the histogram below shows the overlapping distribuXons of slopes for the 3 
types of genes. 

 
 
SimulaXon of sgRNA counts 
Next, mean abundances for each sgRNA at each concentraXon were generated by sampling from the 
dose-response equaXon.  First, a linear model was used to esXmate a level which was then transformed 
to an abundance (𝐴"!%) by the sigmoid transformaXon, s, reproducing the modified dose-response 
equaXon described in the main text. 

𝐴"!% 	= 	𝐵! ∗ 𝜎(	𝐾& + 𝐾' ∗ 𝑆"! +𝑀" ∗ 𝑙𝑜𝑔(
%
(
)	)     (1) 

𝜎(𝑥) =
𝑒𝑥𝑝(𝑥)

1 + 𝑒𝑥𝑝(𝑥) 

 
Four concentraXons were simulated: 1, 2, 4, 8 Xmes the IC50 (q).  Thus, log-concentraXons used in the 
linear model were 0, 1, 2, 3.  The IC50 is represented by q; a constant IC50 of q=2.0 was used. 
 
The coefficients K0 and K1 were set to 3 and 0.3, respecXvely, to simulate sensiXvity to protein depleXon. 
 
Finally, given the level of abundance for each sgRNA at each concentraXon, 3 replicates (x) were drawn 
from a NegaXve Binomial distribuXon.  The variability (noisiness) of the raw counts could be adjusted by 
manipulaXng the probability parameter p=Pnb, which was combined with the target mean abundance 
(𝐴"!%) to determine the size parameter 𝑟 = 𝐴"!% ∗

)*+
',)*+

 for the sampling: 
 

𝑌"!%-	~	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝, 𝑟)      (2) 

𝑝 = 𝑃𝑛𝑏	; 	𝑟	 = 	𝐴"!% ∗
𝑝

1 − 𝑝	 

 
SimulaXng noise between concentraXons 
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In addiXon to noise between replicate counts (controlled by Pnb) and noise affecXng drug sensiXvity 
(variability of slopes, controlled sK2), another source of noise was simulated by randomly shijing the 
abundance at each concentraXon, where the shijs were sampled from a Normal distribuXon, inflaXng 
or deflaXng the expected counts at a given concentraXon, deviaXng from a perfect linear trend.  This was 
modeled as a gene-level effect using the parameter sC controls the noise between concentraXons. 
 

𝐷"% 	~	𝑁(0, 𝜎.) 
𝐴"!% ’	 = 	𝑒𝑥𝑝(𝐷"%) ∗ 𝐴"!%  

 
 
Results 
 
The other parameters are set as the following: 

• sgRNA efficiency sensiXvity: K0=3, K1=0.3 
• concentraXon dependence: q=2, K2=0.8, sK2=0.2 

 
We generated simulated datasets by varying the 2 noise parameters: 

• noise between concentraXons: low: sC =0.01, med: sC =0.15 ,high: sC =0.3 
• noise between replicates: low: Pnb=0.9, med: Pnb=0.5, high: Pnb=0.1  

 
By forming all combinaXons of these parameters, we generated the following 9 scenarios: 

• LL (Low noise between concentraXons, Low noise within concentraXons):  sC =0.01, Pnb=0.9 
• LM (Low noise between concentraXons, Medium noise within concentraXons): sC =0.01, Pnb=0.5 
• LH (Low noise between concentraXons, High noise within concentraXons): sC =0.01, Pnb=0.1 
• ML (Medium noise between concentraXons, Low noise within concentraXons): sC =0.15, Pnb=0.9 
• MM (Medium noise between concentraXons, Medium noise within concentraXons): sC =0.15, 

Pnb=0.5 
• MH (Medium noise between concentraXons, High noise within concentraXons): sC =0.15, Pnb=0.1 
• HL (High noise between concentraXons, Low noise within concentraXons): sC =0.3, Pnb=0.9 
• HM (High noise between concentraXons, Medium noise within concentraXons): sC =0.3, Pnb=0.5 
• HH (High noise between concentraXons, High noise within concentraXons): sC =0.3, Pnb=0.1 

 
Fig 1 illustrates the different effects of simulated noise between concentraXons vs. within concentraXons 
(among replicates) in the low-high combinaXon scenarios, for representaXve sgRNAs in negaXve 
interacXng genes. The decreasing trend of counts is more variable in HL and HH than in the LL and LH 
scenarios. Whereas the dispersion of counts within a concentraXon is greater in LH and HH. The medium 
noise scenarios (LM, ML, MM, MH, HM) are somewhere in between these four levels of dispersions. 
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Fig 1. Abundances of select sgRNA(s) in the low and high noise scenarios. For each noise scenario, the 
counts of a representaXve sgRNA from simulated negaXve interacXng genes are seen here with the 
means across replicates marked by the horizontal black line. The medium noise scenarios are somewhere 
in between levels of dispersion depicted. 
 
We analyzed all 9 scenarios with MAGeCK-MLE, MAGeCK-RRA and CRISPRi-DR. For CRISPRi-DR, the 
criteria used to idenXfy significant interacXons was adjusted P-value<0.05 and |Zslope|>2, as described in 
the main text. For MAGeCK-MLE, the criteria used to idenXfy significant interacXons was adjusted P-value 
based on Wald < 0.05.  MAGeCK was run 3 Xmes independently for each drug concentraXon: 2 µM, 4 
µM, 8 µM.  Each was compared to the simulated no-drug control (DMSO). A single P-value per gene was 
calculated from the three analyses using the Fisher’s method, which was then adjusted using Benjamini-
Hochberg. AddiXonally, a single LFC value per gene was set equal to the most significant LFC across the 
three concentraXons. Significant interacXons were classified as combined adjusted P-value < 0.05 and 
|gene LFC| >1. 
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Fig 2. Comparisons of significant number of depleted and enriched genes reported by the CRISPRi-DR, 
MAGeCK and MAGeCK-MLE. The top two panels are comparison of CRIPSRi-DR to MAGeCK and boVom 
panels are comparison to MAGeCK-MLE. The lej panels are comparisons of depleted genes, and the right 
panels are comparisons of enriched genes. The number of hits (both enriched and depleted) are greater 
in MAGeCK-MLE than in the CRISPRi-DR model and in some cases MAGeCK-RRA, with the greatest 
difference coming from HH noise datasets. 
 
The top two panels of Fig 2 show the number of significant hits detected by CRISPRi DR and MAGeCK-
RRA, mirroring Fig 4 in the main text. The solid lines represent the 50 true posiXves (simulated interacXng 
depleted or enriched genes). The dashed diagonal line is a y=x line. Consistent with observaXons made 
with the experimental data, the number of genes reported by CRISPRi DR span a shorter range than the 
number of genes reported by MAGeCK-RRA. However, in this case we can see that the datasets with the 
highest noise that have the largest discrepancies between the number of hits for both depleted and 
enriched genes. Thus, we can infer that the experimental datasets seen in Fig 5 with higher discrepancy 
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are those with high noise resulXng in a possibly higher number of false posiXves. ComparaXvely as seen 
in the boVom two panels of Fig 2, the discrepancies between CRISPRi-DR and MAGeCK-MLE are high for 
all datasets, regardless of noise.  CRISPRi-DR hits do not exceed the number of simulated interacXng 
genes for both depleted and enriched cases, whereas MAGeCK-MLE nearly always does. Given there 
were 50 simulated depleted/enriched genes, the up to 300 depleted or enriched calls made by MAGeCK-
MLE include many false posiXves.   
 
Table 1 shows detailed confusion matrices of the calls made by the three methods, using the 50 simulated 
negaXve and 50 simulated posiXve interacXons (genes 0-49 and genes 50-99) as the ground truth. Correct 
predicXons are on the descending diagonals, and the off-diagonal entries represent errors (either false 
posiXves, FP, or false negaXves, FN). The center of these matrices are correctly idenXfied non-interacXng 
genes. This is the largest square in all noise scenarios, for all three methods and is excluded from 
recall/precision calculaXons, to focus on predicXve performances for depleted and enriched genes.   
 
MAGeCK-MLE idenXfies a large number of interacXng genes for all the simulated datasets and as a result 
has a consistently high recall rate. For example, in the lowest noise scenario (LL), CRISPRi-DR idenXfied 
74% of the simulated interacXng genes, MAGeCK-RRA idenXfies 56.5% and MAGeCK-MLE idenXfies 
99.9% of the genes. However, this also means MAGeCK-MLE makes many calls that are false posiXves. 
CRISPRi-DR falsely idenXfies an average of 1.4 genes, MAGeCK false idenXfies 3.9 genes and MAGeCK-
MLE idenXfied nearly 542. 
 
As noise is increased through adjustments of the sC  or Pnb parameters, the number calls made by 
MAGeCK increase, thus increasing its recall rate to be similar to that of MAGeCK MLE. In the HH scenario, 
the recall rate of MAGeCK-MLE remains quite high at 88.3% and MAGeCK-RRA’s increases to 87.5%. 
Conversely, with the increased noise, CRISPRi-DR makes fewer calls resulXng in a decreased recall rate of 
30.1% in the HH scenario. However, CRISPRi-DR sustains a low false posiXve rate at 2.2%.  Whereas the 
false posiXve rates of MAGeCK-MLE and MAGeCK increase substanXally (MLE = 42.5%, RRA = 42.1%), 
diluXng the sets of predicted enriched and depleted genes with non-interacXng genes. In summary, with 
increasing noise CRISPRi-DR idenXfies less of the true interacXng genes, yet maintains its ability to keep 
the set of reported interacXng genes from being diluted with non-interacXng genes. 
 
Table 1. Evalua(on of CRISPRi-DR, MAGeCK-RRA, and MAGeCK-MLE performances in the nine noise 
scenarios. For each of the noise scenarios, CRISPRi-DR, MAGeCK-RRA and MAGeCK-MLE are run. These 
confusion matrices reflect the average confusion matrix of the 10 runs per noise scenario. 
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To clarify, the metrics are calculated as follows. For depleted genes, RecallD=TPD/(TPD+FND) and 
PrecisionD= TPD/(TPD+FPD).  For enriched genes, RecallE=TPE/(TPE+FNE) and PrecisionE= TPE/(TPE+FPE).  For 
overall results, depleted and enriched genes are combined as follows: 
Recall=(TPD+TPE)/(TPD+FND+TPE+FNE) and Precision=(TPD+TPE)/( TPD+FPD+TPE+FPE). Also, Recall=TPR, 
Precision=1-FPR. 

  Predicted Gene Types 
  Depleted Non-Interac6ng Enriched 

Simulated 
Gene 
Types 

Depleted TPD FND  

Non-Interac6ng FPD  FPE 
Enriched  FNE TPE 

 
Table 2 is a summary of the average recall, precision, and F1 scores for the three methods across the 9 
scenarios. These scores, averaged over posiXve and negaXve interacXons (excluding non-interacXons), 
reiterate the trend observed in Table 1. As noise increases, recall rates in MAGeCK-RRA and MAGeCK-
MLE increase but precision substanXally decreases. Conversely, CRISPRi-DR follows a more conservaXve 
approach resulXng in slightly decreasing recall rate as noise increase but maintaining consistently high 
precision. Across most of the 9 noise scenarios, CRISPRi-DR has higher F1-scores than the other two 
methods where 𝐹1	𝑠𝑐𝑜𝑟𝑒	 = 	2	 ×	 /0%122	×		5/0%"6"7*

/0%122	8	5/0%"6"7*
	 reflecXng the tradeoff between recall and precision.   

 
Table 2. Average precision and recall values across 10 runs each for CRISPRi-DR, MAGeCK and MAGeCK-
MLE for each of the 9 noise scenarios.  
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 CRISPRi-DR MAGeCK-RRA MAGeCK-MLE 

 recall precision F1-score recall precision F1-score recall precision F1-score 

LL 0.740 0.982 0.844 0.565 0.936 0.705 0.999 0.156 0.270 

LM 0.734 0.984 0.841 0.602 0.907 0.724 0.998 0.173 0.295 

LH 0.674 0.964 0.793 0.853 0.242 0.377 0.980 0.429 0.597 

ML 0.537 0.877 0.666 0.579 0.881 0.699 0.999 0.144 0.252 

MM 0.544 0.876 0.671 0.645 0.850 0.733 0.997 0.154 0.267 

MH 0.508 0.845 0.635 0.870 0.232 0.366 0.939 0.286 0.438 

HL 0.297 0.615 0.401 0.658 0.441 0.528 0.962 0.126 0.223 

HM 0.296 0.573 0.390 0.694 0.408 0.514 0.966 0.134 0.235 

HH 0.301 0.594 0.400 0.895 0.180 0.300 0.890 0.180 0.299 

 
The effect of noise on the results of the three methodologies can also visualized using a bar chart of true 
and false posiXves as in Fig 3 (calculated from enriched and depleted genes combined). We calculate the 
number of significant genes while increasing the amount of noise using either the sC  and Pnb parameters 
(resulXng in the 9 noise scenarios). In the lej panel, the average number of significant genes were 
calculated for each method run for a specific sC  value across the possible Pnb values. The errorbars seen 
are the 95% confidence interval of the number of significant genes. For example, the orange bar for sC 
=0.01 represents the average number of genes found significant by MAGeCK in the LL, LM, LH scenarios 
(where sC =0.01, but Pnb varies). The same is done in the right panel, using Pnb. Noise between 
concentraXon increases as sC  is increased and noise between replicates is increases as Pnb is decreased.  
 
All three methods make a comparable number of true posiXve calls, regardless of noise parameters. 
When noise increases for either parameter, the number of false posiXve calls for all three methods also 
increases. However, the number of false posiXves calls are much higher for MAGeCK-RRA and MAGeCK-
MLE than for CRISPRi-DR. 
 
In this plot, it is clear how much more MAGeCK-RRA is affected by noise among replicates than between 
concentraXons. The orange bar for Pnb=0.1 represents the results for MAGeCK-RRA in the LH, MH, HH 
scenarios and it shows the highest number of false posiXves compared to the other Pnb values as well as 
the sC  values, consistent with the observaXons made in Fig 2. This is likely a result of stochasXc 
fluctuaXons of counts at individual drug concentraXons that are not necessarily supported at other 
concentraXons. This could help explain the poor performance of MAGeCK-RRA on certain datasets that 
are especially noise, which ojen generates a large number of hits; our analysis suggests that many of 
these hits could be false posiXves. CRISPRi-DR and MAGeCK-MLE are more affected by noise within 
concentraXons than noise within replicates, since these methods rely more on increasing or decreasing 
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trends in abundance that must be (at least somewhat) consistent across concentraXons and thus is less 
affected by within replicate noise as MAGeCK-RRA is. 
 

 
 

Fig 3. Bar chart of the average true posi(ves and false posi(ves calls for CRISPRi-DR and MAGeCK-MLE 
as noise parameters are adjusted to increase noise. The horizontal dashed line in both panels is the 
number of total simulated interacXng genes (100 total). sC  is increased to increase the noise between 
concentraXons and Pnb is decreased to increase noise between replicates of concentraXons. The lejmost 
bars of the plot are the lowest noise, and the rightmost bars are the highest noise. 
 
Effect of K2 (simulated concentraXon-dependent slopes) 
 
The K2 value in the simulaXon controls the mean of the interacXng slopes in the experiment. The sK2, or 
the standard deviaXon of the simulaXon, is always 0.2. Fig 4 shows some of the distribuXons resulXng 
from select K2 values. As seen in Panel A with K2=0.4, if K2 is low, the slopes distribuXons of the interacXng 
genes nearly overlap with the distribuXon of the slopes of the non-interacXng genes. This complete 
overlap makes simulated genes hard to differenXate resulXng in many false calls (false posiXves or false 
negaXves). The other end of the K2 range is seen in Panel C with K2=1.2, where the slopes of non-
interacXng and interacXng genes have almost no overlap. This makes it easy for all methods to idenXfy 
nearly all the true posiXves. The value we use in this simulaXon K2=0.8 is seen in Panel B, that has some 
overlap between distribuXons of slopes for interacXng and non-interacXng genes. 
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Fig 4. Distribu(on of slopes sampled from for simulated non-interac(ng and interac(ng genes at 
mul(ple K2 values. The lejmost panel shows the highest amount of overlap of the distribuXons of 
simulated slopes with K2 is low and the rightmost panel is the lowest amount of overlap of the 
distribuXons of simulated slopes with K2 is high. The middle panel strikes a balance between these two.  
 
Figure 5 shows the true and false posiXve calls made by CRISPRi-DR, MAGeCK-MLE and MAGeCK-RRA 
within the lowest noise scenario (LL) for a range of K2 values, from 0.4 to 1.2. As expected, all three 
methods show increases in true posiXves and decreases in false posiXves as K2 increases. Regardless of 
K2 value, MAGeCK-MLE makes many more calls than CRISPRi-DR and MAGeCK-RRA and thus makes the 
highest number of true posiXve calls across the range of K2 values but also makes a highest number of 
false posiXves calls. ComparaXvely, the number of false posiXve calls made by MAGeCK-RRA and CRISPRi-
DR are low regardless of K2 value.  
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Fig 5. Calls made by CRISPRi-DR and MAGeCK-MLE at different K2 values. CRISPRi-DR and MAGeCK-MLE 
were both run using the LL scenario for 3 total concentraXons at a range of K2 values. Each K2 value was 
run 10 Xmes each. 
 
Effect of MulXple ConcentraXons on Significant Genes detected 
 
To evaluate the benefit of profiling a CRISPRi library on mulXple concentraXons on the performance of 
CRISPRi-DR and the MAGeCK methods, we adapted the simulaXon above to compare their precision and 
recall when using one, two, or three drug concentraXons.  We re-ran the simulaXon (10 iteraXons per 
concentraXon amount), keeping the same concentraXon range (2-8 µM), and used the high-noise (HH) 
parameter seungs (sC =0.1, Pnb =0.1).  In all runs, we always kept the highest concentraXon (8 µM), along 
with the no-drug control.  First, we evaluated performance using only one concentraXon (the highest, 8 
µM), then the two highest (4 and 8 µM), then all three concentraXons (the full range, 2-8 µM).  For 
MAGeCK-RRA, each concentraXon was compared independently to the no-drug control, and then a single 
LFC value was calculated per gene as the most significant LFC across the concentraXons and a single P-
value was calculated per gene using the Fisher’s method, which was then adjusted with Benjamini-
Hochberg. For CRISPRi-DR and MAGeCK-MLE, the no-drug control was treated as the lowest 
concentraXon, and it was combined with either the highest concentraXon, top two, or all three drug 
concentraXons, which were then used for doing regressions (over 2-4 effecXve concentraXon points). 
As seen in Fig 6, the recall of CRISRi-DR and MAGECK-MLE (number of true posiXves) held constant as 
concentraXons were added, whereas the number of true posiXves idenXfied by MAGeCK-RRA increased 
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slightly with more concentraXons. Adding concentraXon points caused a significant increase in the 
number of false posiXves found by of MAGeCK-RRA.  This is apparently due to the commitment of false 
posiXve errors, i.e. non-interacXng simulated genes that are classified as significant due to high variaXon 
in barcode counts in this high noise seung.  MAGeCK is suscepXble to false posiXves when evaluaXng 
only a single concentraXon point, but this gets amplified as more concentraXons are added, because 
each concentraXon is evaluated independently, and the hits (including false posiXve genes) are combined 
post-analysis, explaining why precision drops as concentraXons are added, because errors accumulate.  
 
In contrast, CRISPRi-DR and MAGeCK-MLE are more robust with respect to false-posiXve errors, because 
regression incorporates data from all concentraXons available and looks for significant trends.  This allows 
CRISPRi-DR to maintain higher precision, which does not decrease as addiXonal concentraXon points are 
added. 

 
Fig 6. Changes in true and false posi(ves with number of concentra(ons. CRISPRi-DR, MAGeCK-RRA, 
MAGeCK-MLE were all run using the HH scenario for 1, 2 and 3 total concentraXons. Each concentraXon 
was run 10 Xmes, i.e. on 10 independent simulated datasets. 
 
CRISPRi-DR can detect interacXng genes where trends are not perfectly linear 
 
It is not always the case that the highest concentraXon should be the most informaXve one for detecXng 
CGIs, as it might cause too much growth inhibiXon, making it difficult to assess dose-dependent behavior. 



 15 

SomeXmes the largest effect occurs at the edge of the range, like dropping off a cliff, due to uncertainty 
about the opXmal concentraXon. CRISPRi-DR can detect these kinds of trends. It only expects 
abundances to show an overall trend depleXon or enrichment across concentraXons. Fig 6 shows a few 
sgRNAs depicXng these kinds of trends for representaXve sgRNAs targeXng simulated interacXng genes 
detected as significant by CRISPRi-DR. sgRNA 1 shows an example of an ideal (nearly linear) paVern of 
depleXon. ComparaXvely, sgRNA 2 shows a sharp decline in abundance at concentraXon 1 (the lowest 
end of the concentraXon range), sgRNA 3 shows a sharp decline at concentraXon 2 and sgRNA 4 shows 
a sharp decline at concentraXon 3 (the highest end of the concentraXon range). Regardless of depleXon 
paVern, sgRNAs 1, 2, 3 and 4 all target genes detected as significant negaXve interacXons by the CRISPRi-
DR model. 

 
Fig 6. Trends of select sgRNAs in the various noise scenario. For each of the sgRNAs seen here, the blue 
dots are abundances for the three simulated replicates at each concentraXon. The gray line shows the 
change in abundance mean as concentraXon increases. 
 
 
2.  Comparison of CRISPRi-DR to other CRISPR analysis methods using CGI datasets  
 
Algorithms Summary 
 
The performance of CRISPRi-DR is compared to six other sojware packages intended for analyzing 
CRISPRi and CRISPRko libraries.  
 
Below are general overviews of some exisXng methodologies comparable to CRISPRi-DR used to assess 
CRISPR screens. We describe the general math used in the analyses, as well as how we adjusted our 
datasets to be run using each methodology. Some methods work directly on counts, whereas others 
require log fold changes. The result of some of these methods is at the sgRNA level, which were combined 
post hoc to obtain gene level informaXon. AddiXonally, some of these methods do not take mulXple 
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concentraXons into account, thus we combined outputs of analyses at different concentraXons using 
Fisher’s method of combing P-values:   

𝑝" =	alog 𝑝"%	

*

%9&

= logc𝑝":;<d + logc𝑝"=>?d+	logc𝑝"@AB@d 

 
where n=3 for the 3 concentraXon levels (low, medium, high) for each gene 𝑖. 
 
DEBRA (DESeq2-based RNA-seq Analysis) 
 
R FuncXon Call: 
 
> DEBRA(counts, c("DMSO1","DMSO2", "DMSO3"), condition_names= 

c("DRUG1","DRUG2", "DRUG3"), method="DESeq2(Wald)") 
  
DEBRA [3] is a methodology that uses the DESeq2 package for RNA sequencing data analysis. It processes 
RNA-seq count data, normalizing to account for variaXons in sequencing depth and biases. Then, using 
NegaXve Binomial models, DEBRA esXmates gene expression variability. Through differenXal analysis, it 
idenXfies genes with staXsXcally significant barcode count changes across different condiXons, 
employing DESeq2's robust tesXng methods. 
 
To use CRISPRi datasets as inputs to DEBRA,  counts of the most efficient sgRNA for each gene were 
provided as input to DEBRA. The output of DEBRA for these datasets is log fold changes along with P-
values calculated using the Ward method. Since DEBRA does not account for increasing concentraXon, 
each concentraXon (low, medium and high) in a given dataset was run separately, with the corresponding 
DMSO condiXon set as the control. These gene-wise P-values of the three concentraXon outputs were 
combined using the Fisher’s method and then adjusted using Benjamini-Hochberg. Genes were ranked 
by combined P-value and marked significant if adjusted combined P-value < 0.05.  
 
CGA-LMM 
 
Command Line Prompt: 
 
> Rscript ./CGA_LMM.R single_sgRNA_per_gene_counts.txt CGA_LMM_out 

 
Designed for hypomorph libraries, CGA-LMM [4] assesses the concentraXon-dependent variaXon in 
mutant abundance (in a library) using slope coefficients derived from linear mixed models. CGA-LMM 
assumes one set of counts per gene and was not designed to incorporate informaXon from mulXple 
sgRNAs.  This method uses a conservaXve populaXon-based approach by idenXfying genes as significant 
only if they have slopes that are outliers when compared to the general populaXon.  
 
To use CRISPRi data as the input for this method, we use the most efficient sgRNA for each gene. In line 
with the approach of DuVa, DeJesus (4), significant genes were marked as those with adjusted P-value< 
0.5 and |Zrobust| > 3.5. Genes were ranked by P-value. 
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CRISPhieRmix 
 
R FuncXon Call: 
 
> CRISPhieRmix(log2fc_from_DESeq2, geneIds, negCtrl, nMesh = 100, 

PLOT = TRUE, VERBOSE = TRUE, mu=-6, pq=0.1,BIMODAL=T) 
 
CRISPhieRmix [5] is a methodology created specifically for the CRISPRi variant to address guide efficiency 
present in CRISPRi and CRISPRa screens. The method takes log fold changes of sgRNA counts between 
two condiXons, typically derived from DESeq2 or edgeR outputs. It fits a hierarchical mixture model on 
these log fold changes, based on the assumpXon that genes are represented by a mixture distribuXon of 
effecXve and ineffecXve guides. CRISPhieRmix then computes False Discovery Rates (FDRs) as the 
posterior probability that a gene is non-essenXal. These probabiliXes are aggregated over all possible 
mixtures to finalize the FDRs for each gene. 
 
In analyzing our CRISPRi datasets, we uXlized the bimodal opXon available in the method's 
implementaXon. Typically, this analysis resulted in one posiXve and one negaXve mode, consistent with 
the opXon's assumpXon that genes are a mixture of ineffecXve, depleXng, or enriching guides. Since 
CRISPhieRmix does not account for increasing concentraXon, each concentraXon (low, medium, and 
high) in each dataset was run separately, with the corresponding DMSO condiXon set as the control. In 
the actual counts files, negaXve control genes were excluded, as they were causing noise in the mixture 
model esXmaXons. The local FDR s from the analysis of the three concentraXons were combined using 
the Fisher’s method. Genes were ranked by were combined local FDR and marked significant if combined 
local FDR < 0.05. 
 
MAGeCK (Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout) 
 
Command Line Prompt: 
 
> mageck test -k drug_counts.txt -c DMSO1,DMSO2,DMSO3 -t 

CONC1,CONC2,CON3 -n Mag_out --gene-lfc-method alphamedian --norm-
method control --control-sgrna negatives.txt 

 
Li, Xu (6) designed the Robust Ranking Algorithm (RRA), one of the first algorithms for CRISPRko screens, 
available to researchers as MAGeCK [7]. The input to the method is raw control and experimental sgRNA 
counts. These counts are fiVed to a NegaXve Binomial model to assess if counts vary significantly (similar 
to DESeq2). The sgRNA level P-values for each gene are the combined using a modified version of robust 
rank aggregaXon to evaluate whether a subset of them is enriched (RRA), resulXng in a list of genes with 
False Discovery Rates (FDRs) for both posiXve and negaXve interacXons. 
 
Since MAGeCK does not account for mulXple concentraXons, each concentraXon (low, medium, and 
high) in a given dataset was run separately, with the corresponding DMSO condiXon set as the control. 
MAGeCK uXlizes a separate set of controls be provided, from which it calculates its P-values. We provided 
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“NegaXve” sgRNA controls in list form to the method for this purpose (using 1750 non-targeXng sgRNAs 
in the Mtb CRISPRi library). For each concentraXon, we determined a gene's overall P-values based on 
the lowest FDR, whether posiXve or negaXve. We then merged the resulXng gene P-values from the three 
concentraXons using the Fisher’s method and then adjusted using Benjamini-Hochberg. Genes were 
ranked by combined P-value and marked significant if adjusted combined P-value < 0.05.  
 
Direct comparisons of the significant genes in the CGI libraries from Li, Poulton (1) found by CRISPRi-DR 
and MAGeCK-RRA can be seen in Supplemental Table S3, where significant calls made by MAGeCK-RRA 
have an addiXonal constraint of |LFC|>1, to be more comparable to the publicaXon’s analysis of the data. 
 
DrugZ 
 
Command Line Prompt: 
 
> drugz.py -i drug_counts.txt -o drugZ_out.txt -c DMSO1,DMSO2,DMSO3 

-x CONC1,CONC2,CONC3 
 
DrugZ [8] is a method for analyzing chemical geneXc interacXons with drug treatments in CRISPRi, 
CRISPRko and CRIPSRa libraries treated with drugs. Raw sgRNA counts of the control and experimental 
condiXon are provided as input to the method. The log fold changes of the normalized counts are then 
calculated, along with guide level z-scores and variance esXmated by empirical Bayes. The z-scores at the 
guide level are summed to get gene level z-scores, from which P-values can be obtained from a Normal 
distribuXon. The output of the method is similar to MAGeCK in that it provides the staXsXcs for both the 
suppressive and synergisXc interacXons of the genes. 
 
In our approach to analyzing CRISPRi datasets with drugZ, sgRNA counts were used directly without 
modificaXon. Similar to many other methodologies, drugZ does not simultaneously accommodate 
mulXple concentraXons. Thus, each concentraXon (low, medium, and high) in a given dataset was run 
separately, with the corresponding DMSO condiXon set as the control. At each concentraXon, we 
determined a gene's overall P-value based on the lowest P-value, whether suppressive or synergisXc. We 
then merged the resulXng gene P-values across the three concentraXons using the Fisher’s method and 
then adjusted using Benjamini-Hochberg. Genes were ranked by were combined P-value and marked 
significant if adjusted combined P-value < 0.05. 
 
MAGeCK MLE 
 
Command Line Prompt: 
 
> mageck mle --norm-method control -n MLE_out --genes-var 0 --

update-efficiency --count-table subsampled_drug_counts.txt --
threads 16 --control-sgrna negatives.txt --design-matrix 
design_matrix.txt  --sgrna-efficiency squashed_sgRNA_info.txt --
sgrna-eff-name-column 1 --sgrna-eff-score-column 2 
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MAGeCK MLE [9], an extension of MAGeCK, esXmates gene effects across mulXple condiXons (i.e. cell 
lines or drug treatments), while accounXng for sgRNA knockout efficiency. Like MAGeCK, the input to the 
method is a set of raw sgRNA counts but also requires a design matrix specifying which counts come from 
which condiXon along with sgRNA efficiencies between the range of 0 and 1. Raw sgRNA counts are fiVed 
to a NegaXve Binomial GLM with log link to sgRNA level counts. Maximum likelihood esXmaXon (MLE) of 
fiung the guide counts across all samples is used to calculate the beta scores. The significance of these 
beta scores is calculated through the Wald test.   
 
When using MAGeCK MLE with default seungs, we found that a maximum of 39 sgRNAs per gene could 
be processed without triggering "gene too large" errors. Therefore, for genes with more than 39 sgRNAs 
in our CRISPRi datasets, we randomly selected 39 sgRNAs for analysis. In our design matrices, we treated 
increasing concentraXon as a Xme series variable. AddiXonally, we included sgRNA efficiencies, 
expressed as esXmated log fold change values normalized to a 0-1 scale, where 1 represents higher 
sgRNA efficiency. Like MAGeCK, MAGeCK-MLE requires a list of control sgRNAs which we fulfilled with a 
list of “NegaXve” sgRNAs in each CRISPRi dataset. Genes in the MAGeCK MLE analysis results were ranked 
by Wald P-value and significant genes were marked as those with Wald FDR < 0.05.  
 
Combining Results from Mul(ple Concentra(ons using Fisher’s Method for P-values 
 
In our study, for methods that weren't designed to handle mulXple concentraXons simultaneously, we 
ran each method three Xmes for a given CRISPRi drug dataset, once for each concentraXon level: low, 
medium, and high. We combined the significance of the genes across the three analysis results using 
Fisher’s method. Fig 7 illustrates the impact of this combined approach. The ROC Curves are for RIF in 1 
day pre-depleXon, seung target genes as the 75 condiXonally essenXal genes (adjusted P-value < 0.5 
from resampling in Transit) from a previously published TnSeq study of M. tuberculosis H37Rv exposed 
to sub-MIC concentraXons of various anXbioXcs, including rifampicin [10]. While changes in essenXality 
due to transposon inserXons are not technically the same as fitness defects resulXng from CRISPRi 
depleXon, there is substanXal overlap between essenXality and vulnerability [2].  
 
Panel A displays ROC Curves for all runs of the tested methods, with gene rankings determined by 
respecXve P-values. For CRISPhieRmix, we used “locFDR” to rank the genes and for MAGeCK and drugZ, 
which provide staXsXcs for both posiXve and negaXve interacXons, we selected the minimum P-value for 
each gene to rank them. In this case, the high concentraXon runs performed the best for methods that 
did not account for mulXple concentraXons simultaneously. CRISPRi-DR performs among the best (black 
curve, panel A), partly because it uXlizes info from all 3 concentraXons.  However, one cannot just 
consider the highest concentraXon in this analysis, as someXmes the MIC of a drug can be unknown, 
where the highest concentraXon might be excessively strong, potenXally leading to an overesXmaXon of 
depleXon effects and false posiXves compared to the control. In Panel B, the ROC Curves ajer applicaXon 
of the Fisher’s method closely resembled, but were not idenXcal to, the high concentraXon curves in 
Panel A. This indicates that lower concentraXons also contribute to a gene's overall significance. Using 
the Fisher’s method to combine significance of the three concentraXons provides a more comprehensive 
representaXon of the overall significance of gene interacXons across different concentraXon levels.  
Nonetheless, CRISPRi-DR sXll has a ROC curve that is compeXXve with the best of these other analysis 
methods (Panel B). 
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Fig 7. ROC Curves of RIF in 1 day pre-deple(on using known target genes from TnSeq screens as true 
posi(ves. A) ROC curves per run of a tested methodology. Rankings based on gene P-values calculated 
by the methodology, or with minimal post-processing. B) One ROC Curve per method based on ranking 
of final P-values post combining mulXple concentraXons for methods that do not account for them. 
 
Results 
 
Analysis of RIF D1 CRISPRi dataset by CRISPR Methods 
 
CRISPRi-DR performs as well as the best of the other methods in idenXfying the target genes by 
significance-based ranking (ROC curves). While the highest AUC (0.866) is achieved by MAGeCK-MLE on 
the RIF D1 dataset, CRISRPi-DR has similar AUC of 0.850).  However, the number of significant genes both 
by adjusted P-value < 0.05 per concentraXon and Fisher’s combined adjusted P-value < 0.05 for the 
methods necessary show much higher number of false posiXves. The methods that find nearly all the 
target genes are CRISPhieRmix, MAGeCK, and MAGeCK MLE, but these methods report a very high 
number of false posiXves (thousands of genes that are putaXvely staXsXcally significant). Although 
CRISPRi-DR and drugZ are the two methods that report a relaXvely lower number of total hits, they both 
detect only ~40 of the 75 target genes as significant, and drugZ reports many more false posiXves (433 
overall). Overall, the incorporaXon of both sgRNA efficiency and increasing concentraXon in a model such 
as CRISPRi-DR along with the addiXonal Z-score constraint allows for rankings similar to the other CRISPR 
analysis techniques, but it reduces the number of false posiXves reported. Thus, CRISPRi-DR has the 
highest F1-score of the methodologies tested. 
 
 
Table 3. Number of significant genes reported and AUC values of ROC Curves of RIF in 1 day pre-
deple(on using known target genes from TnSeq screens as true posi(ves 
 

Method AUC Value Total Number of 
Significant Genes 

True 
Posi(ves 

False 
Posi(ves F1-score 

A. B. 
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CGA-LMM 0.765 328 23 305 0.114 
CRISPRi-DR 0.850 183 42 141 0.326 

CRISPhieRmix [Overall] 0.844 3146 74 3072 0.046 
CRISPhieRmix LOW 0.689 781 14 767 0.039 
CRISPhieRmix MED 0.767 869 15 854 0.033 
CRISPhieRmix HIGH 0.836 2025 41 1984 0.032 

DEBRA [Overall] 0.822 3063 72 2991 0.046 
DEBRA LOW 0.657 103 13 90 0.146 
DEBRA MED 0.731 495 37 458 0.130 
DEBRA HIGH 0.798 1960 65 1895 0.064 

MAGeCK [Overall] 0.855 3899 75 3824 0.106 
MAGeCK LOW 0.722 455 28 427 0.081 
MAGeCK MED 0.756 1087 47 1040 0.080 
MAGeCK HIGH 0.848 1634 68 1566 0.038 
MAGeCK MLE 0.866 2833 72 2761 0.050 

drugZ [Overall] 0.867 473 40 433 0.146 
drugZ LOW 0.716 55 2 53 0.064 
drugZ MED 0.798 60 4 56 0.059 
drugZ HIGH 0.847 82 5 77 0.031 

 
 
Sensi(vity of CRISPR methods to noise 
 

 
Fig 8. ROC Curves of RIF, VAN and EMB in 10 day pre-deple(on using known target genes from TnSeq 
screens as true posi(ves. 
 
We assessed the performance of the methods on 10 day pre-depleXon (D10) CRISPRi datasets. With 
greater pre-depleXon days, there is expectedly more noise in the datasets.  We compare the 
methodologies’ sensiXvity to higher noise through the RIF, VAN and EMB datasets with 10-day pre-
depleXon, using condiXonally essenXal genes found by Xu, DeJesus (10) in their TnSeq study of anXbioXc 
exposure as target genes. The ROC Curves seen in Fig 8 were generated using the ranking methods 
menXoned previously.  Per AUCs, the performance of CRISPRi-DR remains consistently high for all three 
datasets. Even in high depleXon datasets, CRISPRi-DR idenXfied target genes as well as if not beVer than 
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the other methodologies tested. Although CRISPRi-DR idenXfied less of the target genes as significant, it 
marked less false posiXve genes than the other methods and thus overall had the highest F1 scores.  
 
Table 4. Number of significant genes reported and AUC values of ROC Curves of RIF, VAN and EMB in 
10 day pre-deple(on using known target genes from TnSeq screens as true posi(ves (75 genes for RIF, 
89 for VAN, and 67 for EMB). 
 

RIF D10 

Method 
AUC 

Value 
Total Number of 
Significant Genes 

True 
Posi(ves 

False 
Posi(ves F1 Score 

CGA-LMM 0.738 371 25 346 0.112 
CRISPRi-DR 0.860 218 51 167 0.348 
CRISPhieRmix 0.860 3665 74 3591 0.040 

DEBRA 0.735 2125 57 2068 0.052 
MAGeCK 0.892 3596 74 3522 0.040 

MAGeCK-MLE 0.888 2394 69 2325 0.056 
drugZ 0.866 436 54 382 0.211 

VAN D10 

Method 
AUC 

Value 
Total Number of 
Significant Genes 

True 
Posi(ves 

False 
Posi(ves F1 Score 

CGA-LMM 0.733 514 27 487 0.090 
CRISPRi-DR 0.883 185 50 135 0.365 
CRISPhieRmix 0.865 3611 89 3522 0.048 

DEBRA 0.741 2817 77 2740 0.053 
MAGeCK 0.880 2849 87 2762 0.059 

MAGeCK-MLE 0.889 2753 86 2667 0.061 
drugZ 0.871 408 59 349 0.237 

EMB D10 

Method 
AUC 

Value 
Total Number of 
Significant Genes 

True 
Posi(ves 

False 
Posi(ves F1 Score 

CGA-LMM 0.622 522 17 505 0.058 
CRISPRi-DR 0.821 172 22 150 0.184 
CRISPhieRmix 0.789 3342 67 3275 0.039 

DEBRA 0.767 2423 51 2372 0.041 
MAGeCK 0.853 3913 67 3846 0.034 

MAGeCK-MLE 0.750 3142 62 3080 0.039 
drugZ 0.857 549 47 502 0.153 
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CRISPRi-DR and CGA-LMM both show higher precision than the other methods. However, CRISPRi-DR has 
a much higher precision than CGA-LMM, perhaps aVributed to its ability to uXlize both drug 
concentraXon and sgRNA efficiency in the model, whereas CGA-LMM only uses concentraXon. As seen 
in Table 5, CRISPRi-DR is the best method based on precision and F1-score for nearly all the datasets. 
There are quite a few methods that show high recall in the datasets (these are usually 100% recall). 
Precision here is calculated as TP/(FP+TP) and Recall is calculated as TP/(TP+FN). Based on AUC, MAGeCK 
and MAGeCK-MLE seems to have the highest values. However, Supplemental Table 2 shows that for 
certain datasets, such as RIF D5, the AUC values are comparably high for most methods. 
 
Table 5. Assessment of Best CRISPR Method for the EMB, INH, LEVO, VAN and RIF CRISPRi screens in 
Day 1, 5 and 10 day pre-deple(on based on recall, precision, AUC and F1-scrore. For the methods that 
require individual dosage runs, they were combined using Fisher’s method across concentraXons and 
then assessed. CRISPRi-DR is the best method by F1-Score for most of the drug-treated datasets.  
 

Drug Days Pre-
deple(on 

Best Method(s) 
by Recall 

Best Method 
by Precision 

Best Method 
by AUC 

Best Method 
by F1-Score 

EMB 1 MAGeCK CRISPRi-DR drugZ CRISPRi DR  
EMB 5 MAGeCK CRISPRi-DR MAGeCK drugZ  
EMB 10 CRISPhieRmix, MAGeCK CRISPRi-DR drugZ CRISPRi DR 
INH 1 MAGeCK CRISPRi-DR MAGeCK CRISPRi-DR 
INH 5 MAGeCK CRISPRi-DR MAGeCK CRISPRi-DR 
INH 10 MAGeCK CRISPRi-DR MAGeCK CRISPRi-DR 
RIF 1 MAGeCK CRISPRi-DR drugZ CRISPRi-DR 

RIF 5 CRISPhieRmix,MAGeCK, 
MAGeCK MLE CRISPRi-DR MAGeCK MLE CRISPRi-DR 

RIF 10  CRISPhieRmix, MAGeCK CRISPRi-DR MAGeCK CRISPRi-DR 
VAN 1 MAGeCK  CRISPRi-DR MAGeCK MLE CRISPRi-DR 
VAN 5 CRISPhieRmix, MAGeCK CRISPRi-DR MAGeCK MLE CRISPRi-DR 
VAN 10 CRISPhieRmix CRISPRi-DR MAGeCK MLE CRISPRi-DR 
LEVO 1 DEBRA, MAGeCK CRISPRi-DR DEBRA CRISPRi-DR 
LEVO 5 DEBRA CRISPRi-DR DEBRA CRISPRi-DR 
LEVO 10 MAGeCK CRISPRi-DR DEBRA CRISPRi-DR 

  
 
3. Analysis of E. coli CRISPRi screen using CRISPRi-DR 
 
E. coli CRISRPi Dataset for growth on different carbon sources 
 
Mathis, OVo and Reynolds (11) quanXfied growth rate changes as a funcXon of varied gene expression 
levels using CRISPRi through a library of modified single guide RNAs (sgRNAs). The dataset consisted of a 
library of 5927 sgRNAs targeXng 88 genes in Escherichia coli MG1655, for which they observed their 
effects on growth rate on media with different carbon sources. To generate diversity, they incrementally 
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added mutaXons to sgRNAs in the targeXng sequence or posiXon in gene and created showed a link 
between the number of mutaXons and their impact on growth rate.  
 
The authors demonstrated that many gene-environment interacXons not detected at maximum 
knockdown levels are seen at intermediate levels of expression interference. The authors quanXfied 
growth rate effects of modified sgRNAs in different carbon sources (glucose and glycerol) under 
turbidostat growth condiXons. Compared to the convenXonal method of using a single (maximal-
efficiency) knockdown per gene, Mathis, OVo and Reynolds (11) found 37% more interacXng genes 
assessing the differences in the fiVed parameters of a logisXc fit. This fit included the quanXfied growth 
rates and the Hill coefficient.  
 
While this is not technically a chemical-geneXcs (CGI) experiment, the data included mulXple Xme points 
along, with sgRNAs designed to span efficiencies, saXsfying requirements for our model.  Thus, the 
abundances in this dataset can be represented through a modified version of Eq. (3) in the main text:  
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where Xme replaces log concentraXon, and growth rate replaces sgRNA efficiency. Ajer logsigmoid 
transformaXon, the equaXon becomes:  
 

log m
𝐴"!C

1 − 𝐴"!C
n = 	𝐻E ∙ 𝑇𝑖𝑚𝑒! +	𝐻6 ∙ 𝑆" + 𝐶 

𝐶 = 𝐻6 ∙ log(𝐾6) − 𝐻F ∙ 𝑇'/$ 
 
Where the intercept folds in the inflecXon points 𝑇'/$ (Xme results in 50% depleXon) and 𝐾6 (growth rate 
results in 50% depleXon).  
 
Therefore two linear regressions (one for glucose and one glycerol) we fit for the dataset are  : 
 

log m
𝐴"!C#$%&'"(

1 − 𝐴"!C#$%&'"(
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log m
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analogous to Eq (5) in the main text for fiung sgRNA abundances for chemical geneXc interacXon 
screens. 
 
As seen in Fig 9, the growth curves of CRISPRi knock-down mutants (depleXon over Xme: 7 Xmepoints 
for glucose, 5 for glycerol) follows sigmoidal behavior very analogous to dose-response curves for 
anXbioXc exposure (depleXon with increasing concentraXon), making it a good dataset to analyze with 
CRISPRi-DR. In Fig 9, the changes in abundance for HaA in glucose and glycerol over Xme can be seen. 
HaA is a gene involved in glycolysis but not gluconeogenesis, thus being essenXal only for growth on 
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glucose. The sigmoidal curve in lejmost panel is similar to the curves seen in Fig 2 of the main text. Ajer 
applying the logsigmoid transformaXon, both sets of curves become linear, and we can assess the Xme-
based depleXon of the gene. In glycerol, there is minimal interacXon of the gene with the carbon source 
and thus the slope of Xme-based dependence post-logsigmoid transformaXon is slightly posiXve; hence, 
depleXng HaA does not produce a growth defect for growth on glycerol, in contrast to what is seen for 
glucose. 
 

 
Fig 9. Time vs. Abundance Curves for ,aA for growth in glucose and glycerol. A) RelaXve abundances 
in HaA versus Xme in glucose shows sigmoidal curves that can be linearized, revealing a strong depleXon 
of HaA for growth in glucose. B) RelaXve abundances in HaA versus Xme in glycerol does not shows as 
obvious sigmoidal curves that can be linearized, revealing an almost enrichment of HaA for growth in 
glycerol. 
 
Predic(ng uninduced Abundances from SCV 
 
The dataset generated by Mathis, OVo and Reynolds (11) quanXfied growth rates of the sgRNA mutants 
but they did not have any measurements equivalent to our uninduced abundances, i.e. abundances of 
the mutants in the growth mediums without ATC inducXon.  However, the uninduced abundances could 
be esXmated from the induced (no drug) using the SCV (standard coefficient of variaXon).  We observed 
(on other datasets) that genes with greater depleXon due to CRISPR interference had higher noise among 
their counts (abundance), which could be quanXfied by SCV.  Fig 10 demonstrates the correlaXon seen 
of the SCV of the abundances at all concentraXons is correlated with the uninduced abundances in the 
simulated highest noise scenario (HH). The more depleted sgRNAs have higher SCVs since lower number 
of total counts can increase the amount of noise. We observe similar relaXonships in the CRISPRi datasets 
as well.  

A. B. 
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Fig 10. Correla(on of SCV across concentra(ons vs. uninduced abundances in the simulated HH 
scenario. The points are linearly correlated with higher depleXon resulXng in higher SCV. 
 
The calculaXon of the uninduced abundances using SCV of the induced counts available is: 
 

𝑆𝐶𝑉 =
𝑠𝑡𝑑𝑒𝑣(𝑌")
𝑚𝑒𝑎𝑛(𝑌")

					 

 
	𝐵" = 𝑌G&uuuu ∙ 𝑒H∙J.K  

 
where 𝐵"  = baseline abundances calculated for gene 𝑖, 𝑌"  = counts across all concentraXons (𝑌"& are counts 
for gene 𝑖 specifically at 0 concentraXon) and 𝜆 = 2 for this dataset.  Therefore, we used this method to 
esXmate uninduced abundances for the E. coli CRISPRi data. 
 
Results 
 
We ran CRISPRi-DR independently for each carbon source, using the SCV method to generate uninduced 
baseline abundances. In both analyses, a significant number of genes exhibited notable depleXon 
(indicaXng reduced fitness) or had a Xme-dependence coefficient q value of less than 0.05. This may be 
because many of the 88 genes selected for this experiment are specifically because they are essenXal for 
growth (on either carbon source).  
 
As depicted in Fig 11A, most of the coefficients of Xme-dependence have a Z score between -1 and 1. 
While the two curves are similar, they are not idenXcal. The deviaXon in the distribuXon curves around 
a Z-score of 1 can be traced back to two genes labeled in orange in Fig 11B (HaA and pKA). In Fig 11B, 
we observe a strong correlaXon in the coefficients of Xme dependence of most genes; they align closely 
with the y=x line. These Xme parameter coefficients (𝛽E#$%&'"( 	, 𝛽E#$)&(*'$) are analogous to the 
coefficients of concentraXon dependence is reflecXve of the interacXon of a gene with the chemical in 
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typical CRISPRi-DR outputs.  The glycolyXc genes, highlighted fuchsia, are necessary for growth on both 
carbon sources. These genes are closest to the y=x line, showing similar fitness changes over Xme in both 
carbon sources, as expected. As menXoned previously, there are two notable genes (highlighted orange) 
HaA (fructose bisphosphate aldolase) and pKA (phosphofructokinase).  These genes, idenXfied in the 
Mathis, OVo and Reynolds (11) analysis are well-known examples of genes involved in glycolysis but not 
for incorporaXon of glycerol, as aptly have more negaXve coefficients in the glucose dataset analysis than 
the glycerol. 
 

 
Fig 11. Coefficients of Time-Dependence in CRISPRi-DR Analyses of Glucose and Glycerol Data. A) Z-
Score DistribuXon of the Coefficients. The distribuXon of coefficients B) CorrelaXon plot of the 
coefficients of the genes. The solid diagonal line is y=x. The fuschia labeled points closest to the line are 
genes involved in both gluconeogenesis and glycolysis. The points farther away from this line, the orange 
labeled points (pKA and HaA), are genes involved in glycolysis but not gluconeogenesis and; they have 
more negaXve coefficients in glucose than in glycerol. 
 
The analysis of this dataset demonstrates that the CRISPRi-DR method can be applied to other datasets, 
including those not explicitly designed for chemical-geneXcs.  The modified Dose-Response model nicely 
incorporates the simultaneous effects of Xme and the variable efficiencies of sgRNAs of varying effiency 
on mutant abundance. 
 
 
4. Minimum Number of sgRNAs per gene needed for CRISPRi-DR  
 
CreaXng a library of sgRNAs can be expensive and Xme-consuming. A user may want to know how many 
sgRNAs per gene are necessary to span a range of predicted efficiencies and reflect genuine interacXons 
with a given treatment.  Based on our invesXgaXon below, we recommend at least 5 sgRNAs per gene. 
 
We subsampled our exisXng library of about 96,000 total sgRNAs such that each gene has a maximum of 
2, 4, 6, 8, 10, and so on sgRNAs per gene. We re-rank the genes ajer running these subsampled libraries 
through the CRISPRi-DR model. ROC Curves with target genes obtained from Xu, DeJesus (10) reveals 

A. B. 
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that 2 sgRNAs per gene is not enough to capture expected interacXons, but at least 5 sgRNAs spanning a 
range of predicted efficiencies is sufficient.  
 
Rankings of Select Genes with Reduced Sets of sgRNAs  
 
In a library treated with isoniazid at 1 day pre-depleXon, we sampled all the genes to have a maximum 
of 2-20 sgRNAs, incremenXng at intervals of 2, and ran the sampled libraries through the CRISPRi-DR 
model. We repeated this sampling 10x each at every increment. 
 
In Panel A of Fig 12, we see inhA (enoyl-ACP reductase, in mycolic acid pathway) is an essenXal gene that 
is the target of INH [12], and nadA, an enriched gene in this dataset (with all sgRNAs).  The figure depicts 
changes in ranking of these two genes as the number of sampled sgRNAs is increased. DepleXon ranking 
in this context is defined as genes in the order of increasing concentraXon dependence slope and 
enrichment ranking is genes in the order of decreasing concentraXon dependence slope. With all the 
sgRNAs, the depleXon ranking of inhA is #12 and the enrichment ranking of nadA is #21. The shaded 
region surrounding the line is the standard deviaXon of the rankings across the 10 iteraXons performed 
at a parXcular sampling level. At the lej end of the plot, with a low number of sgRNAs sampled per gene, 
the standard deviaXons are high, at 30.2 for inhA and 134.6 for nadA. These standard deviaXons reduce 
sustainably and rankings for both genes start to converge to their true rankings (based on all sgRNAs) at 
around the 5 sgRNA sampling level.  
 
We observed a similar phenomenon in Panel B of Fig 12, with rpoC and eccD3, a few genes that interact 
with rifampicin with 1 day pre-depleXon. The variaXon of the rankings of these genes is possibly more 
variable than those in the isoniazid library depicted in Panel A, with a standard deviaXon of 283.8 for 
eccD3 and 202.6 for rpoC at the 2 sgRNA sampling level. However, the rankings of these genes also 
converge at the 5 sgRNA subsampling level. 
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Fig 12. The rankings for select genes based on maximum number of sgRNAs sampled per gene. (A) 
select genes from INH 1 day pre-depleXon. inhA is significantly depleted and nadA is significantly 
enriched in the presence of isoniazid (B) Select genes from RIF 1 day pre-depleXon. rpoC is highly 
depleted and eccD3 is highly enriched in the presence of rifampicin. Each sampled sgRNA library is run 
through the CRISPRi-DR model 10 Xmes. The shaded regions represent the standard deviaXons of 
rankings over 10 iteraXons at every sgRNA sampling value. In both panels, gene rankings converge at 
about 5 sgRNAs.  

A. 

B. 
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Fig 13. Coefficient of concentra(on dependence select genes based on maximum number of sgRNAs 
sampled per gene. (A) select genes from INH 1 day pre-depleXon. (B) Select genes from RIF 1 day pre-
depleXon Each sampled sgRNA library is run through the CRISPRi-DR model 10 Xmes and the slopes of 
concentraXon dependence extracted for the select genes.  
 
Too few sgRNAs could reduce the stability of the regressions and lead to less accurate (or more variable) 
esXmates of slope coefficients. As seen in Fig 14, the r2 values of the select genes show a high standard 
deviaXon when less than 5 sgRNAs are sampled (which means the slope coefficients indicaXng 
concentraXon-dependence vary depending on which sgRNAs are selected see Fig 13), which in turn 
impedes the model’s ability to detect significant interacXons.  

 
Fig 14. Standard Devia(ons of r2 for figng of select genes based on maximum number of sgRNAs 
sampled per gene. (A) select genes from INH 1 day pre-depleXon. (B) Select genes from RIF 1 day pre-
depleXon Each sampled sgRNA library is run through the CRISPRi-DR model 10 Xmes and the r2 values 
extracted for the select genes. The standard deviaXons of these r2 values are obtained and for each 
sampling level and ploVed here. In both panels, standard deviaXon starts to converge at about 5 sgRNAs. 

A. B. 

A. B. 

INH_D1 RIF_D1 
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ROC Curves of Subsampled Libraries 
Using target genes from Xu, DeJesus (10) for INH and RIF, ROC Curves were generated for each of the 
sampled sgRNA libraries. As Fig 15 shows, in both RIF and INH, the lowest performing library is that where 
2 sgRNAs are sampled for all genes in INH and RIF screens. Ajer that (6 sgRNAs and upward), 
performance remains consistently high. Combined with the ranking changes observed in Fig 12 and the 
changes in standard deviaXon of r2 values observed in Fig 14, this suggests that each target gene should 
be represented by a minimum of 5 sgRNAs in designing a CRISPRi library.  
 

 
Fig 15. ROC Curves for each of the maximum number of sgRNAs sampled. (A) ROC Curves for the 
different number of maximum sgRNAs sampled from the INH 1 day pre-depleXon, along with the AUC 
values. (B) ROC Curves for the different number of maximum sgRNAs sampled from the RIF 1 day pre-

A. 

B. 
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depleXon, along with the AUC values. The shaded regions surrounding the lines is the standard deviaXon 
of the true posiXve rate at each false posiXve rate. In both Panels, the worst performing sgRNA sampling 
amount is 2, with the lowest AUC across the 10 runs. StarXng at 4 sgRNAs, the performance of the library 
remains constant. 
 
Thus, we conclude that at least 5 sgRNAs (of diverse efficiency) should be included for each gene when 
designing a CRISPRi library, to ensure adequate regression fits with CRISPRi-DR. 
  



 33 

References 
 

1. Li S, Poulton NC, Chang JS, Azadian ZA, DeJesus MA, Ruecker N, et al. CRISPRi chemical geneXcs and 
comparaXve genomics idenXfy genes mediaXng drug potency in Mycobacterium tuberculosis. Nat 
Microbiol. 2022;7(6):766-79. Epub 20220530. doi: 10.1038/s41564-022-01130-y. PubMed PMID: 
35637331; PubMed Central PMCID: PMCPMC9159947. 

2. Bosch B, DeJesus MA, Poulton NC, Zhang W, Engelhart CA, Zaveri A, et al. Genome-wide gene 
expression tuning reveals diverse vulnerabiliXes of M. tuberculosis. Cell. 2021;184(17):4579-92 e24. 
Epub 20210722. doi: 10.1016/j.cell.2021.06.033. PubMed PMID: 34297925; PubMed Central 
PMCID: PMCPMC8382161. 

3. Akimov Y, Bulanova D, Timonen S, Wennerberg K, AiVokallio T. Improved detecXon of differenXally 
represented DNA barcodes for high-throughput clonal phenomics. Mol Syst Biol. 2020;16(3):e9195. 
doi: 10.15252/msb.20199195. PubMed PMID: 32187448; PubMed Central PMCID: 
PMCPMC7080434. 

4. DuVa E, DeJesus MA, Ruecker N, Zaveri A, Koh EI, Sasseu CM, et al. An improved staXsXcal method 
to idenXfy chemical-geneXc interacXons by exploiXng concentraXon-dependence. PLoS One. 
2021;16(10):e0257911. Epub 20211001. doi: 10.1371/journal.pone.0257911. PubMed PMID: 
34597304; PubMed Central PMCID: PMCPMC8486102. 

5. Daley TP, Lin Z, Lin X, Liu Y, Wong WH, Qi LS. CRISPhieRmix: a hierarchical mixture model for CRISPR 
pooled screens. Genome Biol. 2018;19(1):159. Epub 20181008. doi: 10.1186/s13059-018-1538-6. 
PubMed PMID: 30296940; PubMed Central PMCID: PMCPMC6176515. 

6. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust idenXficaXon of essenXal 
genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15(12):554. doi: 
10.1186/s13059-014-0554-4. PubMed PMID: 25476604; PubMed Central PMCID: 
PMCPMC4290824. 

7. BodapaX S, Daley TP, Lin X, Zou J, Qi LS. A benchmark of algorithms for the analysis of pooled 
CRISPR screens. Genome Biol. 2020;21(1):62. Epub 20200309. doi: 10.1186/s13059-020-01972-x. 
PubMed PMID: 32151271; PubMed Central PMCID: PMCPMC7063732. 

8. Colic M, Wang G, Zimmermann M, Mascall K, McLaughlin M, Bertolet L, et al. IdenXfying 
chemogeneXc interacXons from CRISPR screens with drugZ. Genome Med. 2019;11(1):52. Epub 
20190822. doi: 10.1186/s13073-019-0665-3. PubMed PMID: 31439014; PubMed Central PMCID: 
PMCPMC6706933. 

9. Li W, Koster J, Xu H, Chen CH, Xiao T, Liu JS, et al. Quality control, modeling, and visualizaXon of 
CRISPR screens with MAGeCK-VISPR. Genome Biol. 2015;16:281. Epub 20151216. doi: 
10.1186/s13059-015-0843-6. PubMed PMID: 26673418; PubMed Central PMCID: 
PMCPMC4699372. 

10. Xu W, DeJesus MA, Rucker N, Engelhart CA, Wright MG, Healy C, et al. Chemical GeneXc InteracXon 
Profiling Reveals Determinants of Intrinsic AnXbioXc Resistance in Mycobacterium tuberculosis. 
AnXmicrob Agents Chemother. 2017;61(12). Epub 20171122. doi: 10.1128/AAC.01334-17. PubMed 
PMID: 28893793; PubMed Central PMCID: PMCPMC5700314. 

11. Mathis AD, OVo RM, Reynolds KA. A simplified strategy for XtraXng gene expression reveals new 
relaXonships between genotype, environment, and bacterial growth. Nucleic Acids Res. 



 34 

2021;49(1):e6. doi: 10.1093/nar/gkaa1073. PubMed PMID: 33221881; PubMed Central PMCID: 
PMCPMC7797047. 

12. Vilcheze C, Jacobs WR, Jr. The mechanism of isoniazid killing: clarity through the scope of geneXcs. 
Annu Rev Microbiol. 2007;61:35-50. doi: 10.1146/annurev.micro.61.111606.122346. PubMed 
PMID: 18035606. 

 


