
 1 

Supplementary Information 1 

EpiGePT: a Pretrained Transformer model for epigenomics 2 

Zijing Gao1,#, Qiao Liu2,#,*, Wanwen Zeng2, Rui Jiang1,* and Wing Hung Wong2,3,* 3 

1 Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing 4 

National Research Center for Information Science and Technology, Center for Synthetic and 5 

Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China; 6 

2 Department of Statistics, Stanford University, Stanford, CA 94305, USA; 7 

3 Department of Biomedical Data Science, Bio-X Program, Center for Personal Dynamic 8 

Regulomes, Stanford University, Stanford, CA 94305, USA; 9 

* To whom correspondence should be addressed. 10 

# The first two authors contributed equally. 11 

E-mail: liuqiao@stanford.edu, whwong@stanford.edu, ruijiang@tsinghua.edu.cn 12 

  



 2 

Contents 13 

Supplementary Texts ................................................................................................................. 3 14 

Text S1. Data splitting strategy for model training. .................................................................... 3 15 

Text S2. System design and implementation of the web server. ............................................. 4 16 

Text S3. Case application of the EpiGePT-online. ........................................................................ 5 17 

Text S4. Running time of the EpiGePT and baseline methods. ................................................ 6 18 

Text S5. Implementation of Enformer model and Enformer+. ................................................. 7 19 

Text S6. Data processing for ChromHMM annotation data. ..................................................... 8 20 

Supplementary Figures ............................................................................................................. 9 21 

Fig. S1 ...................................................................................................................................................... 9 22 

Fig. S2 .................................................................................................................................................... 10 23 

Fig. S3 .................................................................................................................................................... 12 24 

Fig. S4 .................................................................................................................................................... 14 25 

Fig. S5 .................................................................................................................................................... 16 26 

Fig. S6 .................................................................................................................................................... 18 27 

Fig. S7 .................................................................................................................................................... 19 28 

Fig. S8 .................................................................................................................................................... 20 29 

Fig. S9 .................................................................................................................................................... 21 30 

Fig. S10 .................................................................................................................................................. 22 31 

Fig. S11 .................................................................................................................................................. 24 32 

Fig. S12 .................................................................................................................................................. 25 33 

Fig. S13 .................................................................................................................................................. 26 34 

Fig. S14 .................................................................................................................................................. 27 35 

Supplementary Tables ............................................................................................................. 28 36 

References .................................................................................................................................. 29 37 

 

  



 3 

Supplementary Texts 38 

Text S1. Data splitting strategy for model training. 39 

To comprehensively validate the performance of EpiGePT in predicting chromatin accessibility, 40 

we adopted three different data splitting strategies in the DNase1 prediction experiment to 41 

verify the model's prediction ability when facing new genomic regions and cell types, which 42 

can meet researchers' usage needs to the maximum extent. Firstly, cross-cell type prediction 43 

refers to splitting the training and testing sets according to cell types in the same genomic 44 

region, where the cell types in the testing set have not appeared in the training set (Figs. S1b). 45 

Secondly, cross-genomic region prediction refers to splitting the training and testing sets 46 

according to genomic regions in the same cell type (Figs. S1a). Thirdly, simultaneous cross-47 

cell type and genomic region prediction, where the prediction can be performed in completely 48 

novel cell types and genomic regions with the expression of transcription factors in that cell 49 

type. The training set needs to subset both cell types and genomic regions (Figs. S1c). To 50 

complete the latter two auxiliary predictions, we also split the data into 5 folds according to 51 

both cell types and genomic regions, so that both cross-validation can be performed in one 52 

round of training, but this will also reduce the amount of training and testing data. 53 
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Text S2. System design and implementation of the web server. 54 

EpiGePT-online runs on a Linux-based Apache web server (https://www.apache.org) and 55 

utilizes the Bootstrap v3.3.7 framework (https://getbootstrap.com/docs/3.3/) for its web-56 

frontend display. The backend of the server uses PHP v7.4.5 (http://www.php.net). The 57 

platform is compatible with the majority of mainstream web browsers, including Google 58 

Chrome, Firefox, Microsoft Edge, and Apple Safari. 59 
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Text S3. Case application of the EpiGePT-online. 60 

The online prediction web service of EpiGePT enables users to predict eight types of 61 

epigenomic signals using EpiGePT without the need for setting up environments, writing code, 62 

or computational resources. In this section, we describe a usage scenario of EpiGePT-online 63 

for epigenomic signals prediction (Fig. S13). Users are provided with the flexibility to annotate 64 

either multiple genomic regions or a single locus at their discretion. Assuming an algorithmic 65 

researcher is interested in determining the potential regulatory role of a specific chromatin 66 

region based on its epigenetic modifications. In this case, the researcher can utilize EpiGePT-67 

online to calculate the epigenetic signals on this region, to obtain references for assessing the 68 

potential regulatory role of the region. The submission prerequisites encompass two essential 69 

components. 1) The expression profiles of 711 TFs, which facilitate EpiGePT in acquiring 70 

precise cell type or tissue information. 2) The specific location of a locus on the genome or 71 

uploading of a bed file containing the information of genomic regions. It is worth noting that 72 

each line in the uploaded BED file should correspond to a 128kbp region to comply with the 73 

input length requirement of EpiGePT. If users select a specific locus, we will provide the 74 

predicted results for the region spanning 128kbp upstream and downstream of that locus. The 75 

web server allows users to upload expression values of 711 TFs in either numpy or comma-76 

separated values (CSV) format. When predicting for N genomic regions, users can obtain a 77 

downloadable matrix stored in CSV format with dimensions (𝑁 × 1000, 8). Each row denotes 78 

a 128bp genomic bin, and each column denotes an epigenetic profile. The specific referents 79 

of each row and column are provided in the downloadable table. This allows users to perform 80 

downstream analyses, such as related analyses in the areas of gene regulation and human 81 

disease.  82 
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Text S4. Running time of the EpiGePT and baseline methods. 83 

To demonstrate the computational efficiency of our model, we recorded the runtime of 84 

EpiGePT and baseline methods for one epoch on two sets of experiments, with different data 85 

sizes and input sequence lengths. Firstly, in the DNase signal prediction experiment on 129 86 

cell types, with an input sequence length of 10kbp and using the same training data, Enformer 87 

requires approximately 3 hours and 4 minutes to complete one epoch, while EpiGePT only 88 

takes 2 hours and 17 minutes. In contrast, ChromDragoNN2, which uses a genomic bin rather 89 

than a long region as the model input, requires 24 hours for pre-training and 8 hours for fine-90 

tuning. In this case, the batch size of ChromDragoNN was set to 1024, which is equivalent to 91 

EpiGePT using a batch size of around 20. This modeling and computation approach presents 92 

challenges in terms of computational efficiency when dealing with large amounts of data. 93 

DeepCAGE3 faces similar efficiency issues using the same approach. Even with a batch size 94 

of 256 on a single GPU, it still takes nearly 10 hours to complete one epoch of training. 95 

Secondly, we also recorded the running time of the models under larger-scale data and longer 96 

input sequences. When the number of input genomic bins increased from 50 to 1000, which 97 

corresponds to an input sequence length of approximately 128k, EpiGePT took approximately 98 

3 hours to complete one epoch of training on 20 cell lines and 13,300 genomic regions, while 99 

Enformer required approximately 27 hours to train one epoch, as it required a longer input 100 

sequence of approximately 190kbp. Furthermore, EpiGePT without TF module (EpiGePT-seq) 101 

had approximately 1/4 of the parameters of Enformer and took approximately 2 hours and 40 102 

minutes to train. In terms of performance, EpiGePT-seq performed similarly to Enformer on 103 

this dataset. This also explains why we chose to simplify the pure sequence model rather than 104 

directly adding a TF module to Enformer. 105 
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Text S5. Implementation of Enformer model and Enformer+. 106 

To ensure a fair comparison between models and prevent the possibility of information 107 

leakage, we implemented the Enformer4 model ourselves and trained it on our own collected 108 

data. Due to differences in dataset size and partitioning compared to Enformer, we reduced 109 

the number of encoder layers in Enformer to prevent overfitting. Thus, we reduced the number 110 

of encoder layers in Enformer to 3. Additionally, we introduced Enformer+ to enable a fair 111 

comparison between EpiGePT and Enformer in bin-level prediction. As Enformer takes only 112 

the DNA sequence as input, it tends to predict the same values for the same locus in different 113 

cell types, resulting in a loss of locus-level prediction ability. To address this, we incorporated 114 

the binding status and expression of the same transcription factors in Enformer+, and 115 

compared it to EpiGePT's performance on the same tasks. 116 
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Text S6. Data processing for ChromHMM annotation data. 117 

We downloaded the 15-state ChromHMM5 annotations across 127 epigenomes from the 118 

ROADMAP project. The state of chromatin is annotated for each 200bp bin in a specific cell 119 

type. RNA-seq data of TFs across 56 cell types were download and extracted from the 120 

ROADMAP6 project (Supplementary table S10 and S11). Subsequently, we mapped the 711 121 

transcription factors to the downloaded RNA-seq data, resulting in the identification of RNA-122 

seq data for 642 transcription factors. In the subsequent experiments, we utilized the 123 

expression data of these 642 transcription factors. We finally calculated the normalized TPM 124 

values of the 642 TFs on 56 cell types we extracted for the using in the classification model. 125 

For coarse grain chromatin state prediction, we took the state 'Quies' as low signal regions 126 

and other states as signal regions. For fine grain chromatin state prediction, we extracted the 127 

state 'TssA', 'TssAFInk', 'TssBiv' and 'BivFInk' as TSS regions, state 'EnhG', 'Enh' and 'EnhBiv' 128 

as enhancer regions, 'Quies' as low signal regions and other state as other regions. To balance 129 

the number of different chromatin states, we downsampled the low signal regions and obtained 130 

921,074 bin each cell line finally. 131 
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Supplementary Figures 132 

Fig. S1 133 

 

 

Fig. S1. Three data partitioning strategies for model training and testing. a, Cross 134 

genomic region prediction. The training and testing datasets utilized the expression profiles of 135 

identical cell types, but were evaluated on novel genomic regions for prediction. b, Cross cell 136 

type prediction. The training and testing datasets utilized the same genomic regions, but were 137 

evaluated on novel cell types for prediction. c, Cross genomic region and cell type prediction. 138 

The cell types and genomic regions used in the training and test sets were both different. 139 

140 
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Fig. S2 141 

  

 

Fig S2. Model architecture of EpiGePT for multiple epigenomic signals prediction. a, 142 

The computational process of EpiGePT. The sequence module employs a stack of five 143 

convolutional layers followed by pooling operations, resulting in representations that capture 144 

sequence patterns. The TF module integrates motif binding information and gene expression 145 

data to represent cell-specific information. The Transformer module takes the genomic bin 146 
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sequences mentioned above as input and learns the interaction relationships between bins, 147 

capturing the interactions among them. Finally, the obtained embeddings are mapped to the 148 

eight types of epigenomic signals through a fully connected layer. b, Specific details of the 149 

convolutional block involve the fusion of 1D convolution, ReLU activation function, and max 150 

pooling operation to achieve changes in the feature dimension O and extract bin-level features. 151 
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Fig. S3 152 

  

 

Fig. S3. EpiGePT's performance in predicting DNase-seq and other epigenetic signals 153 

is demonstrated in a, through visualization of predicted results for DNase and CTCF signals. 154 

EpiGePT is able to make accurate predictions for these signals, as well as for the regulatory 155 
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relationships within a genomic region of 20th chromosome ranging from 61,100,000 to 156 

61,150,000. b, EpiGePT and baseline methods were compared for their performance in 157 

predicting epigenetic signals in new cell types and genomic regions (cross-both prediction). 158 

The left panel shows the Pearson correlation coefficient, and the right panel shows the 159 

Spearman correlation coefficient. c, Locus level prediction of DNase signal. We predicted a 160 

value for each genomic locus, and calculated the correlation coefficient between the predicted 161 

values and true values for the same locus in different cell types. d, Visualization of predicted 162 

signals, such as the comparison between predicted and true values in a 128kbp region (from 163 

133,632,000 to 133,760,000) on chromosome 12, shows that the presence of a large number 164 

of zeros in both the true and predicted signals can limit the correlation between the two signals. 165 

e, Comparison of EpiGePT and Enformer performance. Each point in the scatter plot 166 

represents the performance of Enformer on the data of a specific cell type (x-axis) compared 167 

to the performance of EpiGePT (y-axis). The three graphs represent the prediction of 168 

continuous DNase signals (spearman correlation coefficient). 169 
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Fig. S4 170 

 

 

Fig. S4. Performance of EpiGePT and baseline methods on chromatin states 171 

classification, multiple epigenomic profiles prediction and causal variants 172 

classification. a, Binary classification of chromatin states for distinguishing functional regions 173 

on the chromatin based on the annotation data from ChromHMM-15-states. b, Four-class 174 

chromatin state classification is used to distinguish functional regions on the chromatin, 175 

including TSS, potential enhancers, other functional regions, and non-functional regions 176 

based on the annotation data from ChromHMM-15-states. *** indicates that the p-value is less 177 

than 1e-3 under one-sided Wilcoxon signed rank test. c, Cross-cell-type prediction of 8 178 

epigenomic signals at 8 test cell types. Each dot denotes the Pearson correlation coefficient 179 

of the predicted signals and true signals at the specific cell types on a specific epigenomic 180 

signal. d, The performance of EpiGePT and Enformer in discriminating causal eQTLs across 181 
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48 tissues, each dot representing the average auPRC obtained from 5-fold cross-validation 182 

on a specific tissue. 183 
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Fig. S5 184 

 

 

Fig. S5. Ablation analysis of the EpiGePT model. a, Ablation analysis on the TF module 185 

and the Sequence module, we observed a decrease in predictive performance for each 186 

module across eight chromatin epigenetic signals, as evidenced by a reduction in Pearson 187 

correlation coefficient. b, Ablation analysis on the Multi-task module. The green shaded area 188 

in the figure represents the results of multi-signal cross-cell-type predictions, while the red 189 

shaded area represents the results of training and predicting on each signal individually. It can 190 

be observed that the multi-task module has a positive effect on the model performance across 191 

all signals. c, Ablation analysis of the number of the training cell types. When the number of 192 



 17 

training cell types increases while the number of testing cell types remains constant, there is 193 

an increasing trend in performance as the number of training cell types increases. 194 
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Fig. S6 195 

  196 

Fig. S6. Performance of EpiGePT in cross-cell-type prediction. a, The predictive 197 

performance of EpiGePT on 8 unseen cell types on hg19 reference genome (pearson 198 

correlation coefficients). b, The predictive performance of EpiGePT on 19 new cell types on 199 

hg38 reference genome (upper: pearson correlation coefficients, lower: Spearman correlation 200 

coefficients). 201 

202 
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Fig. S7 203 

  

 

Fig. S7. The performance (auROC) of attention score of EpiGePT in distinguishing 204 

regulatory element-gene pairs at different distance ranges. a, The performance of 205 

EpiGePT in distinguishing enhancer-gene pairs at different distance ranges on the data from 206 

Gasperini et al7. b, The performance of EpiGePT in distinguishing enhancer-gene pairs at 207 

different distance ranges on the data from Fulco et al8. c, The performance of EpiGePT in 208 

distinguishing silencer-promoter pairs at different distance ranges on the data from 209 

SilencerDB9. d, The performance (auROC and auPR) of attention score of EpiGePT in 210 

distinguishing HiChIP loops of H3K27ac at different distance ranges on K562 cell line. 211 
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Fig. S8 212 

  213 

 214 

Fig. S8. Incorporating 3D genomic information from HiChip data enhances the 215 

predictive performance of EpiGePT on E-P regulatory interaction on K562 cell line. a, 216 

The distance distribution between the two anchors of the filtered loops on the K562 cell line. 217 

b, The performance (auROC) of self-attention scores of EpiGePT and EpiGePT-3D in 218 

identifying enhancer-promoter interactions across different distance ranges on the K562 cell 219 

type. 220 
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Fig. S9 221 

 

 

Fig. S9. The fine-tuning performance of the EpiGePT model on predicting potential 222 

enhancer-promoter regulatory networks. a, The performance (measured by auROC and 223 

auPRC) of the fine-tuned EpiGePT model and baseline methods (DeepTACT and Kmer) on 224 

HiChIP loops data in distinguishing enhancer-gene pairs at various distance ranges (0-20 kbp, 225 

20-40 kbp and 40-64 kbp). b, The performance of the fine-tuned EpiGePT model and baseline 226 

methods on HiChIP loops data in distinguishing enhancer-gene pairs under 1:2 positive-227 

negative sample ratio on GM12878 cell line. c, The performance of the fine-tuned EpiGePT 228 

model and baseline methods on HiChIP loops data in distinguishing enhancer-gene pairs 229 

under 1:2 positive-negative sample ratio on K562 cell line.  230 
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Fig. S10 231 

 232 

 233 
Fig. S10. The ROC and PR curves of the EpiGePT model on predicting potential 234 

enhancer-promoter regulatory networks. a, The ROC and PR curves of EpiGePT and 235 

baseline methods for predicting HiChIP loops from the GM12878 cell line (0-20 kbp). b, The 236 

ROC and PR curves of EpiGePT and baseline methods for predicting HiChIP loops from the 237 
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GM12878 cell line (20-40 kbp). c, The ROC and PR curves of EpiGePT and baseline methods 238 

for predicting HiChIP loops from the GM12878 cell line (40-64 kbp). 239 
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Fig. S11 240 

 241 

Fig. S11. The GIS of ChIP-seq overlapped bins versus non-overlapped bins of POU5F1 242 

centered at the TSS of ESRRB. a, Heatmap of TF ranks across 128 kbp region surrounding 243 

the TSS of ESRRB gene, each row denotes an epigenomic signal and each column denotes 244 

a TF. b, Distribution of non-zero GIS values on overlapped and non-overlapped bins in chip-245 

seq data (ENCFF696NWL). 246 
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Fig. S12 247 

 248 

 249 

Fig. S12. Gene ontology enrichment analysis based on the top 5% TFs with high 250 

expression in ESCs. The results showed lower significance for biological processes 251 

associated with embryonic cell development compared with GO terms enriched with the top 252 

5% ranked TFs. 253 
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Fig. S13 254 

 

Fig. S13. Case application of the EpiGePT-online. Users can choose either single locus 255 

annotation or multi-region annotation on EpiGePT-online, and each genomic region requires 256 

a length of 128kbp. Users need to upload the TPM values of transcription factors expression 257 

simultaneously. After annotation, users can enter the result page and download the predicted 258 

files. The predictions are provided at the resolution of 128bp genomic bins, and users can 259 

obtain the predicted signals for these eight epigenomic profiles. Additionally, users have the 260 

option to download the prediction results in CSV format for further analysis and exploration. 261 
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Fig. S14 262 

 263 

Fig. S14 Enrichment result (Cellular component and Molecular function) of the nearest 264 

genes of the COVID-19 associated SNPs with the low LOS.265 
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Supplementary Tables 

Table S1. The information of DNase-seq bam file across 129 biosamples from the ENCODE10 project. 

Table S2. The information of RNA-seq tab-separated values (tsv) file across 129 biosamples from the ENCODE10 project. 

Table S3. The information of DNase-seq, CTCF and other six Histone markers bam file across 28 cell lines or tissues from the ENCODE10 project 

(hg19). 

Table S4. The information of DNase-seq, CTCF and other six Histone markers bam file across 105 cell lines or tissues from the ENCODE10 

project (hg38). 

Table S5. The information of RNA-seq tab-separated values (tsv) file across 28 cell lines or tissues from the ENCODE10 project (hg19). 

Table S6. The information of RNA-seq tab-separated values (tsv) file across 105 cell lines or tissues from the ENCODE10 project (hg38). 

Table S7. The preprocessed expression data of 711 human transcription factors from the ENCODE10 project across 129 biosamples. 

Table S8. The preprocessed expression data of 711 human transcription factors from the ENCODE10 project across 28 cell lines or tissues (hg19). 

Table S9. The preprocessed expression data of 711 human transcription factors from the ENCODE10 project across 105 cell lines or tissues 

(hg38). 

Table S10. The order and names of epigenomes of the expression matrices across 56 epigenomes from the ROADMAP6 project. 

Table S11. The preprocessed expression data of 642 human transcription factors across 56 epigenomes from the ROADMAP6 project. 
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