1 SUPPLEMENTARY INFORMATION

- 2 Supplementary Figure 1. HLA and TNB between homozygotes and heterozygotes.
- 3 Supplementary Figure 2. Distribution of HLA-I divergence, TNB, and log10(TNB+1).
- 4 Supplementary Figure 3. Distribution of HLA-I Antigen Presentation Score (HAPS) values in

5 each cohort.

- 6 Supplementary Figure 4. Median value of the HLA-I Antigen Presentation Score (HAPS) in all
- 7 immune checkpoint inhibitor (ICI)-treated patients.
- 8 Supplementary Figure 5. In vitro validation of functional T cells stimulated by predicted

9 neoantigens.

- 10 Supplementary Figure 6. Efficacy of the HLA-I Antigen Presentation Score (HAPS) in
- 11 predicting overall survival (OS) with immune checkpoint inhibitors (ICIs) in each cohort.
- 12 Supplementary Figure 7. Comparison of predictive value of HLA-I Antigen Presentation Score
- 13 (HAPS) based on NetMHCpan4.0 and NetMHCpan4.1
- 14 Supplementary Figure 8. Single Cox regression analysis in ICI-treated patients.
- 15 Supplementary Figure 9. Correlation of TNB & HAPS with tumor stage.
- 16 Supplementary Figure 10. Efficacy of the HLA-I Antigen Presentation Score (HAPS) compared
- 17 with TNB and HLA divergence in predicting overall survival (OS) with immune checkpoint
- 18 inhibitors (ICIs) in NSCLC and SKCM

- 19 Supplementary Figure 11. Relationship between HLA-I Antigen Presentation Score (HAPS) and
- 20 treatment response.
- 21 Supplementary Figure 12. Relationship between HLA-I Antigen Presentation Score (HAPS) and
- 22 tumor mutation burden/programmed death ligand 1 (TMB/PD-L1).
- Supplementary Figure 13. TMB/TNB based on the gene panel and whole-exome sequencing
 (WES).
- 25 Supplementary Figure 14. Patients stratified according to loss of heterozygosity (LOH) and
- 26 HLA-I Antigen Presentation Score (HAPS) in each cohort.
- 27 Supplementary Figure 15. Immune cell subsets analyzed via single-sample gene set enrichment
- 28 analysis (ssGSEA) based on RNA-seq data
- 29 Supplementary Figure 16. Relationship between HLA-I Antigen Presentation Score (HAPS) and
- 30 dynamic evolution of the TCR repertoire.
- 31 Supplementary Figure 17. Varied predictive values of nine factors for individual patient.
- 32 Supplementary Figure 18. The architecture of the neural network model.
- 33 Supplementary Figure 19. Clinical responses of individuals predicted by a neural network model.

35 Het, heterozygotes. Hom, homozygotes. WES, whole-exome sequencing. ICI, immune checkpoint inhibitors.

36 Supplementary Figure 1. TNB between homozygotes and heterozygotes

- 37 Left: Distribution of TNB for each *HLA* genotype (left) and log10(TNB+1) (right) between
- 38 homozygotes and heterozygotes across all patients (N=1,125) (10 immune checkpoint inhibitor-
- 39 treated cohorts and The Cancer Genome Atlas database, respectively). Source data are provided
- 40 as a Source Data file.

- 43 Distribution of HLA-I divergence, TNB, and log10(TNB+1) among HLA genotypes in the
- 44 training set (N=64). Source data are provided as a Source Data file.

45

46 Supplementary Figure 3. Distribution of *HLA-I* Antigen Presentation Score (HAPS) values

47 in each cohort

- 48 Distribution of HAPS among *HLA* genotypes in 12 cohorts with whole-exome sequencing data
- 49 (N=1125). Source data are provided as a Source Data file.

51 Supplementary Figure 4. Median value of the *HLA-I* Antigen Presentation Score (HAPS) in

52 all immune checkpoint inhibitor (ICI)-treated patients

- 53 Distribution and median value of the HAPS in ICI-treated patients (N=792). Source data are
- 54 provided as a Source Data file.

56	Supplementary Figure 5. In vitro validation of functional T cells stimulated by predicted				
57	neoantigens				
58	A. Gating strategies for 4-1BB on CD8+ lymphocytes. B. Flow cytometry analysis for the				
59	expression of 4-1BB on CD8+ lymphocytes after co-culture with predicted neoantigens or wild-				
60	type counterparts in patients with high (upper) and low HAPS (lower). C. Proportion of predicted				

- 61 neoantigens leading to up-regulation of 4-1BB on CD8+ T cells in different groups. D. Higher
- 62 activation of 4-1BB on CD8+ lymphocytes stimulated by predicted neoantigens in the high
- 63 HAPS group than in the low HAPS group.

65

66 Supplementary Figure 6. Efficacy of the HLA-I Antigen Presentation Score (HAPS)

68 checkpoint inhibitors (ICIs) in each cohort

- 69 Association of high HAPS (A), HLA divergence (B), and TNB (C) with OS after receiving ICIs
- 70 in 12 cohorts with whole-exome sequencing data. Source data are provided as a Source Data file.

72 Supplementary Figure 7. Comparison of predictive value of HLA-I Antigen Presentation

73 Score (HAPS) based on NetMHCpan4.0 and NetMHCpan4.1

- 74 Overall survival of immune checkpoint inhibitor (ICI) stratified by HAPS based on IC50
- 75 (NetMHCpan4.0) (A) and rank 1% (NetMHCpan4.1) (B). Source data are provided as a Source
- 76 Data file.

Single Cox Analysis	Pvalue	HR	95%CI	
TMB >14 VS <=14	2.14E-01	0.71	[0.42,1.22]	
PDL1 >=1% VS <1%	5.88E-01	0.89	[0.58,1.37]	⊢ ∎I
Stage IV VS III	1.95E-01	1.14	[0.93,1.39]	F • -4
Age >65 VS <=65	3.25E-01	0.85	[0.62,1.17]	⊢ ∎–-1
Gender Male VS Female	2.20E-01	0.88	[0.72,1.08]	⊢ ∎-4
HLA Divergence	4.16E-01	0.98	[0.94,1.03]	•
TNB	7.90E-03	1.00	[1.00,1.00]	•
HAPS High VS Low	2.27E-04	0.69	[0.57,0.84]	H
				0.35 0.50 0.71 1.0 1.41

78 Supplementary Figure 8. Single Cox regression analysis in ICI-treated patients

79 The single Cox regression analysis of tumor mutation burden, programmed death ligand 1, age,

- 80 gender, HLA divergence, TNB, and *HLA-I* Antigen Presentation Score in ICI-treated patients
- 81 (N=717). Source data are provided as a Source Data file.

⁸⁴ A. Distribution of tumor stage in ICI and TCGA cohort (N=779). C. Distribution of TNB

- 86 (cohort); C. Distribution of HAPS according to tumor stage in TCGA (left) or ICI (cohort).
- 87 Source data are provided as a Source Data file.

⁸⁵ according to tumor stage; B. Distribution of TNB according to tumor stage in TCGA (left) or ICI

90 compared with TNB and HLA divergence in predicting overall survival (OS) with immune

- 91 checkpoint inhibitors (ICIs) in NSCLC and SKCM
- 92 Association of high HAPS (A), HLA divergence (B), and TNB (C) with OS after receiving ICIs
- 93 in NSCLC and SKCM. Source data are provided as a Source Data file.

95 Supplementary Figure 11. Relationship between *HLA-I* Antigen Presentation Score

96 (HAPS) and treatment response

- 97 Statistically significant differences in response rate between high and low HAPS subgroups
- 98 (N=562). Source data are provided as a Source Data file.

100 Supplementary Figure 12. Relationship between *HLA-I* Antigen Presentation Score

101 (HAPS) and tumor mutation burden/programmed death ligand 1 (TMB/PD-L1)

- 102 Relationship between HAPS and TMB (left)/PD-L1(right) (N=1125). Source data are provided
- 103 as a Source Data file.

105 Supplementary Figure 13. TMB/TNB based on the gene panel and whole-exome

107 Left: the relationship between panel- and WES-based TMB. Right: the relationship between

108 panel- and WES- based TNB (N=1125). Source data are provided as a Source Data file.

111 HLA-I Antigen Presentation Score (HAPS) in each cohort

- 112 Differences in overall survival between high and low HAPS in all patients (left), patients with
- 113 intact HLA (middle), and patients with HLA-LOH (right) in eight cohorts. Source data are
- 114 provided as a Source Data file.

116 Supplementary Figure 15. Immune cell subsets analyzed via single-sample gene set

117 enrichment analysis (ssGSEA) based on RNA-seq data

118 Differences in specific immune cell subsets between high and low HAPS among all lung

- adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and skin cutaneous melanoma
- 120 (SKCM) patients with RNA-seq data, respectively. Heatmap of specific immune cell subsets
- among all LUAD, LUSC, and SKCM patients with RNA-seq data (N=455). Source data are
- 122 provided as a Source Data file.

124 Supplementary Figure 16. Relationship between *HLA-I* Antigen Presentation Score

125 (HAPS) and dynamic evolution of the TCR repertoire.

- 126 This analysis is based on patients from the Wang-Blood cohort. (A) Individual changes in
- 127 diversity and clonality pre- and post-treatment. (B-C) Number of T cell receptor (TCR) clone
- 128 reads pre- and post-treatment in the high and low HAPS groups. Source data are provided as a
- 129 Source Data file.

131 Supplementary Figure 17. Varied predictive values of nine factors for individual patient.

132 Each colored trajectory corresponds to a distinct patient, and the dots along this trajectory denote

133 the relative influence of each factor on the therapeutic response of that particular patient. Source

134 data are provided as a Source Data file.

136 Supplementary Figure 18. The architecture of the neural network model.

138 Supplementary Figure 19. Clinical responses of individuals predicted by a neural network

- 139 **model**
- 140 Swimming map exhibiting overall survival/progression-free survival months and progressive
- 141 disease/partial response/stable disease responses pre- and post-treatment in the Wang-Tissue and
- 142 Wang-Blood cohorts. Source data are provided as a Source Data file.