SUPPLEMENTAL DATA

Impairments of cerebellar structure and function in a zebrafish KO of neuropsychiatric risk gene *znf536*

Tae-Yoon Kim^{1,5}, Arkaprava Roychaudhury^{1,5}, Hyun-Taek Kim^{2,5}, Tae-Ik Choi¹, Seung Tae Baek³, Summer B. Thyme^{4,6}, and Cheol-Hee Kim^{1,6}

Gene	Forward primer (5' – 3')	Reverse primer (5′ – 3′)	Transcript Source
aldoca	AGAACTCGGATGATGGCGTC	GGTTTGACGGGGTAGTCTCG	ENSDART0000080377.6
c-fos	GACAGGATGATGTTTACCAGCCTT	CCTCCTCACTCTTTGAGATTCCAC	NM_205569.1
ca8	GTGGGGCTCAACCCAAACTA	CCTCCTCCACGCTGTTGAAT	ENSDART00000140012.1
crhb	ACAGACGCGCCGCGCAAAGT	GGCTGATGGGTTCGCTTGTGGT	NM_001007379.1
gad1b	CTCTAGAGATGCGGGAGATC	TTACAGATCCTGACCGAGCC	NM_194419.1
grik2	CAGAATCAGCAACATGTTGGGATT TGTCTC	ACAGAGCCAAATCACTTCACTCTT CTGCAC	XM_001923942.6
pvalb7	AACGTGACTCGACGACCAAG	AGACAGAGCCTTCAGTCCCA	ENSDART00000131386.3
th1	AAACCAGACCCAGCCGAAAA	AGCCGCAATGTTTCTCCAGT	ENSDART00000040410
th2	GGAGCCTTTACCCCAGTCAC	GTCCAGCCCCATAAGCCTTT	ENSDART00000162572
znf536	GGTGTATCCTCGGTGGTCTC	AGGGATATTTGCGGTTCTTGC	ENSDART00000170390.3

Table S1. Primers used to generate the RNA probes used in this study.

Fig. S1 Ricopili Plot displays the common variant (GWAS) association of *ZNF536* **as a candidate risk factor for schizophrenia.** The two-sided P values of each SNP from the GWAS meta-analysis are shown along the y axis. The color of each dot corresponds to the linkage disequilibrium with the index SNP, and the properties of the index SNP are displayed [1].

Fig. S2 Spatiotemporal expression of *znf536* mRNA in zebrafish nervous system. A *znf536* expression is first detected ventral forebrain and expands to various brain regions, including the midbrain, hindbrain, and spinal cord. B *znf536* expression in an isolated adult brain, showing expression in specific brain regions. Dorsal and lateral view; anterior is to the left. CCe, corpus cerebellum; Dm, medial zone of the dorsal telencephalic area; Dp, posterior zone of the dorsal telencephalic area; f, forebrain; h, hindbrain; Hyp, hypothalamus; LCa, Lobus caudalis; m, midbrain; MO, medulla oblongata; PGZ, periventricular gray zone; PPa, parvocellular preoptic area (anterior part); PPp, parvocellular preoptic area. Scale bar: 200 μm (A), 500 μm (B).

Fig. S3 Comparison of *znf536* mRNA expression between *znf536* KO and WT zebrafish adult brain. Lateral view; anterior is to the left. n = 2 for WT and n = 2 for KO zebrafish. Scale bar: 500 μ m.

Fig. S4 Acoustic startle response assay in *znf536* **KO zebrafish. A** Experimental setup for the assay in adult zebrafish. The ratios of distance moved (D) before/after stimulus (post/pre) were grouped into three groups; "Excited", "No response", and "Inhibited". **B**,**C** Pairwise comparison of the distance moved. Red lines, Excited; black, No response; and blue, Inhibited. n = 25 for WT and n = 25 for KO zebrafish. Statistical significance was determined by Wilcoxon signed-rank test (one-tailed). ns, no significance; p**<0.01. **D**,**E** Distance moved before/after the first startle stimulus. The distance moved was measured every second before and after the stimulus.

Fig. S5 Histological analysis of adult brains (6 mpf). A Representative brain images at matched sections between wild type (WT1, WT2) and *znf536* KO (KO1, KO2, KO3) zebrafish. Male sibling fish were used for this comparison. Scale bar: 500 μ m. **B** Quantified data for percentage of Va area between WT and KO. Percentage of Va area was measured by ImageJ analysis; Va area (A') versus total brain area (B'). n = 3 for WT and n = 4 for KO. Data was presented as mean ± standard error of the mean (S.E.M.). Statistical significance was determined by Mann-Whitney test (one-tailed). p*<0.05.

Fig. S6 Additional replicates of neuronal and Purkinje cell markers, related to Figure 6. A Additional replicates of *c-fos* expression after novel tank assay. Arrowheads indicate cerebellum. **B** Additional replicates of Purkinje cell markers, *pvalb7*, *ca8* and *aldoca*. Scale bar: 500 µm.

Fig. S7 Decreased expression of neural markers in the cerebellum of *znf536* KO zebrafish at 6 dpf. Detection of specific neuronal types in the developing valvular cerebelli (Va, arrowheads) at 6 dpf of the previously published *znf536*^{a211} KO line, stained with anti-Znp-1 (1/500, znp-1-s, DSHB, Iowa, USA), anti-PSD-95 (1/75, K28/86-S, DSHB, Iowa, USA), or anti-Pvalb (1/500, gift from Dr. Masahiko Hibi) antibodies, respectively. Top panel: a representative animal and selected region of the cerebellum (boxed) from multiple animals in bottom panels. Dorsal views with anterior to the left. f, forebrain; h, hindbrain; m, midbrain; Va, Valvular cerebelli. Whole-mount staining was conducted by standard methods, and the stacks were registered to the Z-Brain standard reference brain using a total-Erk stain (1/500, Cell Signaling CAT#4696) [2]. Dorsal views with anterior to the top. The Pvalb is shown as a maximum intensity projection of slices 90-95 of the 138-slice Z-Brain, while the other two stains are slice 106. Four example fish are shown. Pvalb: n = 6 KO, 6 WT; PSD-95: n = 16 KO, 12 WT; Znp-1: n = 15 KO, 13 WT.

Fig. S8 Decreased expression of neural markers in the cerebellum of adult *znf536* **KO zebrafish.** Expression of GABAergic neuronal marker (*gad1b*) and Bergmann glia marker (*grik2*) in the adult brain. Dorsal views with anterior to the left. Cerebellum is indicated by arrow. *gad1b*: n = 3 for WT and n = 3 for KO; *grik2*: n = 3 for WT and n = 3 for KO. Scale bar: 500 µm.

Fig. S9 Expression of dopaminergic neuronal markers (*th***1**, *th***2) and stress hormone marker (***crhb***) in KO zebrafish brain.** LR, lateral recess of diencephalic ventricle; PPp, parvocellular preoptic nucleus, posterior part; PR, posterior recess of diencephalic ventricle; PTN, posterior tuberal nucleus. Scale bar: 500 μm.

Fig. S10 Confocal microscopy images after tissue clearing. A,**A'** Maximum intensity projection of adult brain isolated from WT and KO zebrafish crossed with Tg[mbp:mgfp]. **B**,**B'** A single z-plane for visualizing the valvular cerebelli and the corpus cerebelli. n = 2 for WT and n = 2 for KO. CCe. corpus cerebelli; f, forebrain; OB, olfactory bulb; TeO, optic tectum; Va, valvular cerebelli; II, optic nerve; VIII, auditory/octaval nerve. Scale bar: 500 µm.

Fig. S11 Anatomical analysis of Va myelin tracts in comparison with zebrafish brain atlas. A,B Whole brain stained with a pan-neuronal marker HuC. Images were obtained from the adult zebrafish brain atlas [3]. **C-E** Myelin tracts in WT adult brain of *Tg[mbp:mgfp]* line. Asterisk indicates a unique structure within the Va region. "N" indicates the nucleus lateralis valvulae (NLV) region, which serves as an anatomical landmark. **A,C** Horizontal optical section. Anterior is to the left. **B,D** Coronal section. Dorsal is to the top. **E** Sagittal section. Anterior is to the left. **F** Enlargement of inlet in **C**, showing a vortex-like organization of myelin bundles with a small hole in the center (arrow).

REFERENCES

- 1 Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022 Apr 21;604(7906):502-8.
- 2 Randlett O, Wee CL, Naumann EA, Nnaemeka O, Schoppik D, Fitzgerald JE, et al. Whole-brain activity mapping onto a zebrafish brain atlas. Nat Methods. 2015 Nov;12(11):1039-46.
- 3 Kenney JW, Steadman PE, Young O, Shi MT, Polanco M, Dubaishi S, et al. A 3D adult zebrafish brain atlas (AZBA) for the digital age. Elife. 2021 Nov 22;10:e69988.