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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
Summary: The authors present an analysis of the ecological niche of West Nile virus (WNV) in 
Europe and track changes in WNV suitability under historic climate projections. A state-of-the-art 
niche modeling approach (boosted regression trees) is used to associate climatic and land cover 
variables with the occurrence of human WNV cases as reported in The European Surveillance 
System (TESSy) database of the ECDC. The main research question addressed by this paper is to 
which extent the recent emergence of WNV in Europe can be attributed to climate change. The 
authors tackle an interesting and relevant research question. Overall, the work offers interesting 
insights into the climatic and land use drivers of WNV in Europe (most of which are known from 
previous literature), provides evidence for impact attribution, and uses advanced and robust 
methods. Given extensive previously published work on WNV ecological niche mapping already 
published (1,2) with similar and alternative methods as well as historical and future projections of 
WNV risk in Europe based on these (see below), the work does only provide minor novel insights 
and evidence for the field. 
 
Main Strength: The authors use recently published historical and counterfactual climate datasets 
provided through ISMIP. A strength of the study is that they provide a direct comparison between 
model projections under the historical vs “no climate change” counterfactual scenarios. Moreover, 
the use and presentation of their results under 4 different climate models gives a good indication 
of sensitivity of their results to uncertainty in the climate datasets. The analysis of relative 
importance of different predictors, which is essential when using “black-box”-type machine 
learning models, is well presented. 
 
Major Weakness: The added value and novelty of the study is not clear given other groups have 
previously published ecological niche modeling studies for WNV in Europe describing similar 
patterns and presenting similar findings (1). The most recent European Lancet Countdown report 
also uses the model by Farooq et al. to project historical trends in WNV risk for Europe (2). 
Although the Lancet Countdown indicator does not the climate change pre-industrial control 
counterfactual modelled scenarios in the previous work, it still provides a strong indication of to 
which extent changes in WNV risk can be attributed to climate change. The present work supports 
previous findings by approaching the topic from a slightly different angle but does not lead to 
major novel insights. Most of the relationships derived from the analysis of importance of the 
different predictors are known from previous studies in and outside of Europe. Although the new 
study provides some slightly alternative ranking of variable importance (such as highlighting the 
importance of humidity and summer vs spring temperatures (see Line 228-230) that further refine 
knowledge about the ecological niche of WNV in Europe. 
 
[1] Farooq, Z., Rocklöv, J., Wallin, J., Abiri, N., Sewe, M. O., Sjödin, H., & Semenza, J. C. (2022). 
Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers. The Lancet 
Regional Health–Europe, 17. 
 
[2] van Daalen, K. R., Romanello, M., Rocklöv, J., Semenza, J. C., Tonne, C., Markandya, A., ... & 
Lowe, R. (2022). The 2022 Europe report of the Lancet Countdown on health and climate change: 
towards a climate resilient future. The Lancet Public Health, 7(11), e942-e965. 
 
 
Minor comments: 
 
• I am wondering how hyperparameter tuning was done since it is not reported in the text. 
Boosted regression trees come with several hyperparameters that need to be adjusted to construct 
a model with good performance. Usually this is done by either evaluating the performance of the 
model for different hyperparameter settings on a separate validation set or by using cross-
validation, whereas evaluation of the final model performance is done on a separate out-of-sample 
test dataset (which should not be seen by the model during training or during validation). Here the 
authors construct ten different tree models using cross-validation for evaluating the performance 
of their tree model. The important topic of hyperparameter tuning and evaluation of their model on 



a separate test dataset is missing. 
• The manuscript is missing an explanation for why GSWP3-W5E5 was chosen as a reference 
climate dataset. What makes this climate model a reasonable choice for reporting/visualization 
results in the main text compared to the other three which are mainly reported in the 
supplementary material? 
• The discussion on the relationship between avian diversity and WNV risk (Line 87-90) does not 
reflect the complete state of evidence. The authors suggest the presence of a dilution effect based 
on one reference. However, WNV studies have detected both dilution and amplification effects 
potentially because WNV transmission potential depends on avian community composition. 
• When plotting the response curves shown in Figure S2, I suggest the authors to report how 
values for the other input variables of the tree models were set. Is the shape of the response 
curves sensitive to the values selected for the other variables? 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
The manuscript investigates the potential role of climate change on human WNV risk in Europe. 
They use BRT models on historical presence/absence data together with multiple environmental 
variables to then predict WNV ecological suitability based on climatic projections assuming CG or 
lack of (counterfactual). They found that the area ecologically suitable for WNV under a CG 
scenario (assumed current status) considerably increased during the last century compared to the 
no CG counterfactual. 
 
The manuscript is very topical and well presented with clear (and pretty) figures. My main 
comments are about the lack of clarity in the objective/rationale/novelty and the description of the 
methods, which raises questions over the conclusions. I detail these and other minor comments 
below. 
 
Main comments: 
 
Objective/motivation: The objective of the manuscript is not clear. Investigation of the contribution 
of CG to WNV emergence building on the IPCC framework (L103-111) is vague and confusing. In 
addition, ‘emergence’ seems to be used as a synonym to ‘risk’ or ‘spatial expansion’ as WNV has 
been in Europe for a while. What is the ISIMIP and the implications for WNV ecological suitability. 
How does the IPCC framework fit in all this? 
 
Also, the approach does not consider vectors (nor they are ever discussed) so the assumption is 
that the presence of human cases implies presence of vectors. I agree this is necessarily true for 
VBDs, my concern is that it also assumes a linear relationship between environmental conditions, 
mosquito abundance and risk, which we know that at least for mosquito abundance and risk is not 
true but the implications are not mentioned and lead to confusion about the objectives/conclusions 
of the manuscript. I may be convinced that for looking at human risk areas, mosquito abundance 
doesn't matter because what the approach is telling us is that there are certain conditions that 
predispose risk. The consequence is that the mechanisms of risk is a black box, meaning we might 
be able to understand the context of risk, but not the dynamics (as mentioned in L122) that create 
risk. 
 
The introduction doesn’t put the objectives in context. A big part of the approach/conclusion seem 
to be identifying the environmental drivers of human risk but they are exposed as a list of factors 
that have been linked to mosquitoes and does not clearly identify what is the knowledge 
gap/novelty of the manuscript nor how CG will might impact these that could have had an impact 
on human WNV. 
 
Finally, the broader implications of results/conclusions are not explained. Simply, why should we 
care that CG has been a driver of WNV. 
 
Methods. These are not detailed enough. I appreciate that there is no development of the ML 



algorithm (available tool in R). However, the explanatory variables and interactions among them 
should be clearly defined. What values were used for tree complexity, learning rate and how many 
trees? And were sensitivity analyses done on these? I’m assuming it was a Bernoulli BRT? How do 
you deal with temporal autocorrelation. What are the reanalysis datasets and how are these used? 
The human case data is from 2007 to 2019 but then predictions are done from climate data from 
1900? Generally, not clear how time was dealt with. Explain why model was trained on present day 
data. 
 
 
L252-253. I truly welcome the honesty! But doesn’t this mean that your model is not predicting 
accurately enough? Models like this are usually difficult to validate but cases are happening where 
your model doesn’t predict as suitable habitat. 
 
I’m guessing that case reporting rates was not accounted for? This is probably increasing over time 
with awareness/knowledge of WNV. Can this have implications for the results? 
 
Other suggestions: 
 
Abstract: The MS does not investigate other drivers of WNV change so saying that CG is a primary 
driver seems a bit of an overstatement. 
 
Figure 1: Is this training and testing data combined? 
 
L162. Could this be due to other reasons such as underreporting rates, changes in DDT use etc? 
L166: “climate change predominantly contributed” seems like a strong statement given that some 
plot so not show much difference and there are other potential factors. I have no doubts CG is 
accelerating risk but not sure results here are so strong. 
 
Fig.2. I may be misunderstanding this figure but if panel a is counterfactual (no CG), and the maps 
show suitability, higher suitability appears to be on counterfactual, which contradicts the rest of 
the results. 
 
L210-212. This should be discussed. 
 
L223-225. there's 15 years between these. Can we claim they are linked? 
 
L309: For absences, do you mean tested but not confirmed or all areas in Europe without a 
confirmed case were considered absences? All Europe is included, how does the choice of this 
absence area influence the results? E.g. if you took only southern countries? 
 
A discussion of the implication that CG is increasing WNV seems to be missing. 
 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors present evidence of the direct contribution of climate change to the emergence and 
increased prevalence of West Nile virus in Europe. At a high level, quantifying the impacts of 
climate change is a key next step in science to begin to mitigate these impacts. This is original and 
impactful, particularly in direct comparison to the counter-factual non-climate change scenario. 
While it is well known that environmental factors such as temperature impact individual drivers of 
WNV (e.g. extrinsic incubation period, changing vector distributions), it is relatively novel to 
quantify the direct impact on risk based on data under climate change and counter-factual 
scenarios. The methods are robust and standard, the authors include relative impacts of the 
drivers and multiple useful views of the output under different climate scenarios. 
 
A few questions and comments about the methods and presentation of the results: 
 



1. Please talk more about using Presence/Absence versus incidence data for WNV in the model. 
The model just uses presence/absence but the authors present incidence as well. It seems like a 
combination of both in an analysis could be powerful, for example potentially showing that both 
presence of the pathogen and the impact in terms of total cases are changing. (or connecting 
suitability with incidence??) 
 
2. It seems from my reading of the methods that the authors are assuming that places in Europe 
with no recorded cases are a pseudo-absence (WNV is likely under reported by quite a bit, and 
that under-reporting depends on the region, so is this biased?). How will considering under-
reporting change the results? How pseudo-absences are used can impact the accuracy of models, 
sometimes significantly so more discussion on this would be helpful. 
 
3. It would be helpful for the reader and probably more powerful in terms of communication to 
show the map of their algorithm’s predicted niche for WNV under the observed climate versus the 
actual cases/"Presence" data (and perhaps an accompanying error map) so we can visually see 
model's performance. Also, including an accuracy metric (ideally normalized) in addition to AUC 
would make this more comparable in the future to other studies of the same region or similar 
studies of other regions. 
 
4. It seems in the figures (e.g. Figure 2 a and 2 b) that the “counter factual” versus observed are 
mis-labeled. Either that or I’m completely missing the point since it looks like in row a, which is 
counter-factual with no climate change, the risk of WNV is higher by the end of the time period. 
 
5. page 2, line 38 I think "sanitary" is the wrong word 
 
6. Discussion, page 8, starting line 227, others have indeed seen that the factors that predict 
presence or overall incidence on a decadal scale are different from the factors that predict inter-
annual differences in incidence (Gorris, Morgan E., et al. "Assessing the influence of climate on the 
spatial pattern of West Nile virus incidence in the United States." Environmental Health 
Perspectives 131.4 (2023): 047016. Note, this is from a previous postdoc of mine) 
 



Reviewer 1 
 
Summary: The authors present an analysis of the ecological niche of West Nile virus (WNV) in Europe and 
track changes in WNV suitability under historic climate projections. A state-of-the-art niche modeling 
approach (boosted regression trees) is used to associate climatic and land cover variables with the 
occurrence of human WNV cases as reported in The European Surveillance System (TESSy) database of 
the ECDC. The main research question addressed by this paper is to which extent the recent emergence 
of WNV in Europe can be attributed to climate change. The authors tackle an interesting and relevant 
research question. Overall, the work offers interesting insights into the climatic and land use drivers of WNV 
in Europe (most of which are known from previous literature), provides evidence for impact attribution, and 
uses advanced and robust methods. Given extensive previously published work on WNV ecological niche 
mapping already published (1,2) with similar and alternative methods as well as historical and future 
projections of WNV risk in Europe based on these (see below), the work does only provide minor novel 
insights and evidence for the field.  
 
Main Strength: The authors use recently published historical and counterfactual climate datasets provided 
through ISMIP. A strength of the study is that they provide a direct comparison between model projections 
under the historical vs “no climate change” counterfactual scenarios. Moreover, the use and presentation 
of their results under 4 different climate models gives a good indication of sensitivity of their results to 
uncertainty in the climate datasets. The analysis of relative importance of different predictors, which is 
essential when using “black-box”-type machine learning models, is well presented.  
 
Major Weakness: The added value and novelty of the study is not clear given other groups have previously 
published ecological niche modeling studies for WNV in Europe describing similar patterns and presenting 
similar findings (1). The most recent European Lancet Countdown report also uses the model by Farooq et 
al. to project historical trends in WNV risk for Europe (2). Although the Lancet Countdown indicator does 
not the climate change pre-industrial control counterfactual modelled scenarios in the previous work, it still 
provides a strong indication of to which extent changes in WNV risk can be attributed to climate change. 
The present work supports previous findings by approaching the topic from a slightly different angle but 
does not lead to major novel insights. Most of the relationships derived from the analysis of importance of 
the different predictors are known from previous studies in and outside of Europe. Although the new study 
provides some slightly alternative ranking of variable importance (such as highlighting the importance of 
humidity and summer vs spring temperatures (see Line 228-230) that further refine knowledge about the 
ecological niche of WNV in Europe.  

[1] Farooq, Z., Rocklöv, J., Wallin, J., Abiri, N., Sewe, M. O., Sjödin, H., & Semenza, J. C. (2022). Artificial 
intelligence to predict West Nile virus outbreaks with eco-climatic drivers. The Lancet Regional Health–
Europe, 17. 

[2] van Daalen, K. R., Romanello, M., Rocklöv, J., Semenza, J. C., Tonne, C., Markandya, A., ... & Lowe, 
R. (2022). The 2022 Europe report of the Lancet Countdown on health and climate change: towards a 
climate resilient future. The Lancet Public Health, 7(11), e942-e965. 

Answer: We appreciate the feedback of the Reviewer and the opportunity to clarify within the manuscript 
the novelty and added value of our study, which provides, for the first time, unequivocally scientific evidence 
of climate change impacts on the spatial expansion of West Nile virus (WNV) in Europe. While we 
acknowledge the existence of previous ecological niche modelling studies dedicated to WNV in the 
continent, the critical distinction of our research lies in the formal attribution of climate change impacts to 
an infectious disease. To our knowledge, there is no existing literature formally attributing and evaluating 
the impacts of climate change to an infectious disease in Europe or elsewhere.  
 
While the Reviewer rightly mentioned the Lancet Countdown report's use of the model of Farooq and 
colleagues, it is essential to note that this indicator does not employ the climate change pre-industrial control 



counterfactual model scenarios, a fundamental component of our study. Consequently, it cannot provide 
an indication as to whether changes in WNV risk can be directly attributed to climate change. Farooq et al. 
(2022) do not provide an attribution of observed changes in the occurrence of WNV cases to historical 
changes in climate. In contrast, their study only quantifies the sensitivity of the outcome (number of cases) 
to variations in climate. According to the IPCC definition, their study would therefore count as an 
‘identification of weather sensitivity study’ but not as an ‘impact attribution study’ where ‘identification of 
weather sensitivity’ does not necessarily imply impact attribution.  
 
Attribution studies establish a quantitative comparison between the current state of a system, influenced by 
climate change, and a counterfactual baseline representing the system's condition in the absence of 
climate-related changes. This difference, i.e. the formally attributed impact of climate change, is the novel 
aspect of our research: it quantifies, for the first time, the extent to which climate change is responsible for 
variations in WNV risk. 
 
From the definition given in section 16.2.1 of chapter 16 of the WG2 contribution to the IPCC AR6: “Based 
on these general definitions and following the approach applied in WGII AR5 Chapter 18 (Cramer et al. 
2014), we define an observed impact as the difference between the observed state of a natural, human or 
managed system and a counterfactual baseline that characterises the system’s state in the absence of 
changes in the climate-related systems, defined here as climate system including the ocean and the 
cryosphere as physical or chemical systems. The difference between the observed and the 
counterfactual baseline state is considered the change in the natural, human or managed system 
that is attributed to the changes in the climate-related systems (impact attribution). The 
counterfactual baseline may be stationary or may change over time, for example due to direct human 
influences such as changes in land use patterns and agricultural or water management affecting exposure 
and vulnerability to climate-related hazards (see Section 16.2.3 for methods on how to construct 
the counterfactual baseline). [...] ‘Identification of weather sensitivity’ refers to the attribution of the 
response of a system to fluctuations in weather and short-term changes in the climate-related 
systems including individual extreme weather events (e.g., a heatwave or storm surge). Typical 
questions addressed include: ‘How much of the observed variability of crop yields is due to variations in 
weather conditions compared to contributions from management changes?’ (e.g., Ray et al. 2015, Müller 
et al. 2017) and ‘Can weather fluctuations explain part of the observed variability in annual national 
economic growth rates?’ (e.g., Burke et al. 2015). Identification of weather sensitivity may also address the 
effects of individual climate extremes, for example asking, ‘Was the observed outbreak of cholera triggered 
by an associated flood event?’ (e.g., Rinaldo et al. 2012, Moore et al. 2017b). [...] In this chapter, we 
explicitly distinguish between assessment statements related to ‘climate attribution’ (listed in Table 
SM16.21), ‘impact attribution’ (listed in Table SM16.22) and ‘identification of weather sensitivity’ (listed in 
Table SM16.23). The identification of ‘weather sensitivity’ does not necessarily imply that there also is an 
impact of long-term changes in the climate-related systems on the considered system.” 
 
Our study also includes the ‘identification of weather sensitivity’ step when building the empirical model 
testing the dependence of the WNV occurrence on seasonal air temperature, precipitation, and relative 
humidity. In this regard, our models are in fact comparable to models such as the one developed by Farooq 
and colleagues. However, knowing that these factors have a significant effect on WNV occurrence does 
only provide a hint that long-term climate changes may also have played a role in the long-term evolution 
of occurrences, it does not necessarily imply that observed long-term changes in occurrence are mainly 
attributed to long-term changes in climate. To this end, the effects of these long-term trends in climate have 
to be quantified and separated from the long-term effects of the other direct human influences such as land 
use and population changes. This requires forcing the model with the observed climate and a counterfactual 
climate where these long term changes have been removed. That has not been done in the study by Farooq 
et al. 2022 (that also is the main reference of van Daalen et al. 2022) or any other studies considered in the 
Lancet Countdown report. However, this step is critical as it turns out that an important part of the observed 



trend is also due to population changes (see trend in the counterfactual simulations shown in Figure 3). We 
have now made these different points more explicit in the Abstract, Introduction, and Results sections.        
 
In conclusion, the crux of our study's novelty and significance is the formal attribution of climate change 
impacts to WNV in Europe, a dimension hitherto unexplored in the literature. We believe that this innovative 
approach substantially contributes to the field of infectious disease epidemiology, climate change science, 
and public/one health. We appreciate your feedback and hope this response clarifies the unique 
contributions of our research. 
 
Minor comments: 

• I am wondering how hyperparameter tuning was done since it is not reported in the text. Boosted 
regression trees come with several hyperparameters that need to be adjusted to construct a model with 
good performance. Usually this is done by either evaluating the performance of the model for different 
hyperparameter settings on a separate validation set or by using cross-validation, whereas evaluation of 
the final model performance is done on a separate out-of-sample test dataset (which should not be seen 
by the model during training or during validation). Here the authors construct ten different tree models using 
cross-validation for evaluating the performance of their tree model. The important topic of hyperparameter 
tuning and evaluation of their model on a separate test dataset is missing. 

Answer: We appreciate your insightful comment and concur with your observation regarding the importance 
of tuning BRT parameters for optimal performance. During the initiation phase of our study, we conducted 
an exploration of the impact of tree complexity and learning rate parameters values on the predictive 
performance of our models, as measured by the area under the receiver operating characteristic curve 
(AUC), which led to the conclusion that the choice of these parameter values does not impact their 
predictive performance. 

In response to the Reviewer’s comment, we now report a sensitivity analysis performed following the 
methodology outlined by Elith et al. (2008, PMID: 18397250). Specifically, we systematically varied tree 
complexity [1, 5, 10] and learning rate [0.05, 0.01, 0.005, 0.001, 0.0005] parameter values across ten 
replicates, each time computing the predictive performance of the resulting BRT model (see the new Table 
S3). Our findings indicate that the AUC exhibits minimal variation. Consequently, we are confident that the 
values chosen for the BRT parameters in our study (a tree complexity of 5 and a learning rate of 0.005) are 
appropriate and that their choice does not impact the predictive performance of our ecological niche models. 
 
New Table S3. Sensitivity of the area under the receiving operator curve (AUC) support to the specification of the tree 
complexity and learning rate BRT parameters. For each combination of tested tree complexity and learning rate parameter values, 
we report the median AUC support [as well as the first and third quartiles] obtained across ten replicates based on the GSWP3-W5E5 
reanalysis dataset. 

Tree 
complexity 

Learning rate 
0.0005 0.001 0.005 0.01 0.05 

1 0.84 [0.84-0.85] 0.86 [0.86-0.87] 0.88 [0.87-0.88] 0.88 [0.88-0.89] 0.88 [0.88-0.89] 
5 0.89 [0.89-0.90] 0.90 [0.89-0.91] 0.90 [0.90-0.91] 0.90 [0.90-0.91] - 

10 0.91 [0.90-0.91] 0.91 [0.91-0.92] 0.91 [0.91-0.92] 0.91 [0.90-0.92] - 
 

• The manuscript is missing an explanation for why GSWP3-W5E5 was chosen as a reference climate 
dataset. What makes this climate model a reasonable choice for reporting/visualization results in the main 
text compared to the other three which are mainly reported in the supplementary material? 

Answer: We appreciate the insightful comment of the Reviewer on the previous lack of clarity regarding the 
emphasis put in our manuscript on GSWP3-W5E5 results. We now explicitly acknowledge and detail in the 
text that each of the four factual climate datasets considered in our study has its individual strengths and 
weaknesses. The rationale behind the choice to first emphasise results based on GSWP3-W5E5 is rooted 
in the alignment of this reanalysis dataset with real-world conditions, particularly for the years coinciding 
with the time window of WNV case data obtained from the ECDC and on which our ecological niche models 



were trained. W5E5 is considered the potentially closest approximation to reality as it is based on the latest 
version of the European Reanalysis (ERA5; Hersbach et al. 2020, doi: 10.1002/qj.3803) that was further 
corrected by observational data based on the WATCH Forcing Data methodology (Cucchi et al. 2020, doi: 
10.5194/essd-12-2097-2020). To generate the counterfactuals, i.e. to construct a dataset that described a 
counterfactual world without long-term changes in climate since 1901, the W5E5 data had to be expanded 
backwards in time. For this extension, we first used version 1.09 of the Global Soil Wetness Project phase 
3 (GSWP3) dataset (Kim 2017, doi: 10.20783/DIAS.501), bias-adjusted to W5E5 v2.0 in order to reduce 
discontinuities at the 1978-1979 transition (see Mengel et al. 2021, doi: 10.5194/gmd-14-5269-2021). As 
some variables in GSWP3 show discontinuities at every turn of the month that have been induced by the 
month-by-month bias adjustment applied in its creation (Rust et al. 2015, doi: 10.1175/JHM-D-14-0123.1), 
we additionally considered a backward-extension based on the Twentieth Century Reanalysis version 3 
(20CRv3; Slivinski et al. 2019, doi: 10.1002/qj.3598; 2021, doi: 10.1175/JCLI-D-20-0505.1), interpolated to 
0.5° and then bias-adjusted to W5E5 v2.0. Notably, 20CRv3-W5E5 data remain continuous at every turn 
of the month thanks to the application of ISIMIP3BASD v2.5 in running-window mode. Thus, the 20CRv3-
W5E5 reanalysis dataset can be considered an update of GSWP3-W5E5. 20CRv3-ERA5 has then been 
introduced to allow for testing the sensitivity of the results to potential trend and variability artefacts in W5E5 
that are related to the climatological infilling procedures used to deal with gaps in the station observations 
employed for the bias adjustment of ERA5 for the production of WFDE5 (for a detailed description of this 
caveat see https://data.isimip.org/caveats/20/). Finally, we have also considered the ‘raw’ 20CRv3 data 
interpolated to 0.5° but not bias-adjusted to any other dataset. This latter dataset had been included since 
it was generated with only one method and did not need to be combined with another dataset to fully cover 
the 20th century. Overall, considering all four reanalysis datasets (that have all been introduced in Mengel 
et al. 2021, doi: 10.5194/gmd-14-5269-2021) allows us to investigate the robustness of our findings to the 
choice of the reanalysis dataset. Those aspects are now explicitly clarified within the text. 
 
• The discussion on the relationship between avian diversity and WNV risk (Line 87-90) does not reflect the 
complete state of evidence. The authors suggest the presence of a dilution effect based on one reference. 
However, WNV studies have detected both dilution and amplification effects potentially because WNV 
transmission potential depends on avian community composition. 

Answer: We thank the Reviewer for their insightful comment, and we concur with the significance of 
incorporating discussion elements on both dilution and amplification effects. In accordance with the 
suggested enhancement, the related paragraph now reads as follows: “Biodiversity loss can also promote 
transmission patterns as decreases in host community diversity could increase the vector-host encounter 
rate [39,40]. For example, a negative correlation has been found between bird diversity and WNV infection 
in vectors, at the regional scale in Missouri, and in humans, at the national scale in the USA [41]. On the 
other hand, some evidence also supports the assertion that avian biodiversity loss can be a contributing 
factor to the decline in mosquito infection rates and avian seroprevalence in Atlanta (Georgia, USA) 42].” 
 
• When plotting the response curves shown in Figure S2, I suggest the authors to report how values for the 
other input variables of the tree models were set. Is the shape of the response curves sensitive to the values 
selected for the other variables? 

Answer: We thank the Reviewer for their comment. In the previous version of our manuscript and Figure 
S2 (now labelled S3), these response curves were obtained by computing the ecological suitability variation 
associated with one specific variable while all others were kept constant at their median values. To 
investigate the sensitivity of the response curves to the choice of fixing the other environmental variables 
at their median value, we have now also generated alternative response curves obtained when keeping the 
other environmental variables at their first and third quartile values (see the new Figure S3 below). Overall, 
while we detect an expected variation of the absolute predicted values (reported on the y-axes), our results 
clearly highlight that the response curve patterns remain globally unchanged across the three different 
procedures (i.e. fixing the other environmental variables at their median, first quartile or third quartile value). 



 

 
[New] Figure S3. Responses curves of the ecological niche modelling. For each environmental factor, we report the response 
curve of each of the ten replicate boosted regression tree (BRT) models trained on present-day data retrieved from the ISIMIP3a 
reanalysis dataset GSWP3-W5E5. These response curves indicate the relationship between the environmental values and the 
response, i.e. the ecological suitability of WNV, and were obtained by computing the ecological suitability variation associated with 
one specific variable, while all others were kept constant at their median (red curves), first quartile (orange curves) or third quartile 
(blue curves) value. 
 
 
Reviewer 2 
 
The manuscript investigates the potential role of climate change on human WNV risk in Europe. They use 
BRT models on historical presence/absence data together with multiple environmental variables to then 
predict WNV ecological suitability based on climatic projections assuming CG or lack of (counterfactual). 
They found that the area ecologically suitable for WNV under a CG scenario (assumed current status) 
considerably increased during the last century compared to the no CG counterfactual. 
 
The manuscript is very topical and well presented with clear (and pretty) figures. My main comments are 
about the lack of clarity in the objective/rationale/novelty and the description of the methods, which raises 
questions over the conclusions. I detail these and other minor comments below.  

Answer: We hope that the revised version of our Abstract now makes the objective/rationale and novelty of 
our study more explicit: “West Nile virus (WNV) is an emerging mosquito-borne pathogen in Europe and 
represents a public health threat in previously non-affected European countries. While climate change has 
been cited as a potential driver of its spatial expansion on the continent, a formal evaluation of this causal 
relationship is lacking. Here, we investigate the extent to which WNV spatial expansion in Europe can be 
attributed to climate change while accounting for other direct human influences such as land use and human 
population changes. To this end, we trained ecological niche models to predict the risk of local WNV 
circulation leading to human cases to then unravel the isolated effect of climate change by comparing 
factual simulations to a counterfactual based on the same environmental changes but a counterfactual 
climate where long-term trends have been removed. Our findings demonstrate a notable increase in the 
area ecologically suitable for WNV circulation during the period 1901-2019, whereas this area remains 



largely unchanged throughout the last century in a no-climate-change counterfactual. The human 
population at risk of exposure exhibits a drastic increase over the historical period and we show that this 
increase is partly due to historical changes in population density, but that climate change has also been a 
critical driver behind the heightened risk of WNV circulation in Europe.” 
 
Our main objective is to evaluate the contribution of historical long-term changes in climate to the WNV 
spatial expansion in Europe. Previous studies could only demonstrate the sensitivity of the occurrence of 
infections to weather related indicators (and additional environmental factors). However, such a sensitivity 
does not necessarily imply a strong impact of long-term climate changes as this depends on the strengths 
of these historical changes and the interplay across different variables (e.g., air temperature, precipitation, 
relative humidity) as well as on the impacts induced by long-term changes in other drivers (see also our 
answer to the related comment of Reviewer #1). We have now highlighted these aspects more explicitly in 
the main text: 

“WNV has circulated in Europe since the 1950s, but it is only in 1996 that a large human outbreak with 393 
human cases was detected in Romania [27]. WNV is characterised by a high genetic diversity, with West 
Nile virus lineage 1 (WNV-1) and West Nile virus lineage 2 (WNV-2) mainly associated with disease in 
humans and animals. A phylogenetic analysis has shown that six lineages have so far been detected in 
Europe where WNV-2 had the largest number of sequences available, accounting for 82% of all WNV 
sequences detected in Europe so far, and the widest diffusion, since it has been found in at least 15 
European countries [28]. Since its emergence on the continent, annual WNV outbreaks have been reported 
every summer in Mediterranean and central Europe [29]. Since its detection in the State of New York in 
1999, WNV has also invaded the North American continent [30]. Between 1999 and 2021, the USA has 
reported >55,000 WNV cases, of which >27,500 led to a neuroinvasive disease and >2,500 to death 
(www.cdc.gov/westnile).  
 
It was earlier demonstrated that the occurrence of the virus is linked to high temperatures in spring [33] and 
summer [34,35], drought in summer [34,35], and warm winters [35]. In addition, high spring and summer 
temperatures, lower water availability, and drier winter conditions were found to be main determinants of 
WNV occurrence across Europe [36]. While local WNV circulation in Europe has been shown to depend on 
weather conditions [5,31], so far, the effect of the historical long-term changes in climate on the occurrence 
of (human) infections on the continent has not been quantified. An overall high sensitivity to weather 
conditions does not necessarily imply a strong impact of long-term climate change, as this depends on the 
strengths of these long-term changes in climate, the interplay across the changes in different climate 
variables that may amplify or cancel out, and the impact of long-term changes in other environmental and/or 
anthropogenic drivers. Changes in land use could indeed also noticeably impact the circulation of such 
vector-borne pathogens [31]. For instance, irrigated croplands and highly fragmented forests are known to 
favour WNV outbreaks in Europe [34,35].” 
 
To quantify the contribution of historical long-term changes in climate to the observed increase in WNV 
infections in Europe, we have used four newly available pairs of factual and counterfactual climate data 
where long-term trends in the factual data have been removed. Comparing (i) the factual simulations of 
suitable areas or number of people affected where our model is forced by the factual (observation-based) 
climate and direct human forcings (land use changes and changes in population patterns) to (ii) the 
counterfactual ‘no climate change’ simulations where the models is forced by the same information about 
the direct human forcings but the counterfactual climate allows for a quantification of the contribution of 
long-term climate change to historical trends in infections. Our results clearly show that it is not trivial to 
conclude that climate change is a major driver of the observed changes in infections just based on a 
‘weather sensitivity study’. In contrast, our analysis of long-term trends demonstrates that direct human 
forcings (mainly changes in population patterns) were equally important in explaining long-term trends in 
infections (see trends in the counterfactual simulations reported in Figure 3). 
 



Main comments: 

Objective/motivation: The objective of the manuscript is not clear. Investigation of the contribution of CG to 
WNV emergence building on the IPCC framework (L103-111) is vague and confusing. In addition, 
‘emergence’ seems to be used as a synonym to ‘risk’ or ‘spatial expansion’ as WNV has been in Europe 
for a while. What is the ISIMIP and the implications for WNV ecological suitability. How does the IPCC 
framework fit in all this? 

Answer: We hope that the above-mentioned modifications of the text clarify the objective and novelty of our 
study. We have now also completed the section where the IPCC definition of ‘impact attribution’ is provided: 
“In this context, the Working Group 2 of the Intergovernmental Panel on Climate Change (IPCC) devoted a 
section to the attribution of observed changes in human, natural and managed systems to climate change 
in its sixth assessment report (IPCC 2022, chapter 16.2.1 [43]). The framework outlined by the IPCC defines 
an “observed impact as the difference between the observed state of a natural, human or managed system 
and a counterfactual baseline that characterises the system’s state in the absence of changes in the 
climate-related systems”, where climate-related systems mean the climate-system itself including the ocean 
and the cryosphere (e.g., changes in sea level rise) as physical or chemical systems that are not relevant 
in this study. The IPCC then states that the “difference between the observed and the counterfactual 
baseline state is considered the change in the natural, human or managed system that is attributed to the 
changes in the climate-related systems (impact attribution)”. “Changes in climate-related systems” explicitly 
mean “any observed long term-term change” no matter whether such a trend is induced by anthropogenic 
climate forcing or not [44]. The counterfactual impact baseline cannot be observed and thus needs to be 
modelled by an impact model. A precondition for impact attribution is that the impact model explains the 
observed phenomenon under consideration reasonably well given its drivers.” 
 
Regarding the use of the word ‘emergence’, we agree with Reviewer’s comment and have now replaced it 
by “spatial expansion” throughout the text. 
 
Also, the approach does not consider vectors (nor are they ever discussed) so the assumption is that the 
presence of human cases implies presence of vectors. I agree this is necessarily true for VBDs, my concern 
is that it also assumes a linear relationship between environmental conditions, mosquito abundance and 
risk, which we know that at least for mosquito abundance and risk is not true but the implications are not 
mentioned and lead to confusion about the objectives/conclusions of the manuscript. I may be convinced 
that for looking at human risk areas, mosquito abundance doesn't matter because what the approach is 
telling us is that there are certain conditions that predispose risk. The consequence is that the mechanisms 
of risk are a black box, meaning we might be able to understand the context of risk, but not the dynamics 
(as mentioned in L122) that create risk. 

Answer: We agree with the Reviewer that using the word ‘dynamic’ is indeed inappropriate in the context 
of our study. We have therefore decided to change this phrase that now reads as follows: “We subsequently 
estimated the areas ecologically suitable for local WNV circulation leading to human cases since the 
beginning of the 20th century considering either the historical climate or its respective counterfactual.” 

The vector distributions are indeed not explicitly incorporated into our ecological niche models for two 
reasons: (i) while some distribution data/estimates are available for the Culex species involved in WNV 
transmission cycle, there is no equivalent data encompassing the past century, which prevents to re-project 
the WNV ecological suitability from 1901 onward. (ii) Although one way to circumvent the first issue would 
be to train and project ecological niche models for those different Culex species in the past, such ecological 
niche models would themselves be based on the same or a very similar set of present-day environmental 
factors to the one also included in the set of variables used to train WNV ecological niche models. This 
would therefore lead to a circularity issue also making it more difficult to interpret the results (and in 
particular the relative influence value computed for each variable). Besides, as precisely mentioned by the 
Reviewer, we here aim to estimate the risk of local WNV circulation given local environmental conditions, 



which implicitly involves a minimum and here unestimated level of mosquito vector abundance. Those 
aspects are now explicitly stated in the text. 
 
The introduction doesn’t put the objectives in context. A big part of the approach/conclusion seem to be 
identifying the environmental drivers of human risk but they are exposed as a list of factors that have been 
linked to mosquitoes and does not clearly identify what is the knowledge gap/novelty of the manuscript nor 
how CG will might impact these that could have had an impact on human WNV.  

Answer: We thank the Reviewer for their feedback on this important point. As detailed above, we have now 
improved and completed the Abstract and Introduction sections accordingly. 
 
Finally, the broader implications of results/conclusions are not explained. Simply, why should we care that 
CG has been a driver of WNV. 

Answer: In the last paragraph of the Discussion section, we highlighted the importance of climate change 
as a critical public health challenge and the importance of considering it for future surveillance and 
interventions. As also stated in the text, we believe that our work allows filling an analytical gap between 
epidemiology and climate science by evaluating the causal chain between climate change and the spatial 
expansion of an arboviral disease such as the West Nile fever. 
 
Methods. These are not detailed enough. I appreciate that there is no development of the ML algorithm 
(available tool in R). However, the explanatory variables and interactions among them should be clearly 
defined. What values were used for tree complexity, learning rate and how many trees? And were sensitivity 
analyses done on these? I’m assuming it was a Bernoulli BRT? How do you deal with temporal 
autocorrelation. What are the reanalysis datasets and how are these used? The human case data is from 
2007 to 2019 but then predictions are done from climate data from 1900? Generally, not clear how time 
was dealt with. Explain why model was trained on present day data.  

Answer: We thank the Reviewer for their comment and acknowledge that some methodological aspects 
were not sufficiently detailed in the previous version of our manuscript. The ‘Ecological niche modelling’ 
subsection of the Methods section has now been substantially detailed to provide to the reader more 
information on the specification of the BRT algorithm parameters and on the related sensitivity analysis (for 
the sensitivity analysis, we here also refer to our answer to the related comment of Reviewer #1). 
Furthermore, as answered to a related comment of Reviewer #1, we now also provide a far more detailed 
description of the different reanalysis datasets considered in our study. 
 
As for the temporal correlation, we did not have to deal with such an issue in the specific methodological 
framework of our study. Indeed, our response variable is a binary variable defined as follows: the detection 
or not of at least one human case during the period 2007-2019 that is not labelled in the ECDC database 
as an ‘imported case’. Consequently, we do not work on cumulative incidence data, which would then 
indeed require dealing with a temporal correlation within the response variable (e.g., by implementing a 
spatio-temporal cross-validation instead of a spatial cross-validation procedure). As now more explicitly 
stated in the text, due to the heterogeneous surveillance effort between countries or even across time for a 
given area, we indeed preferred to consider such a binary absence/presence variable rather than the 
reported incidence for the considered period of time. Otherwise, our analyses should then be based on the 
assumption that the surveillance effort was homogeneous across the study area and the considered time 
period, which is an incorrect assumption in the studied geographical framework. 
 
L252-253. I truly welcome the honesty! But doesn’t this mean that your model is not predicting accurately 
enough? Models like this are usually difficult to validate but cases are happening where your model doesn’t 
predict as suitable habitat. 

Answer: We thank the Reviewer for raising this pertinent concern. We take the opportunity to underline that 
our models were precisely not trained on environmental variables corresponding to the time window of 



these latest reported human cases. Therefore, those latest case data do not constitute a potential 
‘validation’ dataset, which is not something that is at our disposal in the present study even if we of course 
consider partitions of training and test datasets within our spatial cross-validation procedure. We fully agree 
with the Reviewer that it is important to be honest about the fact that our models did not predict that the 
areas of these new cases were particularly ecologically suitable for some local WNV circulation, even if this 
is not necessarily depicting a lack of prediction capacity for the reason outlined above. 
 
I’m guessing that case reporting rates was not accounted for? This is probably increasing over time with 
awareness/knowledge of WNV. Can this have implications for the results? 

Answer: We completely agree with the Reviewer that local reporting rates are likely increasing over time 
with awareness/knowledge of WNV. As outlined in our answer to one of the previous comments above, this 
is precisely one of the reasons why we did not consider available local incidence values as our response 
variable. We have now further detailed this aspect in the text. 
 
Other suggestions: 

Abstract: The MS does not investigate other drivers of WNV change so saying that CG is a primary driver 
seems a bit of an overstatement.  

Answer: In our study, we also addressed changes in land use and human population as additional drivers 
of change. As illustrated in Figure 3, The repercussions of these factors have been quantified through a 
trend in the simulated counterfactual baseline. However, we of course agree with the Reviewer that only 
the climate change driver is here formally tested by comparing factual simulations to a counterfactual. We 
have now edited the Abstract to clarify this point for the readers. 
 
Figure 1: Is this training and testing data combined?  

Answer: Yes, in the sense that during the BRT algorithm, the dataset is partitioned into training and test 
datasets based on spatially-explicit folds according to a spatial cross-validation procedure. Specifically, in 
our study, we specified five distinct folds, and at each iteration of the BRT algorithm, a different fold is 
discarded from the training process to be used as the test dataset. 
 
L162. Could this be due to other reasons such as underreporting rates, changes in DDT use etc? 

Answer: Not for this statement in particular because we here specifically refer to the different trends 
observed in the reconstructions respectively driven by the factual and counterfactual data, whose only 
difference is the absence of climate change in the latter. 
 
L166: “climate change predominantly contributed” seems like a strong statement given that some plot so 
not show much difference and there are other potential factors. I have no doubts CG is accelerating risk 
but not sure results here are so strong. 

Answer: We agree with the comment addressed by the Reviewer and have edited that sentence as follows: 
“These results indicate that climate change contributed to the escalation of the risk associated with West 
Nile virus circulation in Europe” (‘predominantly’ has been removed). 
 
Fig.2. I may be misunderstanding this figure but if panel a is counterfactual (no CG), and the maps show 
suitability, higher suitability appears to be on counterfactual, which contradicts the rest of the results.  

Answer: We thank the Reviewer for having noticed this issue. The legend of Figure 2 has now been 
corrected. 
 
L210-212. This should be discussed.  



Answer: We agree with the Reviewer and have included an entire new paragraph dedicated to the 
differences observed between reanalysis datasets. 
 
L223-225. there's 15 years between these. Can we claim they are linked? 

Answer: We agree with the Reviewer that we cannot formally prove a link, but this is the reason why we 
here employ the verb ‘coincide’. 
 
L309: For absences, do you mean tested but not confirmed or all areas in Europe without a confirmed case 
were considered absences? All Europe is included, how does the choice of this absence area influence the 
results? E.g. if you took only southern countries? 

Answer: In our analyses, all the European admin areas (displayed in Figure 3) for which we do not have at 
least one confirmed non-imported human case have been treated as pseudo-absences. Only sampling 
pseudo-absences in southern countries would indeed certainly impact our results but we wouldn’t see the 
rationale of discarding from the pseudo-absence dataset northern NUTS3 polygons for which no non-
imported human case has been reported, as this corresponds to a non-negligeable source of information 
to train our ecological niche models. 
 
 
Reviewer 3 
 
The authors present evidence of the direct contribution of climate change to the emergence and increased 
prevalence of West Nile virus in Europe. At a high level, quantifying the impacts of climate change is a key 
next step in science to begin to mitigate these impacts. This is original and impactful, particularly in direct 
comparison to the counter-factual non-climate change scenario. While it is well known that environmental 
factors such as temperature impact individual drivers of WNV (e.g. extrinsic incubation period, changing 
vector distributions), it is relatively novel to quantify the direct impact on risk based on data under climate 
change and counter-factual scenarios. The methods are robust and standard, the authors include relative 
impacts of the drivers and multiple useful views of the output under different climate scenarios. 
 
A few questions and comments about the methods and presentation of the results: 

1. Please talk more about using Presence/Absence versus incidence data for WNV in the model. The model 
just uses presence/absence but the authors present incidence as well. It seems like a combination of both 
in an analysis could be powerful, for example potentially showing that both presence of the pathogen and 
the impact in terms of total cases are changing. (or connecting suitability with incidence??)  

Answer: We agree that this is an important point, that we have now further clarified in the text. As answered 
to a related comment from Reviewer #2, it appeared more relevant to solely consider a binary 
absence/presence response variable rather than an incidence estimated from ECDC data because of the 
heterogeneous surveillance effort between countries. If instead based on incidence estimates, our analyses 
should then have been based on the assumption that the surveillance effort was homogeneous across the 
study area, which is an incorrect assumption in our geographical framework. 
 
2. It seems from my reading of the methods that the authors are assuming that places in Europe with no 
recorded cases are a pseudo-absence (WNV is likely under reported by quite a bit, and that under-reporting 
depends on the region, so is this biased?). How will considering under-reporting change the results? How 
pseudo-absences are used can impact the accuracy of models, sometimes significantly so more discussion 
on this would be helpful. 

Answer: We indeed treat as pseudo-absences the administrative areas with no reported human case 
(excluding the cases labelled as ‘imported’); and with approximately 80% of West Nile virus infections being 
asymptomatic (Kramer et al. 2007, PMID: 17239804), we acknowledge that the underreporting likely has 



an impact on our models and results. Yet, only treating administrative polygons with non-imported human 
cases as presence data allows focusing on the areas for which there is a confirmed and sufficient level of 
local circulation leading to human cases, whose ecological niche is precisely what we aim to model here. 
Furthermore, the main objective of the study is not to provide the most accurate and precise WNV niche 
modelling, which has been investigated in previous studies (Watts et al. 2021, PMID: 34485672; Farooq et 
al. 2022, PMID: 35373173; Sofia et al. 2022, PMID: 35889046) and would have required the inclusion of 
additional environmental predictors such as more detailed land use categories unavailable within the ISIMIP 
framework considered in our study. We thank the Reviewer for pointing out this aspect that is now more 
explicitly acknowledged in the text. 
 
3. It would be helpful for the reader and probably more powerful in terms of communication to show the 
map of their algorithm’s predicted niche for WNV under the observed climate versus the actual 
cases/"Presence" data (and perhaps an accompanying error map) so we can visually see model's 
performance. Also, including an accuracy metric (ideally normalized) in addition to AUC would make this 
more comparable in the future to other studies of the same region or similar studies of other regions. 

Answer: We agree that it was not optimal to solely reporting/referring to AUC values, the use of the AUC 
metric having been repeatedly criticised in previous works due to its dependence on prevalence (i.e. the 
proportion of recorded sites where a given species is present; Lobo et al. 2008, doi: 10.1111/j.1466-8238. 
2007.00358.x; Jiménez-Valverde 2012, doi: 10.1111/j.1466-8238.2011.00683.x; 2014, doi: 10.1007/s105 
31-013-0606-1; Ghisbain et al. 2023, PMID: 37704726). In the revised version of our manuscript, we have 
now further assessed the predictive performance of our ecological niche models by computing a 
prevalence-pseudoabsence-calibrated Sørensen’s index (SIppc) defined as follows (Sørensen 1948; Leroy 
et al. 2018, doi: 10.1111/jbi.13402; Ghisbain et al. 2023, PMID: 37704726): 

SIppc = (2 × TP) / (2 × TP + x × FPpa + FN) 

where x = (P / A) × ((1 - prevsp) / prevsp)  

and  
prevsp = P / (P + A)  

with TP corresponding to the number of true positives, FPpa to the number of false positives associated with 
sampled pseudo-absence points, FN to the number of false negatives, P to the number of presence points, 
and A to the number of pseudo-absence points. This index has its lower limit at zero and its upper limit at 
one (interpreted as a maximal predictive performance). Because the computation of this index requires 
binary presence-absence data but ecological niche models instead return ecological suitability values 
ranging from ‘0’ to ‘1’, we performed an optimisation procedure similar to one adopted by Li & Guo (2013, 
doi: 10.1111/j.1600-0587.2013.07585.x) by varying the threshold values in the range [0, 1] with a 0.01 step 
increment, and eventually selecting the threshold value maximising the SIppc (Ghisbain et al. 2023, PMID: 
37704726). We computed a SIppc for each of the ten independent ecological niche models (updated Table 
S1). As detailed in the updated Table S1, all averaged SIppc values are higher than 0.80 (>0.83). For each 
trained ecological niche model, we also report the evolution of the SIppc according to the ecological suitability 
threshold value ranging from 0 to 1 (new Figure S2). 
 
Table S1. Predictive performance of ecological niche models. The table reports area under the curve (AUC) and prevalence- 
pseudoabsence-calibrated Sørensen index (SIppc) values computed for each ecological niche model trained in the present study with 
a spatial cross-validation approach. Specifically, we trained ten independent replicate boosted regression tree (BRT) models on 
present-day data retrieved from each ISIMIP3a reanalysis datasets considered in our study (GSWP3-W5E5, 20CRv3, 20CRv3-ERA5, 
and 20CRv3-W5E5). The SIppc were computed while performing an optimisation of the ecological suitability threshold in the range [0, 
1] with a 0.01 step increment. This threshold value was used to generate binary versions of the ecological suitability maps necessary 
for the computation of this index, and we eventually selected the threshold value maximising the SIppc, which is here reported under 
parentheses. 

  Area under the curve (AUC)  SIppc (and threshold value maximising SIppc) 

  GSWP3- 
W5E5 

20CRv3 20CRv3- 
ERA5 

20CRv3- 
W5E5 

 GSWP3- 
W5E5 

20CRv3 20CRv3- 
ERA5 

20CRv3- 
W5E5 

Replicate 1  0.87 0.86 0.86 0.85  0.86 (0.37) 0.90 (0.29) 0.91 (0.34) 0.87 (0.36) 
Replicate 2  0.87 0.86 0.89 0.84  0.86 (0.37) 0.90 (0.31) 0.91 (0.37) 0.85 (0.35) 



Replicate 3  0.85 0.80 0.83 0.85  0.85 (0.39) 0.85 (0.25) 0.88 (0.32) 0.86 (0.37) 
Replicate 4  0.87 0.84 0.89 0.86  0.86 (0.37) 0.93 (0.32) 0.94 (0.38) 0.86 (0.34) 
Replicate 5  0.84 0.82 0.87 0.84  0.86 (0.38) 0.89 (0.27) 0.93 (0.35) 0.87 (0.38) 
Replicate 6  0.85 0.81 0.87 0.84  0.87 (0.38) 0.88 (0.29) 0.93 (0.39) 0.87 (0.37) 
Replicate 7  0.85 0.81 0.87 0.85  0.83 (0.37) 0.92 (0.34) 0.93 (0.38) 0.84 (0.38) 
Replicate 8  0.86 0.81 0.89 0.83  0.87 (0.38) 0.91 (0.32) 0.94 (0.46) 0.85 (0.39) 
Replicate 9  0.83 0.82 0.88 0.86  0.84 (0.38) 0.89 (0.30) 0.92 (0.42) 0.86 (0.34) 
Replicate 10  0.86 0.80 0.88 0.84  0.86 (0.35) 0.90 (0.31) 0.93 (0.41) 0.86 (0.37) 
 

 
[New] Figure S2. Assessment of the predictive performance of ecological niche models based on the computation of the 
prevalence-pseudoabsence-calibrated Sørensen index (SIppc). Specifically, we computed the SIppc while performing an 
optimisation of the ecological suitability threshold in the range [0, 1] with a 0.01 step increment. This threshold value was used to 
generate binary versions of the ecological suitability maps necessary for the computation of this index, and we eventually selected 
the threshold value maximising the SIppc (see Table S1 for the optimised SIppc values and associated threshold). 
 
4. It seems in the figures (e.g. Figure 2 a and 2 b) that the “counter factual” versus observed are mis-
labeled. Either that or I’m completely missing the point since it looks like in row a, which is counter-factual 
with no climate change, the risk of WNV is higher by the end of the time period. 

Answer: We thank the Reviewer for having noticed this issue. The legend of Figure 2 has now been 
corrected. 
 
5. page 2, line 38 I think "sanitary" is the wrong word 

Answer: We have now replaced “sanitary” by “public health”. 
 
6. Discussion, page 8, starting line 227, others have indeed seen that the factors that predict presence or 
overall incidence on a decadal scale are different from the factors that predict inter-annual differences in 
incidence (Gorris, Morgan E., et al. "Assessing the influence of climate on the spatial pattern of West Nile 
virus incidence in the United States." Environmental Health Perspectives 131.4 (2023): 047016. Note, this 
is from a previous postdoc of mine). 

Answer: We thank the Reviewer for their comment that has helped to complement the Discussion section 
of our study. We edited the related paragraph accordingly: “Although anomalous higher temperature in 
spring was previously identified as a reliable early warning predictor for WNV human cases [33,36], we 
here find that the relative contributions of air temperature in summer and winter to the ecological suitability 
of WNV were higher than the one of spring temperatures. This discrepancy could be due to the definition 
of the response variable of the model: while other studies define it as incidence [33,56], we define it as a 
binary presence/absence variable, which is a different way to account for WNV circulation (see below for a 
motivation of that choice). Moreover, it has been shown that factors associated with WNV incidence in the 
USA on a 10-year scale could be different from those associated with inter-annual differences [57].” 



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
In the first answer to reviewer 1 in the rebuttal letter the authors state that the “for the first time 
find unequivocally scientific evidence of climate change impacts on the spatial expansion of WNV in 
Europe”. The highlight the formal attribution approach taken using the simulation of potential 
climate without climate change. However, it should be highlighted that these are simulations of a 
counterfactual and not the actual climate, but a simulation. A standard attribution approach in 
climatology would study the time trends and drivers, however, agreeably this is very challenging 
given the limited WNV data. 
In this sense the analysis adds a little bit further insights from the trends already presented in the 
Lancet countdown going back to 1950. Particularly, by providing the trend prior 1950. However, 
the results instead depend on a climate model simulation of potential current climate given pre-
historic boundary conditions. The argument is that the Farooq and the Lancet countdown studies 
“cannot provide evidence of the trends being attributable to climate change”. However, both the 
approach taken by the authors and the Farooq and Lancet countdown team uses relationships from 
fitting models on modern data (approx. the last decade) to attribute and predict trends and 
geographical patterns. So, the attribution in this sense rests on the same basis. 
Further on, the approach taken by Farooq et al. is using a more advanced machine learning 
approach that has evolved beyond boosted regression tree (although admittedly they still share 
much in the base methodology both being boosted tree approaches). As described in the 
supplement of the Lancet countdown (where the indicator features with prediction of climate 
change induced changes since 1950), the indicator does rule out the influence of the other factors 
in the trend and geographical predictions of changes. Still, I agree with the authors that the pre-
historic counterfactual prediction is perhaps a more formal attribution approach, but this is 
assuming the the pre-historic control and counterfactual climate model simulations are correct. 
This, however, induces other types of uncertainties which are not formally assessed. So, still in my 
view the added value is smaller compared to previous studies. 
 
Further on the pseudo-absence selection may induce further bias as there is no formal way to 
define what is an absence, but this approach makes strong assumptions on where absence 
observations occur. It would be necessary to investigate this assumption further by selecting it PA 
by different strategies, for example, only using areas where presence never has been observed for 
PA, ie using a similar approach as by Brady et al. 
 
Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott 
TW, Hay SI. Refining the global spatial limits of dengue virus transmission by evidence-based 
consensus 
 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors answered my questions and provided thoughtful responses and additions to the paper. 
The revised paper is, in my opinion, ready for being published. 
 
 



Reviewer 1 
 
In the first answer to reviewer 1 in the rebuttal letter the authors state that the “for the first time find 
unequivocally scientific evidence of climate change impacts on the spatial expansion of WNV in Europe”. 
The highlight the formal attribution approach taken using the simulation of potential climate without climate 
change. However, it should be highlighted that these are simulations of a counterfactual and not the actual 
climate, but a simulation. A standard attribution approach in climatology would study the time trends and 
drivers, however, agreeably this is very challenging given the limited WNV data. In this sense the analysis 
adds a little bit further insights from the trends already presented in the Lancet countdown going back to 
1950. Particularly, by providing the trend prior 1950. However, the results instead depend on a climate 
model simulation of potential current climate given pre-historic boundary conditions. The argument is that 
the Farooq and the Lancet countdown studies “cannot provide evidence of the trends being attributable to 
climate change”. However, both the approach taken by the authors and the Farooq and Lancet countdown 
team uses relationships from fitting models on modern data (approx. the last decade) to attribute and predict 
trends and geographical patterns. So, the attribution in this sense rests on the same basis. Further on, the 
approach taken by Farooq et al. is using a more advanced machine learning approach that has evolved 
beyond boosted regression tree (although admittedly they still share much in the base methodology both 
being boosted tree approaches). As described in the supplement of the Lancet countdown (where the 
indicator features with prediction of climate change induced changes since 1950), the indicator does rule 
out the influence of the other factors in the trend and geographical predictions of changes. Still, I agree with 
the authors that the pre-historic counterfactual prediction is perhaps a more formal attribution approach, 
but this is assuming the the pre-historic control and counterfactual climate model simulations are correct. 
This, however, induces other types of uncertainties which are not formally assessed. So, still in my view 
the added value is smaller compared to previous studies. 

Answer: We thank the Reviewer for taking their time to carefully assess the revised version of our 
manuscript. We agree that our study is complementary to previous work by Farooq et al. and its further 
development in the Lancet countdown. Farooq et al. investigate the contribution of individual environmental 
drivers to WNV outbreaks in Europe from 2010 to 2019 using a machine learning classifier (XGBoost), and 
the Lancet countdown implements their approach to further explore the climate suitability of WNV between 
1951 and 2020 using observed climate data from the ERA5-Land reanalysis. In this sense, none of them 
constitutes an attribution study, where an impact is investigated by removing one driver, analysing the 
difference, and providing the overall historic influence of climate. The novelty of our work lies in the fact that 
it constitutes the first attribution of West Nile virus expansion to climate change in Europe in line with the 
Intergovernmental Panel on Climate Change (IPCC) Working Group 2 (WG2) definition, therewith 
representing a relevant extension to the Lancet countdown findings. For reference, attribution in the sense 
of WG2 investigates whether a given system has changed beyond a specified counterfactual baseline that 
characterises a given behaviour in the absence of climate change. We understand the Reviewer’s concerns 
and hereafter discuss each of their other considerations. 

First, recalling the IPCC Sixth Assessment Report (section 16.2.1, chapter 16), in which the WG2 defined 
an “observed impact as the difference between the observed state of a natural, human or managed system 
and a counterfactual baseline that characterises the system’s state in the absence of changes in the 
climate-related systems”, it is clear that the counterfactual baseline is not a direct observation but is 
obtained by detrending the observational (factual) climate data: the counterfactuals approximate a “no 
climate change” climate through the removal of the long-term trend related to global mean temperature 
change from the factual reanalysis datasets. This currently constitutes the gold standard approach when 
aiming to investigate the attribution of climate change to some specific observational changes. Early in our 
manuscript, we introduced the concept of the counterfactual baseline, but we acknowledge that the previous 
version of our manuscript could require an extra explanation of this concept. We therefore edited the related 
paragraph included in the Introduction section as follows: “We use four observationally-based reanalysis 
climate datasets and their counterfactuals that were recently made available through the Inter-Sectoral 



Impact Model Intercomparison Project (ISIMIP). ISIMIP is dedicated to fostering impact attribution following 
the definition of the IPCC WG2 in an international modelling effort in its currently running ISIMIP3a phase. 
Specifically, the counterfactual climate data are obtained by detrending the observational (factual) climate 
data: the counterfactuals approximate a “no climate change” climate through the removal of the long-term 
trend related to global mean temperature change from the factual reanalysis datasets [44]. The resulting 
time series thus consist of stationary climate data obtained from observational daily data when removing 
the long-term trend while preserving the internal day-to-day variability [44].” 

Second, we agree about the limitations behind the WNV data available and thus the difficulties of studying 
time series trends on WNV incidence and climate simultaneously. In that sense, we here propose to 
compare WNV ecological suitability under observational (factual) and counterfactual climate scenarios, as 
a feasible and efficient choice for attribution. Such data limitations are typical when studying climate impacts 
and the IPCC impact attribution framework is designed with such issues in mind. 

Furthermore, we provide the quantification of the people at risk between scenarios, and acknowledge the 
contribution of other WNV drivers besides climate change, such as increases in human population and land 
use changes. Finally, we believe that we accounted for the potential biases of the climate data by 
considering four reanalysis datasets varying in their assumptions and presenting all the results. That being 
said, we believe our study evaluates coherently and comprehensively the attribution of WNV spatial 
expansion in Europe to climate change. 
 
Further on the pseudo-absence selection may induce further bias as there is no formal way to define what 
is an absence, but this approach makes strong assumptions on where absence observations occur. It would 
be necessary to investigate this assumption further by selecting it PA by different strategies, for example, 
only using areas where presence never has been observed for PA, ie using a similar approach as by Brady 
et al. (Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott 
TW, Hay SI. Refining the global spatial limits of dengue virus transmission by evidence-based consensus). 

Answer: While we already follow the strategy consisting in only simulating and sampling pseudo-absences 
within areas where confirmed presence has never been reported, we agree with the Reviewer that the 
sampling of pseudo-absences can potentially impact our models and the subsequent comparisons between 
factual and counterfactual simulations. The approach proposed by Brady et al. is however not directly 
applicable as such in the setting of our study as we lack detailed surveillance effort information at the 
NUTS3 administrative level to implement the scoring system that these authors introduced. Yet, we now 
propose to investigate the robustness and sensitivity of our results to the sampling intensity of pseudo-
absences across the study area. While the main analyses are based on pseudo-absences sampled across 
100% of the administrative areas in which no presence has been confirmed, we now also consider 
alternative datasets of pseudo-absences sampled from only 50% and 75% of the administrative areas not 
associated with a presence record. In both cases, we re-trained 100 ecological niche models each based 
on a random selection of 50% or 75% of the original pseudo-absences considered in the main analyses. 
Based on these newly generated models, we then re-estimated the changes in the population at risk of 
exposure to WNV in Europe (new Figure S9). Overall, our results confirm that the inferred trends remain 
highly consistent with the results obtained when considering all potential pseudo-absences (Figure S9). 
  

 
Figure S9. Investigations of the robustness and sensitivity of the estimates of human population at risk of exposure to the 
sampling intensity of pseudo-absences across the study area. Similar to Figure 3, we here report past changes in the population 



at risk of exposure to WNV estimated for both a counterfactual baseline and the observed historical climate data retrieved from the 
GSWP3-W5E5 reanalysis dataset and while considering two different thresholds of ecological suitability (ES) above which an area 
was considered at risk (0.1 and 0.5). Contrary to Figure 3, the estimates reported here are however based on ecological niche models 
trained on random subsets of all available pseudo-absences (PAs) corresponding to all optimised NUTS3 administrative areas with 
zero confirmed non-imported human cases of WNV infection. Specifically, we considered both a subsampling of 50 and 75% of all 
pseudo-absence data and, for each percentage, re-trained 100 ecological ecological niche models each time based on a random 
subset of pseudo-absence data. 
 
 
Reviewer 3 
 
The authors answered my questions and provided thoughtful responses and additions to the paper. The 
revised paper is, in my opinion, ready for being published. 

Answer: We would like to thank the Reviewer for the positive assessment of the revised version of our 
manuscript. 
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