Supplemental Files for:

A phage-encoded RNA-binding protein inhibits the antiviral activity of a toxinantitoxin system

Chantal K. Guegler, Gabriella I.C. Teodoro, Sriram Srikant, Keerthana Chetlapalli, Christopher R. Doering, Dia A. Ghose, Michael T. Laub

Supplemental Figure and Table Legends

Figure S1. TifA and ToxN homologs are present in T4-like phage and bacterial genomes, respectively

(A) Protein homology tree based on primary sequence alignments of 57 TifA homologs, with the TifA homologs used for the screen in Figure 1C indicated. Note that TifA_{T2} and TifA_{T6} differ by only a few amino acids, and therefore only TifA_{T6} was included in the tree.

(B) Multiple sequence alignment of ToxN homologs used for the screen in Figure 1C. Degree of sequence similarity is highlighted in gray/black.

Figure S2. Rescue of ToxN homolog overexpression by co-expression of various TifA homologs

(A-F) Cell spotting assays of *E. coli* MG1655 transformed with pBAD33-*toxN* and pEXT20-*tifA* used to assemble Figure 1C. To induce ToxN and TifA, cells were serially-diluted 10-fold and spotted on plates containing both IPTG and arabinose. To induce only ToxN, cells were spotted on plates containing only arabinose. A toxin was counted as rescued by a TifA homolog if, across multiple replicates, its colony-forming efficiency and/or colony size was increased on +arabinose, +IPTG (ToxN and TifA induced) plates relative to +arabinose (ToxN induced) plates. Bacterial species from which ToxN and TenpN homologs were cloned: *Escherichia coli* (Ec); *Pectobacterium atrosepticum* (Pa); *Klebsiella pneumoniae* (Kp); *Shigella sonnei* (Ss); *Vibrio kanaloae* (Vk); *Serratia* sp. SRS-8-S-2018 (Ser).

(G) Western blot of two FLAG-tagged TifA homologs (TifA_{vB_PatP_CB4} and TifA_{vB_EcoM_005}) following production from an IPTG-inducible promoter for ~6.5 hours in liquid culture. RpoA is included as a loading control.

Figure S3. AlphaFold predictions of the TifA and ToxN-TifA structures

(A) Per-residue confidence of five AlphaFold predictions for the structure of TifA_{T4}. The topranked prediction was used for downstream analyses. (B) Per-residue confidence of five AlphaFold predictions for the structure of TifA_{RB69}. The topranked prediction was used for downstream analyses.

(C) Overlay of the crystal structure of *P. atrosepticum* ToxN (ToxN_{Pa}) and the predicted structure of *E. coli* ToxN (ToxN_{Ec}) in complex with TifA_{T4}. The positions of ToxN residues K111, Y115, and L118 in the model of ToxN_{Ec} are shown in magenta.

(D) Overlay of the crystal structure of *P. atrosepticum* ToxN (ToxN_{Pa}) and the predicted structure of *E. coli* ToxN (ToxN_{Ec}) in complex with TifA_{RB69}.

(E) Space-filling AlphaFold model for the ToxN-TifA_{RB69} complex, with TifA residues predicted to interact with ToxN indicated.

(F) Per-residue confidence of five AlphaFold predictions for the structure of ToxN in complex with TifA_{T4}. The top-ranked prediction was used for downstream analyses.

(G) Per-residue confidence of five AlphaFold predictions for the structure of ToxN in complex with TifA_{RB69}. The top-ranked prediction was used for downstream analyses.

(H) Heat map showing predicted aligned error (PAE) for five AlphaFold-predicted models for the ToxN-TifA_{T4} complex; a low PAE value indicates that AlphaFold predicts well-defined relative positions and orientations for the two domains or proteins. The highest-ranking model was used for analysis in the manuscript.

(I) Heat map showing predicted aligned error (PAE) for five AlphaFold-predicted models for the ToxN-TifA_{RB69} complex. The highest-ranking model was used for analysis in the manuscript.

Figure S4. Use of a tab screen to isolate TifA-resistant ToxN mutants

(A) Example selection plates for +toxIN, $+TifA_{RB69}$ cells during *tab* selection. Serial 10-fold dilutions of T4 were mixed with cells expressing TifA from an inducible promoter and a library of *toxIN* variants (or wild-type *toxIN* as a control). Microcolonies in the *toxIN* library that arose at dilutions of T4 in which the control cells (+toxIN wild-type, top) no longer grew (both dilutions shown) were isolated and Sanger sequenced.

(B) Growth curves for MG1655 cells harboring pBR322-*toxIN* (wild type or mutant), with calculated doubling times indicated in brackets.

Figure S5. ToxN forms a high molecular weight RNA-protein complex when it is co-purified with TifA

(A) Serial dilutions of *E. coli* cells expressing *toxN* (wild-type or chitin-binding domain-tagged) and *tifA_{RB69}* (wild-type or FLAG-tagged). Plasmids harboring *toxN* and *tifA* under arabinose- and IPTG-inducible promoters, respectively, were transformed into *E. coli* MG1655, and protein production was induced with the addition of arabinose and IPTG.

(B) (*top*) Size-exclusion chromatogram of purified ToxN-TifA_{RB69}-FLAG run on a Superose 6 Increase 10/300 GL column with collected fractions indicated. (*bottom*) Anti-FLAG Western blot probing for TifA_{RB69}-FLAG in various FPLC fractions, indicating that TifA_{RB69} localizes in the high molecular weight peak.

Figure S6. TifA has a conserved nucleic acid-binding domain

(A) Alignment of 57 TifA homologs, with the position of F41 in TifA_{T4}, the conserved PT motif, and the cluster of basic residues indicated. Degree of sequence similarity is highlighted in gray/black.

(B) Denaturing 6% urea-PAGE gel resolving nucleic acid that copurifies with $TifA_{RB69}$ -MBP-His6 in Ni-NTA resin purification; nucleic acid was treated with Turbo DNase, RNase 1f, or neither before running on the gel.

(C) Serial dilutions of *E. coli* cells expressing $tifA_{RB69}$ -MBP-His₆ with and without co-expression of *toxN*. Plasmids harboring *toxN* and *tifA* under arabinose- and IPTG-inducible promoters, respectively, were transformed into *E. coli* MG1655, and protein production was induced with the addition of arabinose and IPTG.

(D) Results of fluorescence polarization assays measuring the binding affinity of $TifA_{RB69}$ incubated to several fluorescently labeled RNA, ssDNA, and dsDNA species (lengths and sources of sequences indicated). See Table S5 for sequences of nucleic acid substrates tested.

(E) Size-exclusion chromatogram of purified TifA_{RB69} (P53A T54A)-MBP-His₆ run on a Superose 6 Increase 10/300 GL column.

(F) SDS-PAGE of purified TifA_{RB69}-MBP-His6 variants following purification of proteins from cell lysate through Ni-NTA resin.

Figure S7. Characterization of RNAs co-purifying with ToxN-TifA.

(A) Size-exclusion chromatogram of purified ToxIN run on a Superose 6 Increase 10/300 GL column.

(B) (*top*) Size-exclusion chromatogram of purified ToxN, *toxI*, and TifA_{RB69}-FLAG run on a Superose 6 Increase 10/300 GL column, with collected fractions indicated. (*bottom*) Anti-FLAG Western blot probing for TifA_{RB69}-FLAG in various FPLC fractions, indicating that TifA_{RB69} localizes in the high molecular weight peak but does not colocalize with the ToxIN complex.

(C) Scatter plots comparing the summed RNA-seq counts (log₂ rpm) for individual genes in the *E. coli* BL21 genome in each set of two biological replicate samples (TifA WT sample eluent and lysate and TifA mutant sample eluent and lysate).

(D) Scatter plot comparing the mean summed RNA-seq counts (log₂ rpm) for individual genes in TifA WT sample whole cell lysate and chitin resin eluent (two biological replicates each). Genes with rpm values greater than or equal to 3 in all sequenced libraries (lysates and eluents) are shown.

(E) Scatter plot comparing the mean summed RNA-seq counts (log₂ rpm) for individual genes in TifA mutant sample whole cell lysate and chitin resin eluent (two biological replicates each). Genes with rpm values greater than or equal to 3 in all sequenced libraries (lysates and eluents) are shown.

(F) Western blot of ToxN-His⁶ or ToxN(K55A)-His⁶ in cell lysate and following coimmunoprecipitation with TifA_{T4}-FLAG (wild-type) in T4-infected cells producing TifA_{T4} and ToxN.

ToxN _{ec} ToxN _{pa} ToxN _{ss} ToxN _{ss} ToxN _{vk} ToxN _{ser} TenpN _{ec}	1 10 MK F YT MK F YT MK F YT MK F YT MK F YV MK F YV MK F YV	20 S S S Y I K Y L K D F S S K Y I E Y L K G F S S R Y I E Y L K G F S S S Y I K Y L K D F S S D Y I N H L K A A D S Y I N H L V A G T D Q F Y A D N K G I	30 DDKVPNSEDP DDKVPNSEDP DDKVPNSEDP DDKVPNSEDP DARVPNSED DARVPNSED DQHVKN CQHALDGSND-	40 T Y N N P K A F I G T Y Q N P K A F I G T Y Q N P K A F I G T Y N N P K A F I G T Y N N P K A F V G K G T R P Y I G G K V R G Y G I	50 V L E L E G H K Y L , V L E O G H K Y L , V L E O G H K Y L , V L E O G H K Y L , V L E O G H K Y L , V V L E V E G H K Y L , V V L E V E G I K Y L , V V L E V E G I K Y L , V V L D L N G L V F G	60 A P L T S P K A W H A N V A P L T S P K K W H N N V A P L T S P K A W H S T I A P L T S P K A W H A N I A P L T S H K K K K K D K A P L T S H K K K Q D K I I P L R S H L N H K	70 K E S S P A K E S S L S K E S S P S K E S S P A K P G A Q T P N S S P L
$\begin{array}{c} \text{ToxN}_{\text{Ec}} \\ \text{ToxN}_{\text{Pa}} \\ \text{ToxN}_{\text{Kp}} \\ \text{ToxN}_{\text{Ss}} \\ \text{ToxN}_{\text{Vk}} \\ \text{ToxN}_{\text{Ser}} \\ \text{TenpN}_{\text{Ec}} \end{array}$	80 F F K L H E N G V P D T F F K L H E N G V P ET F F K L H E N G V P ET F F K L H E N G V P T V F K L H E L N N E A I F K V E L S E E F F K L S E E V E K S E G V	90 N Q L G L I N L K F M N Q L G L I N L K F M N Q L G L I N L K F M N Q L G L I N L K F M N P L G M Q L S N M N K L G M V Q V N N M V K K G L D Y T K A L	100 P I I E A E V S L L P I I E A E V S L L P I I E A E V S L L P I I E A E V S L L P V L D S E I Q L L P V L D S E I Q L L K K E E Y V S	110 D L D S M P D T P Y D L G NM P N T P Y D L O S M P N T S Y D L D S M P D T P Y D M - K V Q S E N K D L - S T Q D A K Y R A Y K P T P E F	120 K R M L Y K Q L Q F K R M L Y K Q L Q F K R M L Y K Q L Q F L K R M L Y K Q L Q F L K K L L N L Q Q Q F L Q N L L N M Q Q Q F L T H	130 R V N E D K I S E K S K L R N S D K I A S K S D T R V N S D K I A E K S E L R V N E D K I S E K S K L R K N S E R F V K K A M R R K N Q E L Q K K A S K N D N K E K I Q E D F N K	10 L R N L A L L R N L V L L R N L V L L R N L A L L R N L A L L Y K I V S F V N R Y I
ToxN _{Ec} ToxN _{Pa} ToxN _{KP} ToxN _{Ss} ToxN _{Vk} ToxN _{Ser} TenpN _{Ec}	150 Q G K M Q G T	160 CDFAVLEEKYQH CNFSLLEEKYRC CNFSLLEEKYRC CDFSVLEEKYQH CDFKALEAARA CDFKALEAARA RAF RAF	170 1	180 	190 200 D M E I D D D T E E G E D M E E G E D M E I D D S E G L A A L A E K F S E P Q S D L Q D K L E L G L E D	210 <u>N S</u> S A L C G K Y S K R	

THA & Fean as THA B Par CBA TifA-FLAG homolog: α-FLAG α-RpoA

G

Figure S6

Table S1. Reagents, Assays, and Software

Critical commercial reagents, assays, and software used in this study.

Table S2. Protein sequences for ToxN, TenpN, and TifA homologs

Protein sequences for ToxN, TenpN, and TifA homologs used for the neutralization screen in Figure 1.

Table. S3. Strains

E. coli strains generated and used in this study.

Table S4. Plasmids

Plasmids generated and used in this study.

Table S5. Primers and Oligos

DNA and RNA oligos used in this study.

Table S6. G-blocks

G-block sequences used to clone ToxN and TifA homologs used for the neutralization screen in Figure 1.

Table S1. Reagents, Assays and Software

Antibodies				
6x-His epitope tag antibody (rabbit monoclonal)	Abcam	Cat #: AB200537		
DYKDDDDK epitope tag antibody (rabbit monoclonal)	Cell Signaling Technology	Cat #: 14793		
Purified anti- <i>E. coli</i> RNA Polymerase α antibody (mouse monoclonal)	BioLegend	Cat #: 663104		
Anti-FLAG M2 antibody (mouse monoclonal)	Sigma	Cat #: F1804		
Anti-FLAG M2 magnetic beads (mouse monoclonal)	Sigma	Cat #: 14793		
Goat anti-rabbit IgG (H+L) secondary antibody, HRP (goat polyclonal)	ThermoFisher Scientific	Ca t#: 32460		
Bacterial and Virus Strains				
For a complete list of bacterial strains used in this s	tudy, see Table S3.			
E. coli MG1655		ML6		
E. coli DH5α	Invitrogen	Cat #: EC0112		
E. coli TOP10	Invitrogen	Cat #: C404010		
T7 Express Competent E. coli (High Efficiency)	NEB	Cat #: C2566		
T4D	Gift from R. Young	phML-31		
RB69	Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval	phML-39		

T4 evo 3	Srikant et al., 2022	N/A
T4 evo 2 (<i>tifA F41S</i>)	Srikant <i>et al.</i> , 2022	N/A
Thu1/R2	This study	N/A
Chemicals, Peptides, and Recombinant Proteins		
Carbenicillin	Gold Bio	Cat #: C-103
Chloramphenicol	Millipore Sigma	Cat #: C0378
Elution Buffer (EB)	QIAGEN	Cat #: 19086
GlycoBlue Coprecipitant (15 mg/mL)	Thermo Fisher	Cat #: AM9515
Kapa Biosystems HiFi Hotstart Readymix	Fisher Scientific	Cat #: NC0465187
Methanol	Millipore Sigma	Cat #: 179337
PEG 8000	Hampton Research	Cat #: HR2-515
Phenol-chloroform-isoamyl alcohol (25:24:1)	Millipore Sigma	Cat #: 77617-100ML
Second Strand Buffer	Thermo Fisher	Cat #: 10812014
SUPERase•In RNase Inhibitor (20 U/mL)	Thermo Fisher	Cat #: AM2694
SuperScript III Reverse Transcriptase	Thermo Fisher	Cat #: 18080044
SYBR Gold Nucleic Acid Gel Stain (10,000X	Thermo Fisher	Cat #: S11494
Concentrate in DMSO)		
HpaI	NEB	Cat #: R0105
T4 DNA Ligase Reaction Buffer	NEB	Cat #: B0202
T4 DNA Ligase	NEB	Cat #: M0202

T4 Polynucleotide Kinase	NEB	Cat #: M0201
T4 DNA Polymerase	NEB	Cat #: M0203
Isopropyl-D-1-thiogalactopyranoside	Goldbio	Cat #: I2481C
L-arabinose	Fisher Scientific	Cat #: AC365185000
Anhydrotetracycline hydrochloride	Sigma-Aldrich	Cat #: 37919-100MG-R
2x Gibson Assembly Master Mix	NEB	Cat #: E2611
2x Novex TBE-Urea sample buffer	Invitrogen	Cat #: LC6876
Phenol solution saturated with 0.1 M ctrate buffer, $pH = 4.3 \pm 0.2$	Sigma-Aldrich	Cat #: P4682
Acid-Phenol:Chloroform, pH 4.5 (with IAA, 125:24:1)	Thermo Fisher	Cat #: AM9720
Sodium Acetate (3 M), pH 5.5, RNAse-free	Thermo Fisher	Cat #: AM9740
DEPC-treated water	Invitrogen	Cat #: AM9906
NdeI	NEB	Cat #: R0111
SapI	NEB	Cat #: R0569
AvrII	NEB	Cat #: R0174
SacI-HF	NEB	Cat #: R3156L
SalI-HF	NEB	Cat #: R3138L
10x CutSmart buffer	NEB	Cat #: B7204S
SIGMAFAST protease inhibitor cocktail tablets, EDTA-free	Sigma-Aldrich	Cat #: S8830

Chitin resin	NEB	Cat #: \$6651\$
UltraPure BSA (50 mg/mL)	Invitrogen	Cat #: AM2616
Critical Commercial Assays, Kits, and Equipme	nt	
SuperSignal West Femto Maximum Sensitivity Substrate	Thermo Fisher	Cat #: 34095
ZR Plasmid Miniprep - Classic	Zymo	Cat #: D4016
Zymoclean Gel DNA Recovery Kit	Zymo	Cat #: D4001
Low Range ssRNA Ladder	NEB	Cat #: N0364S
Chameleon Duo Pre-Stained Protein Ladder	Licor	Cat #: 928-60000
Chitin resin	NEB	Cat #: \$6651\$
NEBNext Ultra II RNA Library Prep Kit	NEB	Cat #: E7770
Novex 6% TBE-Urea gel	Invitrogen	Cat #: EC6865BOX
4-20% Mini-PROTEAN TGX gels	Biorad	Cat #: 4561093
Superose 6 Increase 10/300 GL size exclusion column	Cytiva	Cat #: GE29-0915-96
Deposited Data		
RNA-Sequencing	This study	GSE234211
Recombinant DNA		

For a complete list of plasmids and G-blocks generated for this study, see Table S4.

Oligonucleotides

For a complete list of oligonucleotides used for this study, see Table S5.

Software and Algorithms

ImageJ (v1.48)	NIH	https://imagej.nih.gov/ij/
bowtie2 (v2.1.0)	Langmead and Salzberg,	http://bowtie-
	2012	dex.shtml
pysam (v0.9.1.4)	N/A	https://github.com/pysam- developers/pysam
samtools (v0.1.19)	Li et al., 2009	http://samtools.sourceforge.net /
numpy (v1.13.1)	N/A	https://github.com/numpy/num py
biopython (v1.65)	N/A	https://github.com/biopython/b iopython
scipy (v0.18.1)	N/A	https://github.com/scipy/scipy
jupyter notebook	N/A	https://github.com/jupyter
AlphaFold2	Jumper et al., 2021	https://colab.research.google.c om/github/sokrypton/ColabFol d/blob/main/AlphaFold2.ipynb
PYMOL 2.1	Schrodinger LLC	https://pymol.org/2/

Geneious Prime	Dotmatics	https://www.geneious.com/
Prism 9	GraphPad	https://www.graphpad.com/
Curveball	Ram et al., 2019	https://curveball.yoavram.com /

Name	Description	Sequence (N→C-term)
torN-	torN from E_coli GCA_001012275	MKEVTISSSVIKVI KDEDDKVPNSEDPTVNNPK A FIGIV
$IOXIV_{Ec}$	10x1v 11011 E. 2011 GER_001012275	I EIEGHKVI ADI TSDKAWHANVKESSDAEEKI HENGVD
		DNOI GUNI KEMIPIJE A EVSTUDI DSMPDTPVKRMI VK
		OLOEIDVNEDVISEVSKLI DNLALOGDMOGTODEAVLE
toxN _{Kp}	toxN from K. pneumoniae (accession	MKFYTISSRYIEYLKGFEDKVPNSEDPTYQNPKAFIGIV
	number A0A331BKA2_KLEPN)	LEIQGHKYLAPLTSPKPWHSTIKESSPSFFKLHENGVPE
		NQLGLINLKFMIPIIEAEVSLLDLNGMPNTSYKRMLYK
		QLQFIRVNSDKIAEKSELLRNLVLQGKMQGTCNFSLLE
		EKYRDFGKEANDMEEGE
<i>tenpN_{Ec}</i>	tenpN from E. coli plasmid pWP4-	MSKQDYIQLRILIDQFYADNKGLQEALDGSNDGKVR
	S17-ESBL-08_3 (accession number	GYGIVVIDLNGLVFGIPLRSHLNHKFGFVSERSEGVKK
	A0A4T8VJ30_ECOLX)	GLDYTKALLIKKEEYVSRAYKIPTPEFTHINDNKEKIQE
		DFNKFVNRYIEANVKKDENILRNYRYSTLKNYHKELG
		LED
toxN _{Ss}	toxN from S. sonnei (accession	MKFYTISSSYIKYLKDFDDKVPNSEDPTYNNPKAFIGIV
	number A0A3U1U8P6_SHISO)	LEIEGHKYLAPLTSPKAWHANIKESSPAFFKLHENGVP
		DNQLGLINLKFMIPIIEAEVSLLDLDSMPDTPYKRMLYK
		QLQFIRVNEDKISEKSKLLRNLALQGRMQGTCDFSVLE
		EKYQHFGKKPEDMEIDD
$toxN_{Vk}$	toxN from V. kanaloae (accession	MKFYVVSNDYINHLKKVDARVPDNYDERRAYVGVV
	number A0A2N7J7F4_9VIBR)	MEVCGIKYLVPLTSHKTKHKDIKPGAQTVFKIHELNNE
		ANPLGMAQISNMLPVLDSEIQLLDMKVQSENKKKLLN
		LQQQFLRKNSERFVKKAMRLYELVTVKKVPGLVKNC
		CDFKALEAARAAYIPANQRQASSEGLAALAEKFNS
toxNsar	toxN from Serratia sp. SRS-8-S-2018	MKFYVIADSYINHLVACDOHVYKNKGTRPYIGVVLEV
ber.	(accession number	NGVEFLAPLTSYKEKODKIPNSSPLIFKMYELGNEENK
	A0A506VIT7 9GAMM)	LGMVOVNMVPVLSSEVELLDLSTODAKVONLLNMO
		OOFI RKNOFFI OKKASKI VKIVSOGVATGIVNVCCDE
		QUITURIQUELQKKASKLIKIVSQUVATUIVIVCCDF

Table S2. Protein sequences for ToxN, TenpN, and TifA homologs

		KALEAAMKTYVPPVAQESAVPTVAQEASSEPQSDLQD
		KLSALCGKYSKR
$toxN_{Pa}$	toxN from P. atrosepticum plasmid	MKFYTISSKYIEYLKEFDDKVPNSEDPTYQNPKAFIGIV
	pECA1039	LEIQGHKYLAPLTSPKKWHNNVKESSLSCFKLHENGVP
		ENQLGLINLKFMIPIIEAEVSLLDLGNMPNTPYKRMLY
		KQLQFIRANSDKIASKSDTLRNLVLQGKMQGTCNFSLL
		EEKYRDFGKEAEDTEEGE
$tifA_{T2}$	tifA from Escherichia phage T2	MHIVLFKPTPYNVRKNTQFKALIADTWELVLDIPAEES
		PPFGRVEFIKFAVRPTKRQIRQCKRYFRKIVKLEKQFVT
		CDYAKVLK
tifA _{T4}	tifA from <i>Escherichia</i> phage 14	
	(NCBI: NC_0008_66.4)	
		CDYAEILK
tifA _{T6}	<i>tifA</i> from <i>Escherichia</i> phage T6	MHIVLFKPTPYNVRKNTOFKALIADTWELVLDIPAEES
<i>viji</i> 110	(EMBL-EBI:AP018814)	PPFGRVEFIKFAVRPTKROIROCKRYFRKIVNLEKOFVT
		CDYAKVIK
tifA _{RB69}	tifA from Escherichia phage RB69	MYSTVFKPSTYEFASTTQWKALILEGWELMMDCEASE
	(NCBI:NC_004928.1)	KFPHGKVDFVKFAVRPTKRQIRQEKRKFRKSLK
$tifA_{EcS1}$	tifA from Escherichia phage EcS1	MKTYIHYYPGFVYAKGTKAEYSFKASFELIIDQDASDK
	(EMBL-EBI: LC371242)	LRFGCVSAKVFVTRPSKRQIRRQQKEFRKEMKALELY
		EKEDL
4:50	tifd from Eachanishia phone	MEVI TOESV AVVSVSCOWEVEIDSDSDVVCVECDVTT
ujAvB_EcoM_0	P Each 005 (EMDI	
05	VB_ECOM_005 (EMBL-	QATVARFI KRQIAKLKKANRQLIKKREQTECHVTOL
	EDI.IMR293203)	
tifA _{vB EcoM}	<i>tifA</i> from <i>Escherichia</i> phage	MIIQIMKPVKSGFWDKSFGKHKFYADRVNSRWELIISQ
VR7	vB EcoM VR7	QTKGQMDFVEFYEFDVRPTKRQIRQCKKAFRVYVRAS
	(NCBI:NC 014792.1)	VLRRQRQLAMEPQLVTLDYAKVK
		- ~ ~
tifA _{JS98}	tifA from Escherichia phage JS98	MNIVLMKPTPSSFWNKSFGKHNMFIQRTVSSWELVLS
	(NCBI:NC_010105.1)	VGHNDYEQEYVEFFEFPVKPTKRQIRQTKRKFRKIYLE
		DSLK

tifA _{PM2}	tifA from Pectobacterium phage PM2	MNIYIMYLDRPHRPPYKSNMGWQVYIETPCSDSLPWG	
	(NCBI: NC_028940.1)	LVDVFNYSTKPTKRQIRKAKKAFYKNIKSEIESRKMM	
		MALLERD	
$tifA_{vB_PatP_C}$	tifA from Pectobacterium phage	MRTIKTSVMFFPADPVVVTKTKRDWMLADMASPAQW	
<i>B4</i>	vB_PatP_CB4 (EMBL-	SIAVDFIVDANPMSASIHQYAFVAKPTSKQVRQCKRKA	
	EBI:KY549659)	VIEHERELAQFMADYSHYL	

Table S3. Strains

Name	Genotype	Source
ML6	MG1655	
DH5a	Cloning strain	Invitrogen
TOP10	Cloning strain	
ML3326	MG1655 pBAD33-toxN pEXT20-toxI	Guegler and Laub, 2021
ML3778	MG1655 pBAD33-toxN pEXT20-tifA _{T2}	Srikant, Guegler, and Laub, 2022
ML3779	MG1655 pBAD33-toxN pEXT20-tifA _{T4}	Srikant, Guegler, and Laub, 2022
ML3780	MG1655 pBAD33-toxN pEXT20-tifA _{T6}	Srikant, Guegler, and Laub, 2022
ML3781	MG1655 pBAD33-toxN pEXT20-tifA _{RB69}	Srikant, Guegler, and Laub, 2022
ML4188	MG1655 pEXT20- <i>tifA</i> _{vB_PatP_CB4} -FLAG	This study
ML4195	MG1655 pEXT20- <i>tifA</i> _{vB_EcoM_005} -FLAG	This study
gCKG-517	MG1655 pBAD33-toxN pEXT20- tifA _{RB69} (P53A T54A)	This study
gCKG-646	MG1655 pBAD33- <i>toxN</i> pEXT20- <i>tifA_{RB69}(K55A R56A R59A)</i>	This study
ML4118	MG1655 pBAD33-toxN(K111N) pEXT20-tifA _{T4}	This study
ML4119	MG1655 pBAD33-toxN(K111R) pEXT20-tifA _{T4}	This study
ML4120	MG1655 pBAD33- <i>toxN</i> (<i>L118S</i>) pEXT20- <i>tifA</i> _{T4}	This study
ML4121	MG1655 pBAD33-toxN(Y115H) pEXT20-tifA _{T4}	This study
ML4122	MG1655 pBAD33-toxN(K111N) pEXT20-tifA _{RB69}	This study
ML4123	MG1655 pBAD33-toxN(K111R) pEXT20-tifA _{RB69}	This study
ML4124	MG1655 pBAD33-toxN(L118S) pEXT20-tifA _{RB69}	This study

ML4125	MG1655 pBAD33-toxN(Y115H) pEXT20-tifA _{RB69}	This study
ML4126	MG1655 pBAD33-toxN(K111N) pEXT20-toxI	This study
ML4127	MG1655 pBAD33-toxN(K111R) pEXT20-toxI	This study
ML4128	MG1655 pBAD33-toxN(L118S) pEXT20-toxI	This study
ML4129	MG1655 pBAD33-toxN(Y115H) pEXT20-toxI	This study
gCKG-472	MG1655 pBAD33-toxN _{Ec} pEXT20-tifA _{EcS1}	This study
gCKG-473	MG1655 pBAD33-toxN _{Ec} pEXT20-tifA _{vB_EcoM_005}	This study
gCKG-568	MG1655 pBAD33-toxN _{Ec} pEXT20-tifA _{vB_EcoM_VR7}	This study
gCKG-474	MG1655 pBAD33-toxN _{Ec} pEXT20-tifA _{JS98}	This study
gCKG-471	MG1655 pBAD33-toxN _{Ec} pEXT20-tifA _{PM2}	This study
gCKG-475	MG1655 pBAD33-toxN _{Ec} pEXT20-tifA _{vB_PatP_CB4}	This study
gCKG-252	MG1655 pBAD33-toxN _{Pa} pEXT20-tifA _{T2}	This study
gCKG-253	MG1655 pBAD33-toxN _{Pa} pEXT20-tifA _{T4}	This study
gCKG-254	MG1655 pBAD33-toxN _{Pa} pEXT20-tifA _{T6}	This study
gCKG-255	MG1655 pBAD33-toxN _{Pa} pEXT20-tifA _{RB69}	This study
gCKG-552	MG1655 pBAD33-toxN _{Pa} pEXT20-tifA _{EcS1}	This study
gCKG-560	MG1655 pBAD33-toxN _{Pa} pEXT20-tifA _{EcoM_005}	This study
gCKG-569	MG1655 pBAD33-toxN _{Pa} pEXT20-tifA _{EcoM_VR7}	This study
gCKG-577	MG1655 pBAD33-toxN _{Pa} pEXT20-tifA _{JS98}	This study
gCKG-257	MG1655 pBAD33-toxN _{Pa} pEXT20-tifA _{PM2}	This study
gCKG-258	MG1655 pBAD33-toxN _{Pa} pEXT20-tifA _{PatP_CB4}	This study

gCKG-521	MG1655 pBAD33- $toxN_{Kp}$ pEXT20- $tifA_{T2}$	This study
gCKG-528	MG1655 pBAD33- $toxN_{Kp}$ pEXT20- $tifA_{T4}$	This study
gCKG-534	MG1655 pBAD33-toxN _{Kp} pEXT20-tifA _{T6}	This study
gCKG-540	MG1655 pBAD33-toxN _{Kp} pEXT20-tifA _{RB69}	This study
gCKG-555	MG1655 pBAD33-toxN _{Kp} pEXT20-tifA _{EcS1}	This study
gCKG-563	MG1655 pBAD33-toxN _{Kp} pEXT20-tifA _{vB_EcoM_005}	This study
gCKG-572	MG1655 pBAD33-toxN _{Kp} pEXT20-tifA _{vB_EcoM_VR7}	This study
gCKG-580	MG1655 pBAD33-toxN _{Kp} pEXT20-tifA _{JS98}	This study
gCKG-547	MG1655 pBAD33-toxN _{Kp} pEXT20-tifA _{PM2}	This study
gCKG-587	MG1655 pBAD33-toxN _{Kp} pEXT20-tifA _{vB_PatP_CB4}	This study
gCKG-524	MG1655 pBAD33-toxN _{Ss} pEXT20-tifA _{T2}	This study
gCKG-530	MG1655 pBAD33-toxN _{Ss} pEXT20-tifA _{T4}	This study
gCKG-536	MG1655 pBAD33-toxN _{Ss} pEXT20-tifA _{T6}	This study
gCKG-542	MG1655 pBAD33-toxN _{Ss} pEXT20-tifA _{RB69}	This study
gCKG-557	MG1655 pBAD33-toxN _{Ss} pEXT20-tifA _{EcS1}	This study
gCKG-565	MG1655 pBAD33-toxN _{Ss} pEXT20-tifA _{vB_EcoM_005}	This study
gCKG-574	MG1655 pBAD33-toxN _{Ss} pEXT20-tifA _{vB_EcoM_VR7}	This study
gCKG-582	MG1655 pBAD33-toxN _{Ss} pEXT20-tifA _{JS98}	This study
gCKG-549	MG1655 pBAD33-toxN _{Ss} pEXT20-tifA _{PM2}	This study
gCKG-589	MG1655 pBAD33-toxN _{Ss} pEXT20-tifA _{vB_PatP_CB4}	This study
gCKG-525	MG1655 pBAD33-toxN _{Vk} pEXT20-tifA _{T2}	This study

gCKG-531	MG1655 pBAD33- <i>toxN_{Vk}</i> pEXT20- <i>tifA_{T4}</i>	This study
gCKG-537	MG1655 pBAD33-toxNvk pEXT20-tifA ₇₆	This study
gCKG-543	MG1655 pBAD33-toxN _{Vk} pEXT20-tifA _{RB69}	This study
gCKG-558	MG1655 pBAD33-toxN _{Vk} pEXT20-tifA _{EcS1}	This study
gCKG-566	MG1655 pBAD33-toxNvk pEXT20-tifAvB_EcoM_005	This study
gCKG-575	MG1655 pBAD33-toxN _{Vk} pEXT20-tifA _{vB_EcoM_VR7}	This study
gCKG-583	MG1655 pBAD33-toxNvk pEXT20-tifA _{JS98}	This study
gCKG-550	MG1655 pBAD33-toxN _{Vk} pEXT20-tifA _{PM2}	This study
gCKG-590	MG1655 pBAD33-toxN _{Vk} pEXT20-tifA _{vB_PatP_CB4}	This study
gCKG-526	MG1655 pBAD33-toxN _{Ser.} pEXT20-tifA _{T2}	This study
gCKG-532	MG1655 pBAD33-toxN _{Ser.} pEXT20-tifA _{T4}	This study
gCKG-538	MG1655 pBAD33-toxN _{Ser.} pEXT20-tifA _{T6}	This study
gCKG-544	MG1655 pBAD33-toxN _{Ser.} pEXT20-tifA _{RB69}	This study
gCKG-559	MG1655 pBAD33-toxN _{Ser} . pEXT20-tifA _{EcS1}	This study
gCKG-567	MG1655 pBAD33-toxN _{Ser.} pEXT20-tifA _{vB_EcoM_005}	This study
gCKG-576	MG1655 pBAD33-toxN _{Ser} . pEXT20-tifA _{vB_EcoM_VR7}	This study
gCKG-584	MG1655 pBAD33-toxN _{Ser.} pEXT20-tifA _{JS98}	This study
gCKG-551	MG1655 pBAD33-toxN _{Ser.} pEXT20-tifA _{PM2}	This study
gCKG-591	MG1655 pBAD33-toxN _{Ser} . pEXT20-tifA _{vB_PatP_CB4}	This study
gCKG-523	MG1655 pBAD33- <i>tenpN_{Ec}</i> pEXT20- <i>tifA_{T2}</i>	This study
gCKG-529	MG1655 pBAD33- <i>tenpN_{Ec}</i> pEXT20- <i>tifA_{T4}</i>	This study

gCKG-535	MG1655 pBAD33- <i>tenpN_{Ec}</i> pEXT20- <i>tifA_{T6}</i>	This study
gCKG-541	MG1655 pBAD33- <i>tenpN_{Ec}</i> pEXT20- <i>tifA_{RB69}</i>	This study
gCKG-556	MG1655 pBAD33-tenpN _{Ec} pEXT20-tifA _{EcS1}	This study
gCKG-564	MG1655 pBAD33- <i>tenpN_{Ec}</i> pEXT20- <i>tifA_{vB_EcoM_005}</i>	This study
gCKG-573	MG1655 pBAD33- <i>tenpN_{Ec}</i> pEXT20- <i>tifA_{vB_EcoM_VR7}</i>	This study
gCKG-581	MG1655 pBAD33- <i>tenpN_{Ec}</i> pEXT20- <i>tifA_{JS98}</i>	This study
gCKG-548	MG1655 pBAD33- <i>tenpN_{Ec}</i> pEXT20- <i>tifA_{PM2}</i>	This study
gCKG-588	MG1655 pBAD33- <i>tenpN_{Ec}</i> pEXT20- <i>tifA_{vB_PatP_CB4}</i>	This study
ML4197	MG1655 pBAD33-toxN-chitin binding domain pEXT20	This study
ML4198	MG1655 pBAD33- <i>toxN</i> -chitin binding domain pEXT20- <i>tifA</i> _{RB69}	This study
ML4189	MG1655 pBAD33 pEXT20- <i>tifA_{RB69}</i> -FLAG	This study
ML4190	MG1655 pBAD33-toxN pEXT20-tifA _{RB69} -FLAG	This study
ML4192	MG1655 pBAD33 pEXT20- <i>tifA_{RB69}</i> -MBP-His ₆	This study
ML4193	MG1655 pBAD33-toxN pEXT20-tifA _{RB69} -MBP-His ₆	This study
ML3328	MG1655 pBR322-toxIN	Guegler and Laub, 2021
ML4130	MG1655 pBR322-toxI-toxN(L118S)	This study
ML4131	MG1655 pBR322-toxI-toxN(Y115H)	This study
ML4132	MG1655 pBR322-toxI-toxN(K111N)	This study
ML4133	MG1655 pBR322-toxI-toxN(K111R)	This study
ML4134	MG1655 pBR322- <i>tox1-toxN</i> (<i>L118S</i>) pKVS45- <i>tifA</i> _{T4}	This study
ML4135	MG1655 pBR322-toxI-toxN(Y115H) pKVS45-tifA _{T4}	This study

ML4136	MG1655 pBR322- $toxI$ - $toxN(K111N)$ pKVS45- $tifA_{T4}$	This study
ML4137	MG1655 pBR322- $toxI$ - $toxN(K111R)$ pKVS45- $tifA_{T4}$	This study
ML4138	MG1655 pBR322-toxI-toxN(L118S) pKVS45-tifA _{RB69}	This study
ML4139	MG1655 pBR322-toxI-toxN(Y115H) pKVS45-tifA _{RB69}	This study
ML4140	MG1655 pBR322-toxI-toxN(K111N) pKVS45-tifA _{RB69}	This study
ML4141	MG1655 pBR322-toxI-toxN(K111R) pKVS45-tifA _{RB69}	This study
ML4142	MG1655 pBR322-toxI-toxN(L118S) pKVS45	This study
ML4143	MG1655 pBR322-toxI-toxN(Y115H) pKVS45	This study
ML4144	MG1655 pBR322-toxI-toxN(K111N) pKVS45	This study
ML4145	MG1655 pBR322-toxI-toxN(K111R) pKVS45	This study
ML3774	MG1655 pBR322-toxIN pKVS45-tifA _{T4}	Srikant, Guegler, and Laub, 2022
ML3786	MG1655 pBR322-toxI-toxN-His ₆ pKVS45-tifA _{T4} -FLAG	Srikant, Guegler, and Laub, 2022
ML4171	MG1655 pBR322- <i>toxI-toxN</i> -His ₆ pKVS45- <i>tifA_{T4}(P53A</i> <i>T54A)</i> -FLAG	This study
ML4172	MG1655 pBR322- <i>toxI-toxN</i> -His ₆ pKVS45- <i>tifA_{T4}(K55A</i> <i>R56A R59A)</i> -FLAG	This study
ML4156	MG1655 pBR322- <i>toxI-toxN</i> -His ₆ pKVS45- <i>tifA_{T4}(F41S)</i> - FLAG	This study
ML4157	MG1655 pBR322- <i>toxI-toxN</i> -His ₆ pKVS45- <i>tifA_{T4}(F41H)</i> - FLAG	This study
ML4185	MG1655 pBR322- <i>toxI-toxN(K55A)</i> -His ₆ pKVS45- <i>tifA_{T4}</i> -FLAG	This study
ML4158	T7 express pTXB1-toxN pACYC-tifA _{RB69}	This study

ML4159	T7 express pTXB1-toxN pACYC-tifA _{RB69} -FLAG	This study
ML4177	T7 express pTXB1- <i>toxN</i> pACYC Duet- <i>toxI-tifA</i> _{RB69}	This study
ML4163	T7 express pET- <i>tifA_{RB69}</i> -MBP-His ₆	This study; parental vector from Addgene (Plasmid #37237)
ML4164	T7 express pET- <i>tifA_{RB69}(P53A T54A)</i> -MBP-His ₆	This study; parental vector from Addgene (Plasmid #37237)
ML4165	T7 express pET- <i>tifA_{RB69}(K55A R56A R59A)</i> -MBP-His ₆	This study; parental vector from Addgene (Plasmid #37237)
ML3343	DH5 α pBAD33- <i>toxN</i> (aka <i>toxN_{Ec}</i>)	Guegler and Laub, 2021
ML3344	DH5a pBAD33	Guegler and Laub, 2021
gCKG-407	DH5a pBAD33-toxN(K111N)	This study
gCKG-408	DH5a pBAD33-toxN(K111R)	This study
gCKG-410	DH5a pBAD33-toxN(Y115H)	This study
gCKG-409	DH5a pBAD33-toxN(L118S)	This study
ML4100	DH5a pBAD33-toxN _{Pa}	This study
ML4101	DH5 α pBAD33-toxN _{Kp}	This study
ML4102	DH5a pBAD33-toxN _{Ss}	This study
ML4104	DH5a pBAD33-toxN _{Vk}	This study
ML4105	DH5a pBAD33-toxN _{Ser} .	This study
ML4106	DH5 α pBAD33- <i>tenpN</i> _{Ec}	This study
ML3345	DH5a pEXT20-toxI	Guegler and Laub, 2021
ML1978	DH5a pEXT20	E. coli Genetic Stock Center, #12325
ML3814	TOP10 pEXT20- $tifA_{T2}$	Srikant, Guegler, and Laub, 2022

ML3815	TOP10 pEXT20- <i>tifA</i> _{$T4$}	Srikant, Guegler, and Laub, 2022
ML3816	TOP10 pEXT20- <i>tifA</i> ₇₆	Srikant, Guegler, and Laub, 2022
ML3817	DH5α pEXT20- <i>tifA</i> _{RB69}	Srikant, Guegler, and Laub, 2022
ML4173	DH5 α pEXT20- <i>tifA</i> _{RB69} (P53A T54A)	This study
ML4174	DH5α pEXT20- <i>tifA</i> _{RB69} (K55A R56A R59A)	This study
ML4146	DH5 α pEXT20- <i>tifA</i> _{T4} (F41S)	This study
ML4147	DH5 α pEXT20- <i>tifA</i> _{T4} (F41H)	This study
ML4148	DH5 α pEXT20- <i>tifA</i> _{RB69} (H41F)	This study
ML4149	DH5 α pEXT20- <i>tifA</i> _{RB69} (H41S)	This study
ML4107	DH5 α pEXT20- <i>tifA</i> _{EcS1}	This study
ML4108	DH5α pEXT20- <i>tifA</i> _{vB_EcoM_005}	This study
ML4109	DH5α pEXT20- <i>tifA</i> _{vB_EcoM_VR7}	This study
ML4110	DH5a pEXT20- <i>tifA</i> _{JS98}	This study
ML4111	DH5α pEXT20- <i>tifA</i> _{PM2}	This study
ML4112	DH5α pEXT20- <i>tifA</i> _{vB_PatP_CB4}	This study
ML3346	DH5a pBR322-toxIN	Guegler and Laub, 2021
ML4114	DH5a pBR322-toxI-toxN(K111N)	This study
ML4115	DH5a pBR322-tox1-toxN(K111R)	This study
ML4116	TOP10 pBR322-toxI-toxN(Y115H)	This study
ML4117	TOP10 pBR322-toxI-toxN(L118S)	This study
ML3349	DH5a pBR322-toxI-toxN-His ₆	Guegler and Laub, 2021

ML3810	DH5 α pKVS45- <i>tifA</i> _{T4}	Srikant, Guegler, and Laub, 2022
ML3821	TOP10 pKVS45- <i>tifA</i> ₇₄ -FLAG	Srikant, Guegler, and Laub, 2022
ML4175	DH5α pKVS45- <i>tifA</i> _{T4} (P53A T54A)-FLAG	This study
ML4176	DH5α pKVS45- <i>tifA</i> _{T4} (K55A R56A R59A)-FLAG	This study
ML4150	DH5α pKVS45- <i>tifA</i> _{T4} (F41S)-FLAG	This study
ML4151	DH5α pKVS45- <i>tifA</i> _{T4} (F41H)-FLAG	This study
ML4160	DH5α pTXB1-toxN	This study
ML4161	DH5α pACYC- <i>tifA</i> _{RB69}	This study; parental vector is pACYC Duet
ML4180	DH5α pACYC Duet- <i>toxI-tifA</i> _{RB69}	
ML4162	DH5α pACYC- <i>tifA_{RB69}</i> -FLAG	
ML4166	DH5α pET- <i>tifA_{RB69}</i> -MBP-His ₆	This study; parental vector from Addgene (Plasmid #37237)
ML4167	DH5α pET- <i>tifA_{RB69}(P53A T54A)</i> -MBP-His ₆	This study; parental vector from Addgene (Plasmid #37237)
ML4168	DH5α pET- <i>tifA_{RB69}(K55A R56A R59A)</i> -MBP-His ₆	This study; parental vector from Addgene (Plasmid #37237)
ML3347	TOP10 pBR322-toxI-toxN(K55A)	Guegler and Laub, 2021
ML4184	DH5α pBR322-toxI-toxN(K55A)-His ₆	This study
ML4186	DH5α pEXT20- <i>tifA_{RB69}</i> -FLAG	This study
ML4191	DH5α pEXT20- <i>tifA_{RB69}</i> -MBP-His ₆	This study
ML4187	DH5α pEXT20- <i>tifA</i> _{vB_PatP_CB4} -FLAG	This study
ML4194	DH5α pEXT20- <i>tifA</i> _{vB_EcoM_005} -FLAG	This study

ML4196	DH5a pBAD33-toxN-chitin binding domain	This study

Table S4. Plasmids

Plasmid	Description	Source
pBAD33	Arabinose inducible vector	Guzman et al., 1995
pBAD33-toxN (toxN _{Ec})	Arabinose inducible ToxN expression	Guegler and Laub, 2021
pBAD33-toxN(K111N)	Arabinose inducible ToxN escape mutant expression	This study
pBAD33-toxN(K111R)	Arabinose inducible ToxN escape mutant expression	This study
pBAD33-toxN(Y115H)	Arabinose inducible ToxN escape mutant expression	This study
pBAD33-toxN(L118S)	Arabinose inducible ToxN escape mutant expression	This study
pBAD33- <i>toxN</i> -chitin binding domain	Arabinose inducible ToxN fusion protein expression	This study
pBAD33-toxN _{Pa}	Arabinose inducible ToxN expression	This study
pBAD33-toxN _{Kp}	Arabinose inducible ToxN expression	This study
pBAD33-toxN _{Ss}	Arabinose inducible ToxN expression	This study
pBAD33-toxN _{Vk}	Arabinose inducible ToxN expression	This study
pBAD33-toxN _{Ser}	Arabinose inducible ToxN expression	This study
pBAD33-tenpN _{Ec}	Arabinose inducible ToxN expression	This study
pEXT20	IPTG inducible vector	E. coli Genetic Stock Center, #12325
pEXT20-toxI	IPTG inducible <i>toxI</i> expression	Guegler and Laub, 2021
pEXT20- <i>tifA</i> _{T2}	IPTG inducible <i>tifA</i> expression	Srikant, Guegler, and Laub, 2022

pEXT20- <i>tifA</i> _{T4}	IPTG inducible <i>tifA</i> expression	Srikant, Guegler, and Laub,
		2022
pEXT20-tifA _{T6}	IPTG inducible <i>tifA</i> expression	Srikant, Guegler, and Laub,
		2022
pEXT20-tifA _{RB69}	IPTG inducible <i>tifA</i> expression	Srikant, Guegler, and Laub,
		2022
pEXT20-tifA _{RB69} (P53A T54A)	IPTG inducible <i>tifA</i> expression	This study
pEXT20-tifA _{RB69} (K55A R56A	IPTG inducible <i>tifA</i> expression	This study
R59A)		
pEXT20- <i>tifA</i> _{T4} (F41S)	IPTG inducible <i>tifA</i> expression	This study
pEXT20- <i>tifA</i> _{T4} (F41H)	IPTG inducible <i>tifA</i> expression	This study
pEXT20- <i>tifA_{RB69}</i> (H41F)	IPTG inducible <i>tifA</i> expression	This study
pEXT20- <i>tifA_{RB69}</i> (H41S)	IPTG inducible <i>tifA</i> expression	This study
pEXT20- <i>tifA_{RB69}</i> -FLAG	IPIG inducible <i>tifA</i> -FLAG expression	This study
"EVT20 4:04 MDD LL'a	IDTC in ducible (14 MDD His composion	This study
pEA120- <i>ttjA_{RB69}-WBP</i> -HIS6	IPIG inducible <i>mjA</i> -MBP-His ₆ expression	This study
nFXT20- <i>tif</i> A _E a	IPTG inducible <i>tifA</i> expression	This study
$pEN120 ign_{ECSI}$		This study
pEXT20-tifA _{VB EcoM 005}	IPTG inducible <i>tifA</i> expression	This study
	J 1	5
pEXT20-tifA _{vB_EcoM_VR7}	IPTG inducible <i>tifA</i> expression	This study
pEXT20-tifA _{JS98}	IPTG inducible <i>tifA</i> expression	This study
pEXT20-tifA _{PM2}	IPTG inducible <i>tifA</i> expression	This study
pEXT20-tifAvB_PatP_CB4	IPTG inducible <i>tifA</i> expression	This study
pEXT20- <i>tifA</i> _{vB_PatP_CB4} -FLAG	IPTG inducible <i>tifA</i> -FLAG expression	This study
pEXT20- <i>tifA</i> _{vB_EcoM_005} -FLAG	IPTG inducible <i>tifA</i> -FLAG expression	This study

pBR322-toxIN	Full <i>toxIN</i> locus	Guegler and Laub, 2021
pBR322-toxI-toxN-His ₆	toxIN locus with C-terminal His6-tagged ToxN	Guegler and Laub, 2021
pBR322-toxI-toxN(K111N)	toxIN locus with TifA-insensitive ToxN	This study
pBR322-toxI-toxN(K111R)	toxIN locus with TifA-insensitive ToxN	This study
pBR322-toxI-toxN(Y115H)	toxIN locus with TifA-insensitive ToxN	This study
pBR322-toxI-toxN(L118S)	toxIN locus with TifA-insensitive ToxN	This study
pBR322-toxI-toxN(K55A)-His ₆	toxIN locus with nuclease-inactive, His ₆ -tagged ToxN	This study
pKVS45- <i>tifA</i> _{T4}	aTc inducible TifA expression	This study
pKVS45- <i>tifA_{T4}</i> -FLAG	aTc inducible expression of C-terminal FLAG- tagged TifA	This study
pKVS45- <i>tifA</i> _{T4} (P53A T54A)-	aTc inducible expression of C-terminal FLAG-	This study
FLAG	tagged TifA mutant	
pKVS45- <i>tifA</i> _{T4} (K55A R56A	aTc inducible expression of C-terminal FLAG-	This study
<i>R59A)-</i> FLAG	tagged TifA mutant	
pKVS45 <i>-tifA_{T4}(F41S)</i> -FLAG	aTc inducible expression of C-terminal FLAG- tagged TifA mutant	This study
pKVS45- <i>tifA_{T4}(F41H)</i> -FLAG	aTc inducible expression of C-terminal FLAG- tagged TifA mutant	This study
pTXB1-toxN	IPTG inducible ToxN (with C-term chitin binding domain) overexpression driven by T7 RNA	This study
	polymerase	
pACYC- <i>tifA</i> _{RB69}	IPTG inducible TifA overexpression driven by T7 RNA polymerase	This study

pACYC- <i>tifA</i> _{RB69} -FLAG	IPTG inducible TifA-FLAG overexpression driven	This study
	by T7 RNA polymerase	
pACYC Duet-toxI-tifA _{RB69}	IPTG inducible <i>toxI</i> and TifA overexpression driven	This study
	by T7 RNA polymerase	
pET-tifA _{RB69} -MBP-His ₆	IPTG inducible TifA-MBP-His ₆ overexpression	This study
	driven by T7 RNA polymerase	
pET- <i>tifA_{RB69}(P53A T54A)</i> -	IPTG inducible TifA(P53A T54A)-MBP-His ₆	This study
MBP-His ₆	overexpression driven by T7 RNA polymerase	
pET-tifA _{RB69} (K55A R56A	IPTG inducible TifA(K55A R56A R59A)-MBP-	This study
R59A)-MBP-His ₆	His ₆ overexpression driven by T7 RNA polymerase	
pACYC Duet-toxI-tifA _{RB69} -	IPTG inducible toxI and TifA-FLAG overexpression	This study
FLAG	driven by T7 RNA polymerase	
pACYC Duet-toxI-tifA _{RB69}	IPTG inducible <i>toxI</i> and TifA(K55A R56A R59A)	This study
(K55A R56A R59A)	overexpression driven by T7 RNA polymerase	

Table S5. Primers and Oligos

Number	Purpose	Sequence $(5' \rightarrow 3')$
CKG-499	Construct pBR322-toxI-toxN(Y115H)	CATAAACAGTTACAATTTATTCGTGTAAATGAAGAT
	(forward)	AAAATATCTG
CKG-500	Construct pBR322-toxI-toxN(Y115H)	TAGCATTCTTTTGTAAGGCGTATCAGGCATG
	(reverse)	
CKG-501	Construct pBR322-toxI-toxN(L118S)	AGCCAATTTATTCGTGTAAATGAAGATAAAATATCT
	(forward)	GAAAAATCAAAACTATTAAG
CKG-502	Construct pBR322-tox1-toxN(L118S)	CTGTTTATATAGCATTCTTTTGTAAGGCGTATCAGGC
	(reverse)	
CKG-545	Construct pBR322-toxI-toxN(K111N)	AACAGAATGCTATATAAACAGTTACAATTTATTCGT
	(forward)	GTAAATGAAG
CKG-546	Construct pBR322-toxI-	GTAAGGCGTATCAGGCATGCTATCCAGATC
	<i>toxN(K111N/K111R)</i> (reverse)	
CKG-547	Construct pBR322-toxI-toxN(K111R)	CGTAGAATGCTATATAAACAGTTACAATTTATTCGT
	(forward)	GTAAATGAAG
CKG-597	Construct pEXT20- <i>tifA</i> _{T4} (F41S)	TCTGGTCGAGTGGAATTTATTAAGTTTGCTGTTCGCC
	(forward)	
CKG-598	Construct pEXT20- <i>tifA</i> _{T4} (F41S) and	TGGAGGGCTTTCTTCTGCTGGAATATC
	pEXT20- <i>tifA</i> _{$T4$} (F41H) (reverse)	
CKG-599	Construct pEXT20- <i>tifA</i> _{T4} (F41H)	CATGGTCGAGTGGAATTTATTAAGTTTGCTGTTCGCC
	(forward)	
CKG-600	Construct pEXT20- <i>tifA</i> _{RB69} (H41F)	TTTGGCAAAGTGGACTTCGTTAAATTTGCTGTAC
	(forward)	
CKG-601	Construct pEXT20- <i>tifA</i> _{RB69} (H41F)	TGGAAACTTTTCAGATGCTTCACAGTCCATC
	and pEXT20- <i>tifA_{RB69}(H41S)</i> (reverse)	

CKG-602	Construct pEXT20- <i>tifA</i> _{RB69} (H41S)	TCTGGCAAAGTGGACTTCGTTAAATTTGCTGTAC
	(forward)	
CKG-625	Construct pEXT20- <i>tifA</i> _{RB69} (K55A	CGTCCGACTGCGGCGCAGATTG
	<i>R56A R59A)</i> (forward)	
CKG-626	Construct pEXT20- <i>tifA</i> _{RB69} (K55A	TACAGCAAATTTAACGAAGTCCACTTTGCCG
	R56A R59A) (reverse)	
CKG-603	Construct pKVS45- <i>tifA</i> _{T4} (P53A	GCGGCAAAGAGGCAGATTCGCCAATGCAAAAG
	T54A) (forward)	
CKG-604	Construct pKVS45- <i>tifA</i> _{T4} (P53A	GCGAACAGCAAACTTAATAAATTCCACTCGACC
	T54A) (reverse)	
CKG-523	Construct pKVS45- <i>tifA</i> _{T4} (R52A	CGCAATCTGCGCCGCCGTAGGCGCAACAGCAAACTT
	K55A R56A R59A) (forward)	AATAAATTCCACTCGACCAAATGG
CKG-524	Construct pKVS45- <i>tifA</i> _{T4} (R52A	CAATGCAAAAGATACTTTCGTAAAATCGTCAAGTTA
	K55A R56A R59A) (reverse)	GAGAAAC
CKG-411	Construct pKVS45- <i>tifA</i> _{T4} (R52A	TTACTTGTCATCGTCGTCCTTGTAGTCGCTTCCGCTT
	K55A R56A R59A)-FLAG(forward)	CCTTTTAAAATTTCTGCGTAATCACATGTTACAAACT
		GTTTC
CKG-404	Construct pKVS45- <i>tifA</i> _{T4} (R52A	TTATGCATAATCCGGAACATCATACGGATAGCTTCC
	K55A R56A R59A)-FLAG (reverse)	GCTTCCTTTTAAAATTTCTGCGTAATCACATGTTACA
		AACTGTTTC
CKG-627	Construct pKVS45- <i>tifA</i> _{T4} (K55A	CGCCCTACGGCGGCGCAGATTG
	<i>R56A R59A)</i> (forward)	
CKG-628	Construct pKVS45- <i>tifA</i> _{T4} (K55A	AACAGCAAACTTAATAAATTCCACTCGACCAAATGG
	<i>R56A R59A)</i> (reverse)	
CKG-413	Construct pTXB1-toxN (forward)	GGTGGTCATATGAAATTTTACACAATATCAAGCAGT
		TACATAAAATACCTG
CKG-415	Construct pTXB1-toxN (reverse)	GGTGGTTGCTCTTCCGCAGCGATCGTCTATTTCCATG
		TCTTCAGGTTTTTTACCG

CKG-416	PCR-amplify <i>toxI</i> for construction of	CCCTGTAGAAATAATTTTGTTTAACTTTAATCCTAGT
	pACYC-toxI (forward)	TGTAAGCCCAAGCGAAGATCATG
CKG-139	PCR-amplify <i>toxI</i> for construction of	TTGCTCAGCGGTGGCAGCAGCATTTTTTCTCGTAAAA
	pACYC-toxI (reverse)	AAGGCGACTGTGTATAG
CKG-147	Linearize pACYC for construction of	ATTAAAGTTAAACAAAATTATTTCTACAGGGGAATT
	pACYC-toxI (forward)	GTTATC
CKG-134	Linearize pACYC for construction of	CTGCTGCCACCGCTGAGCAATAAC
	pACYC-toxI (reverse)	
CKG-450	PCR-amplify $tifA_{RB69}$ for construction	GITTAACITTAATAAGGAGATATACCATGTATTCAA
	of pACYC- <i>tifA</i> _{RB69} (forward)	CTGTGTTTAAACCATCAACATACG
CVC 451	DCD amplify diff. for construction	
CKU-451	PCK-ampiny $lijA_{RB69}$ for construction	
	of pACYC- <i>tifA_{RB69}</i> (reverse)	GCGAAATTTGCGTTTTTCTTGAC
CKG-423	Linearize pACYC for construction of	GGTATATCTCCTTATTAAAGTTAAACAAAATTATTTC
ered 125	$pACVC_{tifArrow}$ (forward)	
CKG-424	Linearize pACYC for construction of	GGTATATCTCCTTATTAAAGTTAAACAAAATTATTTC
	pACYC- <i>tifA_{RB69}</i> (reverse)	TACAGGGGAATTG
	r	
CKG-460	PCR-amplify <i>toxI</i> for construction of	TTACTTTCTGTTCGACTTAAGCATTACATTTTTTCTCG
	pACYCDuet-1- <i>toxI-tifA_{RB69}</i> (reverse)	TAAAAAAGGCGACTGTGTATAG
CKG-444	Linearize pACYCDuet-1 for	TAATGCTTAAGTCGAACAGAAAGTAATCGTATTGTA
	construction of pACYCDuet-1-toxI-	CAC
	<i>tifA_{RB69}</i> (reverse)	
CKG-458	PCR-amplify <i>tifA</i> _{RB69} for construction	AGAGAGCATATGTATTCAACTGTGTTTAAACCATCA
	of pACYCDuet-1-toxI-tifA _{RB69}	ACATACGAATTTGC
	(forward)	
CKG-459	PCR-amplify $tifA_{RB69}$ for construction	AGAGAGCCTAGGTTAATTATTTTAAACTTTTGCGAA
	of pACYCDuet-1- <i>toxI-tifA</i> _{RB69}	ATTTGCGTTTTTCTTGACG
	(reverse)	

CKG-465	PCR-amplify <i>tifA</i> _{RB69} for construction	TTTAAGAAGGAGATATAGTTCATGTATTCAACTGTG
	of pET- <i>tifA_{RB69}</i> -MBP-His ₆ (forward)	TTTAAACCATCAACATACGAATTT
CKG-466	PCR-amplify <i>tifA</i> _{RB69} for construction	GGATTGGAAGTAGAGGTTCTCTTTTAAACTTTTGCGA
	of pET- <i>tifA_{RB69}</i> -MBP-His ₆ (reverse)	AATTTGCGTTTTTCTTGACG
CKG-441	Construct pACYC- <i>tifA</i> _{RB69} -FLAG	CTACTTGTCATCGTCGTCCTTGTAGTCGCTTCCGCTT
	and pEXT20- <i>tifA_{RB69}</i> -FLAG (reverse)	CCTTTTAAACTTTTGCGAAATTTGCGTTTTTCTTGAC
		GAATC
CKG-575	Construct pACYC- <i>tifA_{RB69}</i> -FLAG	TAATTAACCTAGGCTGCTGCCACCGCTG
	(forward)	
CVC (5(Construct a ACVC (and (CA	
CKG-030	$(K_{554}, D_{564}, D_{564}) (C_{10})$	
	(KSSA KSOA KS9A) (forward)	AAAAGIIIAA
CKG-657	Construct pACYC- <i>toxI-tifA_{RB69}</i>	AGTCGGACGTACAGCAAATTTAACGAAG
	(K55A R56A R59A) (reverse)	
CIVO 202		
CKG-303	Construct pBR322-tox1-tox/V(K55A)-	AATTGAAGGTCCAAAATC
	His ₆ (forward)	
CKG-304	Construct pBR322- <i>toxI-toxN(K55A)</i> -	GCTTCCGCTTCCATCGTCTATTTC
	His ₆ (forward)	
CKG-661	Construct pBAD33-toxN-chitin	
	binding domain (reverse)	G
CKG-662	Construct pBAD33-toxN-chitin	ATTCAGGAGGGATTGAGCTCATGAAATTTTACACAA
	binding domain (forward)	TATCAAGCAGTTACATAAAATACC
CKG-663	PCR amplify MBP-His ₆ for	AATTTCGCAAAAGTTTAAAAGAGAACCTCTACTTCC
	construction of pEXT20- <i>tifA</i> _{RB69} -	AATCCGGCTCTAGC
	MBP-His ₆ (forward)	

CKG-664	PCR amplify MBP-His ₆ for	GCATGCCTGCAGGTCGACCTAATGGTGATGGTGATG
	construction of pEXT20- <i>tifA</i> _{RB69} -	GTGGCTACTG
	MBP-His ₆ (reverse)	
CKG-624	PCR amplify pEXT20- <i>tifA</i> _{RB69} for	GGATTGGAAGTAGAGGTTCTCTTTTAAACTTTTGCGA
	construction of pEXT20- <i>tifA</i> _{RB69} -	AATTTGCGTTTTTCTTG
	MBP-His ₆ (forward)	
CKG-665	PCR amplify pEXT20- <i>tifA</i> _{RB69} for	TAGGTCGACCTGCAGGCATGCAAG
	construction of pEXT20- <i>tifA</i> _{RB69} -	
	MBP-His ₆ and EXT20- <i>tifA</i> _{RB69} -	
	FLAG (reverse)	
OVO (((
CKG-666	Construct pEX I 20 - $tifA_{vB}$ - $PatP_{CB4}$ -	GGAAGCGGAAGCGACTACAAGGACGACGATGACAA
	FLAG and pEXT20- <i>tifA</i> _{vB_EcoM_005} -	GFAGFAGGFCGACCFGCAGGCATG
	FLAG, forward	
CKG-670	Construct pEXT20-tifAug From 005-	GAGCCCGTACACATTGCACTCATATTG
CIRC 070	FLAG reverse	
CKG-672	Construct pEXT20- <i>tifA</i> _{vB_PatP_CB4} -	GAGGTAATGTGAGTAGTCAGCCATAAACTGAGC
	FLAG, reverse	
CKG-658	15-nucleotide 56FAM-labeled RNA	56FAM/rCrArCrCrArGrArArArUrArUrArUrU
	oligo derived from <i>artJ</i> sequence for	
	fluorescence polarization	
	experiments	
CKG-659	30-nucleotide 56FAM-labeled RNA	56FAM/rUrArCrUrArCrGrCrArCrCrArGrArArArUrArUrAr
	oligo derived from <i>artJ</i> sequence for	UrUrCrArGrGrArUrCrA
	fluorescence polarization	
	experiments	
CKG-660	45-nucleotide 56FAM-labeled PNA	56FAM/rArArArArCrGrGrFIrArCrIIrArCrGrCrArCrArCrA
	aligo derived from art I sequence for	ArArArI IrArI IrArI IrI IrCrArGrGrArI IrCrArGrCrArCrCrCrG
	fluorescence polarization	rG
	avparimente	
	experiments	

CKG-674	30-nucleotide 56FAM-labeled DNA	56FAM/TACTACGCACCAGAAATATATTCAGGATCA
	oligo derived from <i>artJ</i> sequence for	
	fluorescence polarization	
	experiments	
CKG-675	45-nucleotide 56FAM-labeled DNA	56FAM/AAAACGGTACTACGCACCAGAAATATATTCA
	oligo derived from <i>artJ</i> sequence for	GGATCAGCACCCGG
	fluorescence polarization	
	experiments	
CKG-676	45-nucleotide 56FAM-labeled RNA	56FAM/rCrUrGrUrCrGrUrCrArGrCrUrCrGrUrGrUrGrUrGrUr
	oligo derived from <i>rrsA</i> sequence for	GrArArArUrGrUrUrGrGrGrUrUrArArGrUrCrCrCrCrGrCrArA
	fluorescence polarization	rC
	experiments	
CKG-677	45-nucleotide 56FAM-labeled RNA	56FAM/rArGrArArUrUrCrCrArGrGrUrGrUrArGrCrGrGrUr
	oligo derived from <i>rrsA</i> sequence for	GrArArArUrGrCrGrUrArGrArGrArUrCrUrGrGrArGrGrArA
	fluorescence polarization	rU
	experiments	
CKG-678	45-nucleotide 56FAM-labeled RNA	56FAM/rArGrArUrGrArGrArArUrGrUrGrCrCrUrUrCrGrGr
	oligo derived from <i>rrsC</i> sequence for	GrArArCrCrGrUrGrArGrArCrArGrGrUrGrCrUrGrCrArUrG
	fluorescence polarization	rG
	experiments	
CKG-680	30-nucleotide DNA oligo	
	complementary to CKG-674 for	
	fluorescence polarization	
	experiments	
	·····	
CKG-681	45-nucleotide DNA oligo	CCGGGTGCTGATCCTGAATATATTTCTGGTGCGTAGT
	complementary to CKG-675 for	ACCGTTTT
	fluorescence polarization	
	experiments	
oSS-219	Construct pEXT20- <i>tifA</i> _{PM2} , forward	
		TATTATGTATTTAGATAG

oSS-220	Construct pEXT20- <i>tifA</i> _{PM2} , reverse	GAAGCTTGCATGCCTGCAGGTCGACTTAATCTCTTTC
		TAAGAGGGCCATC
oSS-221	Construct pEXT20- <i>tifA</i> _{νB_PatP_CB4,}	CACACAGGAAACAGAATTCGAGCTCATGCGTACTAT
	forward	TAAAACCTCAGTTATG
oSS-222	Construct pEXT20- <i>tifA</i> _{vB_PatP_CB4} ,	GAAGCTTGCATGCCTGCAGGTCGACTTAGAGGTAAT
	reverse	GTGAGTAGTCAGC
oSS-229	Construct pEXT20- <i>tifA</i> _{EcS1} , forward	CACACAGGAAACAGAATTCGAGCTCATGAAAACTTA
		TATTCATTACTACCCAGG
oSS-230	Construct pEXT20- <i>tifA_{EcS1}</i> , reverse	GAAGCTTGCATGCCTGCAGGTCGACTCATAGGTCCT
		CTTTTTCATATAATTC
00.001		
088-231	Construct pEX120- $tifA_{vB_EcoM_005}$,	CACACAGGAAACAGAATICGAGCICAIGIIIGICII
	forward	AACTCAATTCTCTAAAG
<u></u>	Construct pEVT20_ tifA = = = = = ==	
033-232		
	reverse	ACACATIGCAC
oSS-233	Construct pEXT20-tifAvB FCOM VR7.	CACACAGGAAACAGAATTCGAGCTCATGATTATTCA
	forward	AATTATGAAACCCG
	loi wala	
oSS-234	Construct pEXT20- <i>tifA</i> _{vB_EcoM_VR7} ,	GAAGCTTGCATGCCTGCAGGTCGACTTATTTACTTT
	reverse	AGCGTAATCTAAAGTCAC
oSS-235	Construct pEXT20- <i>tifA</i> _{JS98} , forward	CACACAGGAAACAGAATTCGAGCTCATGAATATCGT
		ACTAATGAAACCAAC
oSS-236	Construct pEXT20- <i>tifA</i> _{JS98} , reverse	GAAGCTTGCATGCCTGCAGGTCGACTTATTTTAACG
		AATCTTCCAAATAAATTTTAC

Table S6. G-blocks

Number	Purpose	Sequence $(5' \rightarrow 3')$
1.014.0.4		
gbCKG-4	Construct pBAD33- $toxN_{Pa}$	GCACAACAACAGIIGCIAGIICCGIAGIIGIAAGCC
		TAACCGAAGTTCAGGTGATTTGCTACCTTTAAGTGC
		AGCTAGAAATTCAGGTGATTTACTACCTTTAAGTAA
		TAAAGTAAAAGAGGCGACTACATAGTCGCCTTTTTT
		ACGAGAAAAATATGAAATTCTACACTATATCAAGCA
		AATACATTGAATATCTAAAGGAATTTGACGACAAGG
		TTCCCAATAGCGAAGATCCTACCTACCAAAATCCTA
		AGGCTTTCATTGGCATAGTATTAGAGATCCAGGGAC
		ATAAGTATCTAGCCCCTCTGACATCCCCAAAAAAGT
		GGCATAATAATGTTAAAGAGTCATCTCTTAGCTGCTT
		TAAGCTCCATGAAAACGGCGTGCCCGAAAATCAGCT
		TGGATTGATTAACCTGAAGTTCATGATTCCAATAATC
		GAAGCTGAAGTGTCCTTACTTGATTTGGGCAACATG
		CCTAATACCCCTTACAAGAGAATGCTCTATAAGCAG
		CTCCAGTTTATTCGTGCAAATTCTGATAAAATAGCTT
		CAAAATCAGATACTTTACGAAACCTCGTATTACAAG
		GAAAAATGCAAGGAACATGTAATTTTTCCCTGTTAG
		AAGAAAAATATCGAGATTTCGGTAAAGAAGCTGAG
		GATACGGAAGAAGGCGAGTAA
1.01/0.12		
gbCKG-13	Construct pBAD33- $toxN_{Kp}$	
		AGGGCTTCGAGGACAAAGTACCTAATAGCGAAGATC
		CCACTTACCAAAATCCAAAAGCGTTTATCGGAATTG
		TTTTGGAGATCCAGGGTCATAAATATCTGGCTCCGCT
		GACCTCACCGAAGCCGTGGCACTCTACCATTAAGGA
		GTCCAGTCCATCCTTTTTTAAGTTACACGAAAACGGC
		GTGCCCGAAAATCAGTTAGGACTTATCAATTTGAAA
		TTTATGATCCCAATCATTGAAGCCGAAGTAAGTTTGT
		TGGATTTGAACGGCATGCCTAATACGAGCTATAAAC
		GTATGTTGTACAAACAACTGCAGTTTATTCGTGTAA
		ACTCGGACAAAATTGCAGAAAAATCAGAGCTGTTGC
		GTAATCTTGTGTTGCAAGGGAAAATGCAAGGGACTT
		GTAATTTCTCGTTGTTAGAGGAAAAGTACCGCGACT

		TCGGGAAGGAGGCGAATGACATGGAGGAGGGCGAG
		TAAGTCGACCTGCAGGCATGCAAGCTTGGCTGTTTT
		G
gbCKG-14	Construct pBAD33- <i>tenpN_{Ec}</i>	CCCGTTTTTTTGGGCTAGCGAATTCGAGCTCATGAGC
		AAACAGGATTACATACAGTTAAGAACCCTTACAGAC
		CAGTTTTATGCTGATAACAAAGGCCTACAAGAGGCT
		CTCGACGGCAGTAATGATGGAAAAGTAAGAGGCTA
		CGGAATCGTAGTTATTGATCTCAACGGATTGGTGTTC
		GGGATACCCTTACGAAGCCATTTAAACCATAAATTT
		GGATTCGTTTCGGAGCGATCAGAAGGTGTTAAGAAA
		GGACTGGATTACACCAAAGCGTTGCTAATTAAGAAA
		GAAGAGTATGTATCGCGAGCCTATAAGATACCAACT
		ССТGААТТТАСССАТАТСААТGАТААСАААGAAAAA
		ATACAAGAAGATTTCAACAAATTCGTAAACAGATAC
		ATAGAAGCGAACGTCAAGAAAGATGAAAACATACT
		CAGAAACTATCGTTACTCTACGCTGAAAAACTATCA
		CAAAGAATTAGGTTTAGAAGACTAAGTCGACCTGCA
		GGCATGCAAGCTTGGCTGTTTTG
abCVC 19	Construct a DA D22 (N	
gocko-18	Construct pBAD33-toxNv _{Ss}	
		AGICGAGCCCGGCCTITITCAAGCIGCATGAAAAIG
		GGGTTCCCGACAATCAACTTGGGCTGATTAACTTGA
		GITAGACCITGACAGCAIGCCCGACACGCCAIAIAA
		ACGIAIGCIGIAIAAACAAIIGCAAIIIAICCGCGII
		AATGAGGATAAGATCTCGGAAAAGTCCAAGTTACTG
		1 _ f_Y _ 2 1 ^ A_ A_ f_Y _ Y 1 f _ 2 f_2 f_Y _ Y 1 '' 1 ^ A_ f_ ^ A_ f_2 f_2 f_2 f_2 f_Y _ 2 1 ^ A_ 1 f_2 f_ ^ A_ f_2 f_2 f_2 f_2 f_3 A_ f_3 A
		TGCGATTTTTCTGTGCTTGAGGAGAAGTACCAACATT
		TGCGATTTTTCTGTGCTTGAGGAGAAGTACCAACATT TTGGCAAGAAACCTGAAGATATGGAGAGATTGATGACT
		TGCGATTTTTCTGTGCTTGAGGAGAAGTACCAACATT TTGGCAAGAAACCTGAAGATATGGAGATTGATGACT AAGTCGACCTGCAGGCATGCAAGCTTGGCTGTTTTG

gbCKG-22	Construct pBAD33-toxN _{Vk}	CCCGTTTTTTTGGGCTAGCGAATTCGAGCTCATGAAG
		TTTTACGTCGTCTCGAACGATTACATTAACCATTTGA
		AGAAAGTAGACGCTCGCGTTCCTGATAATTATGATG
		AACGCCGCGCATATGTAGGCGTCGTGATGGAGGTTT
		GTGGGATTAAATATCTGGTGCCTTTGACAAGCCATA
		AAACAAAACACAAAGATATTAAACCAGGTGCACAG
		ACCGTATTTAAAATTCACGAATTGAATAACGAAGCG
		AATCCCCTTGGTATGGCACAAATTAGCAATATGCTG
		CCAGTTTTGGACTCTGAAATCCAGTTACTGGATATG
		AAGGTACAGTCCGAAAATAAGAAGAAGCTGCTTAA
		CTTACAGCAGCAGTTCTTACGTAAAAACTCGGAACG
		TTTTGTCAAGAAAGCAATGCGTCTTTACGAATTGGT
		AACGGTCAAGAAGGTGCCCGGTTTGGTTAAAAATTG
		TTGTGACTTTAAAGCGCTTGAAGCCGCCCGCGCTGC
		TTACATTCCGGCAAACCAGCGTCAGGCCTCTAGTGA
		AGGTTTAGCGGCCCTTGCTGAGAAGTTTAACAGTTA
		AGTCGACCTGCAGGCATGCAAGCTTGGCTGTTTTG
gbCKG-25	Construct pBAD33-toxN _{Ser} .	CCCGTTTTTTTGGGCTAGCGAATTCGAGCTCATGAAG
		TTCTATGTGATCGCAGATAGTTATATCAATCATTTGG
		TTGCGTGCGATCAGCACGTTTATAAGAATAAGGGAA
		CACGCCCCTATATCGGTGTCGTCCTGGAGGTTAATG
		GTGTAGAATTTCTTGCACCGCTTACCTCTTATAAAGA
		GAAGCAAGACAAGATTCCCAATTCTTCACCGTTAAT
		CTTTAAGATGTATGAGTTAGGTAATGAGGAGAACAA
		ACTGGGCATGGTCCAAGTCAACAACATGGTACCCGT
		ACTGAGCAGTGAGGTTGAACTTCTTGATTTGTCTACT
		CAAGACGCCAAATACCAAAATTTGTTAAACATGCAG
		CAACAGTTCCTTCGTAAAAATCAGGAGGAACTTCAA
		AAGAAGGCCTCTAAATTGTATAAGATCGTCAGTCAA
		GGCGTAGCGACCGGGATTGTTAATGTCTGCTGCGAC
		TTTAAGGCGTTGGAGGCCGCAATGAAGACTTACGTT
		CCGCCTGTCGCACAGGAGTCTGCTGTACCCACTGTA
		GCGCAAGAAGCATCCAGCGAACCTCAGTCAGACCTG
		CAAGATAAACTGTCCGCTCTGTGTGGTAAGTACAGT
		AAGCGTTAAGTCGACCTGCAGGCATGCAAGCTTGGC
		ТСТТТТС
		1011110

gbSS005	Construct pEXT20- <i>tifA</i> _{PM2}	CTAGGTTTCTCCATACAGGAGGTACCCATGAATATTT
		ATATTATGTATTTAGATAGACCACACAGACCGCCCT
		ATAAAAGTAATATGGGTTGGCAGGTTTATATTGAAA
		CTCCTTGTAGTGATAGTTTGCCGTGGGGTTTAGTTGA
		TGTGTTTAATTACTCTACAAAGCCAACAAAGAGGCA
		AATTCGTAAGGCTAAAAAGGCTTTTTATAAAAATAT
		AAAAAGCGAAATAGAATCTAGAAAAATGATGATGG
		CCCTCTTAGAAAGAGATTAAGGGGATCCTCTAGAGT
		CGACCTGCAGG
gbSS007	Construct pEXT20- <i>tifA</i> _{EcS1}	ACCTAGGTTTCTCCATACAGGAGGTACCCATGAAAA
		CTTATATTCATTACTACCCAGGCTTTGTATACGCAAA
		AGGCACTAAAGCCGAGTATAGTTTCAAAGCCTCCTT
		TGAACTCATTATTGACCAAGATGCATCTGATAAGTT
		ACGATTCGGTTGTGTTTCAGCTAAAGTTTTTGTAACT
		CGCCCGTCCAAACGTCAAATTCGTCGTCAACAAAAA
		GAATTTCGTAAAGAAATGAAAGCTCTTGAATTATAT
		GAAAAAGAGGACCTATGAGGGGATCCTCTAGAGTC
		GACCTGCAGGC
-1-00010	Construct a EVT20 //(4	
gb55010	Construct pEX120- <i>ttfA</i> _{vB_EcoM_005}	
		ACTCAAGCTTATGTTGCACGGCCTACTAAGCGTCAG
		ATTCGTAAACTTAAAAAGGCTCATCGCCAACTGATT
		AAAAGAAGGGAACAATATGAGTGCAATGTGTACGG
		GCTCTAAGGGGATCCTCTAGAGTCGACCTGCAGGCA
		TGCAAGCTTG
gbSS011	Construct pEXT20-tifA _{WR Ecom VP7}	AGGTTTCTCCATACAGGAGGTACCCATGATTATTCA
8000011		AATTATGAAACCCGTAAAAAGTGGTTTTTGGGACAA
		GTCTTTTGGTAAGCACAAGTTTTATGCAGACCGCGT
		AAACAGTCGTTGGGAACTTATTATTTCTCAACAAAC
		CAAGGGACAAATGGACTTTGTAGAATTCTATGAATT
		TGATGTTCGTCCAACTAAGCGTCAGATTCGCCAATG
		CAAAAAGGCATTTCGCGTGTATGTCCGTGCATCAGT
		CCTCCGTCGTCAACGTCAATTGGCAATGGAACCGCA

		GTTAGTGACTTTAGATTACGCTAAAGTAAAATAAGG
		GGATCCTCTAGAGTCGACCTGCA
gbSS012	Construct pEXT20- <i>tifA</i> _{JS98}	CACCTAGGTTTCTCCATACAGGAGGTACCCATGAAT
		ATCGTACTAATGAAACCAACTCCTAGTTCTTTTGGA
		ATAAATCTTTCGGTAAGCATAATATGTTTATCCAACG
		CACCGTAAGCAGCTGGGAACTAGTTCTTTCAGTAGG
		TCATAACGATTATGAACAGGAATATGTAGAGTTCTT
		CGAATTTCCTGTGAAGCCTACTAAGCGTCAGATTCG
		TCAGACCAAACGTAAATTCCGTAAAATTTATTTGGA
		AGATTCGTTAAAATAAGGGGATCCTCTAGAGTCGAC
		CTGCAGGCAT
gbSS015	Construct pEXT20- <i>tifA</i> _{vB_PatP_CB4}	AGGTTTCTCCATACAGGAGGTACCCATGCGTACTAT
		TAAAACCTCAGTTATGTTCTTCCCTGCTGACCCTGTT
		GTAGTTACCAAAACCAAGCGTGATTGGATGTTAGCT
		GATATGGCTAGTCCTGCTCAGTGGAGCATAGCAGTA
		GATTTTATAGTTGATGCTAATCCCATGTCTGCATCCA
		TACACCAGTATGCCTTTGTAGCTAAGCCTACATCTAA
		ACAGGTGCGCCAGTGTAAGCGTAAAGCTGTCATTGA
		GCATGAACGTGAATTGGCTCAGTTTATGGCTGACTA
		CTCACATTACCTCTAAGGGGATCCTCTAGAGTCGAC
		CTGCA