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A Additional details for Section 2 in the main
manuscript

A.1 Hyperbolic (a.k.a. critical-power) model
A.1.1 Equivalent relationships

Using simple linear algebra, we can verify that the hyperbolic model implies the following
relationships which are also illustrated in Figure 1 in the main manuscript. For W ′ > 0,
P > CP ≥ 0 and W = PT > W ′:

P = Phyp(T ) := W ′/T + CP,

P = Phyp(W ) := CP/(1 − W ′/W ),
T = Thyp(P ) := W ′/(P − CP),
T = Thyp(W ) := (W − W ′)/CP,

W = Whyp(T ) := W ′ + CP · T,

W = Whyp(P ) := W ′/(1 − CP/P ).

As discussed in Section 2.1 in the main manuscript, we sometimes replace “power” (P )
by “velocity” (V ) and “work” (W ) by “distance” (D). In this case, we also write Vhyp
and Dhyp instead of Phyp and Whyp.
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A.2 Power-law (a.k.a. Riegel) model
A.2.1 Equivalent relationships

Using simple linear algebra, we can again verify that the power-law model implies the
following relationships which are also illustrated in Figure 2 in the main manuscript.
For S > 0, F = 1/E > 1 and W = P · T > 0:

P = Ppow(T ) := S · T E−1,

P = Ppow(W ) := SF W 1−F ,

T = Tpow(P ) := (S/P )1/(1−E),

T = Tpow(W ) := (W/S)F ,

W = Wpow(T ) := S · T E,

W = Wpow(P ) := (SF /P )1/(F −1).

As discussed in Section 2.2.3 in the main manuscript, we sometimes replace “power” (P )
by “velocity” (V ) and “work” (W ) by “distance” (D). In this case, we also write Vpow
and Dpow instead of Ppow and Wpow.

A.2.2 Bias–variance trade-off and Riegel-predictors

Recall that, as mentioned in Section 2.2.3 in the main manuscript, sufficiently many
data points are needed to accurately estimate the speed parameter, S, and endurance
parameter, E, (equivalently: the fatigue factor F = 1/E) of the power-law model.

In practice, there is often a need to form predictions based on a very small number of
data points – possibly just a single observation, e.g. when predicting a marathon finish
time from a single prior half-marathon result.

In this case, it is common to fix E (equivalently: F = 1/E) to a suitable default
value which then permits the estimation of S from a single data point. Assume that we
have a previous power measurement P0 recorded over some duration T0. Then solving
Equation 3 from the main manuscript for S and using (P0, T0) in place of (P, T ), gives
the estimate S ≈ Ŝ := P0T

1−E
0 ; and plugging Ŝ back into Equation 3 from the main

manuscript implies the power–duration relationship:

P = ŜT 1/F −1 = P0

(
T

T0

)E−1

. (1)

When applied to, e.g., running, this gives an easy way of predicting the finish time T in a
race over distance D from the finish time T0 in a previous race over some other distance
D0. More specifically, after replacing power P by velocity V = D/T (see Section 2.1 in
the main manuscript) and E by 1/F , we can re-arrange (1) as

T = T0

(
D

D0

)F

. (2)
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For instance, the finish-time calculator from Runner’s World Magazine (2013) imple-
ments (2) with F = 1.06 for all runners. This comes with the assumption that the user
is an average runner with without “a natural significant bias towards either speed or
endurance” (Runner’s World Magazine, 2013).

Of course, the fatigue factor F (equivalently: the endurance parameter E = 1/F )
is likely different for each person as shown in Blythe and Király (2016); Zinoubi et al.
(2017). Hence, setting F (equivalently: E) to a default value incurs a bias. However, this
bias can sometimes be outweighed by the variance reductions brought about by avoiding
the need for estimating F from limited amounts of data. Thus, fixing the fatigue factor
to a sensible default value may sometimes be justifiable as a bias–variance trade-off.

B Additional details for Section 3 in the main
manuscript

B.1 Model behaviour over short durations
The hyperbolic (a.k.a. critical-power) model implies that any sufficiently small amount
of work 0 < W < W ′ can be generated arbitrarily quickly. For instance, if the model
was applied to short durations, it would thus imply that an elite runner can “teleport”
over more than one hundred metres. In contrast, power-law (a.k.a. Riegel) model has no
such unrealistic implication. Informally, these results can be seen from Figures 1c and 2c
in the main manuscript which show that the second-axis intercept of the work–duration
curve is

• W ′ > 0 under the hyperbolic model;

• 0 under the power-law model.

More formal proofs – which are needed because the power–duration relationship P (T )
is not actually well defined at T = 0 – are given in Propositions 3 and 4.

Proposition 1. Let 0 < W < W ′. Then for any T > 0, W < T · Phyp(T ).

Proof. Let T > 0. Then since W < W ′,

T · Phyp(T ) = W ′ + T · CP > W + T · CP > W.

This completes the proof. 2

Proposition 2. Let S > 0 and F > 1. Then for any W > 0, there exists a unique
duration T > 0 such that W = T · Ppow(T ).

Proof. The function h : [0, ∞) → [0, ∞), h(T ) := T · Ppow(T ) = S · T 1/F is strictly
increasing and h(0) = 0. Thus, there exists a unique value T > 0 such that W = h(T ) =
T · Ppow(T ). 2
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B.2 Case study from Jones et al. (2019)
Table 1 shows Eliud Kipchoge’s personal records in different running events (as of 5
November 2021). The data were collected from World Athletics (2021). Note that the
difference between, e.g., the 5000 m and 5 km event is that the former was run on the
track whereas the latter was run on the road.

Table 1: Personal records of Eliud Kipchoge in different events.
Event Time [h:min:s] Velocity [m/s]
1500 m 00:03:33 7.04
1500 m (indoor) 00:03:36 6.94
One mile 00:03:50 6.98
3000 m 00:07:28 6.70
3000 m (indoor) 00:07:29 6.68
Two miles 00:08:08 6.60
Two miles (indoor) 00:08:07 6.60
5000 m 00:12:47 6.52
5000 m (indoor) 00:12:56 6.45
10 000 m 00:26:49 6.21
5 km 00:13:11 6.32
10 km 00:28:11 5.91
Half marathon 00:59:25 5.92
30 km 01:27:13 5.73
Marathon 02:01:39 5.78

We now provide a version of Figure 4 from the main manuscript in which we fit the
hyperbolic model to all personal records up to marathon distance in the same way as
the power-law model.
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(a) Velocity vs duration (2–15 minutes).
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(b) Velocity vs duration.

0

10

20

30

40

0 1200 2400 3600 4800 6000 7200 8400
Time to exhaustion [s]

D
ist

an
ce

[k
m

]

(c) Distance vs duration.
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(d) Velocity vs reciprocal duration.

Figure 1: A reproduction of Figure 4 from the main manuscript but the hyperbolic (a.k.a.
critical power) model is now fitted to all available data. This reduces the error
for shorter and longer durations but increases the error in the 2–15 minute
range.

B.3 Case study from Jones and Vanhatalo (2017)
Table 2 shows Haile Gebrselassie’s personal records in different running events. The
data were collected from World Athletics (2021). Note that the difference between, e.g.,
the 10 000 m and 10 km event is that the former was run on the track whereas the latter
was run on the road.
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Table 2: Personal records of Haile Gebrselassie in different events.
Event Time [h:min:s] Velocity [m/s]
800 m (indoor) 00:01:49 7.32
1500 m (indoor) 00:03:34 7.02
1500 m (indoor) 00:03:32 7.08
One mile 00:03:52 6.93
2000 m (indoor) 00:04:53 6.83
3000 m 00:07:25 6.74
3000 m (indoor) 00:07:26 6.72
Two miles 00:08:01 6.69
Two miles (indoor) 00:08:05 6.64
5000 m 00:12:39 6.58
5000 m (indoor) 00:12:50 6.49
10 000 m 00:26:23 6.32
20 000 m 00:56:26 5.91
One hour 01:00:00 5.91
10 km 00:27:02 6.17
15 km 00:41:38 6.00
10 miles road 00:44:24 6.04
20 km 00:55:48 5.97
Half marathon 00:58:55 5.97
25 km 01:11:37 5.82
Marathon 02:03:59 5.67

We now provide a version of Figure 5 from the main manuscript in which we fit the
hyperbolic model to all personal records up to marathon distance in the same way as
the power-law model.
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(b) Velocity vs duration.

Figure 2: A reproduction of Figure 5 from the main manuscript but the hyperbolic (a.k.a.
critical power) model is now fitted to all available data. This reduces the error
for shorter and longer durations but increases the error in the 1500–15 000 m
range.

We now provide a version of Figure 6 from the main manuscript in which we fit the
hyperbolic model to all personal records up to marathon distance in the same way as
the power-law model.
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Figure 3: A reproduction of Figure 6 from the main manuscript but the hyperbolic (a.k.a.
critical power) model is now fitted to all available data. This reduces the error
for shorter and longer durations but increases the error in the 1500–15 000 m
range.

Finally, we provide a numerical comparison of the relative errors of both models for
the athletes used in Section 3.2 in the main manuscript.
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Table 3: Relative errors of the hyperbolic (a.k.a. critical-power) and power-law (a.k.a.
Riegel) models for the 12 athletes from Jones and Vanhatalo (2017) fitted either
to personal records over 1500–15 000 m or all available personal records (up
to marathon distance). Errors are calculated as the relative distance between
observed and predicted velocities as explained in Section B.4. Colours highlight
the better-performing model.

1500–15 000 m 0–42 195 m
Athlete Hyperbolic Power law Hyperbolic Power law
Antonio Pinto 2.1700 1.0000 2.6900 1.1200
Ayele Abshero 0.5700 0.4700 0.9700 0.5600
Eliud Kipchoge 0.8400 0.3500 2.5000 0.6000
Evans Rutto Limo 1.6600 0.7600 2.0300 1.6900
Felix Limo 0.7500 0.5600 2.8100 1.1300
Geoffrey Mutai 1.2200 1.1800 1.7100 1.3900
Haile Gebrselassie 1.5100 0.7900 3.2300 0.5700
Khalid Khannouchi 0.2900 0.0400 0.6800 0.4400
Mo Farah 1.7200 1.4300 3.1500 1.4500
Patrick Makau Musyoki 0.3400 0.3500 1.2900 1.5000
Samuel Kamau Wanjiru 3.3900 2.6500 3.0200 1.9800
Steve Jones 1.1200 0.7500 4.0900 2.8400
Average 1.2983 0.8608 2.3417 1.2667

B.4 Model-error computation
Here, we explain more formally how the model errors in Sections 3.3, 3.4, and 3.5 in the
main manuscript and in Table 3 from Section B.3 are calculated.

Assume that (after cleaning), our data set contains N athletes and that Kn ≥ 2 pairs
of power and duration (or velocity and duration, in the case of running) measurements
{(P k

n , T k
n ) | 1 ≤ k ≤ Kn} are available for the nth athlete. Then the average relative

error of the hyperbolic model for durations between T0 and T1 is calculated as follows.

1. Let (CPn, W ′
n) be the estimate of (CP, W ′) obtained via linear regression using

only data corresponding to activities whose duration is no shorter than T0 and
no longer than T1, i.e. using only the measurements {(P k

n , T k
n ) | k ∈ Kn}, where

Kn := {k ∈ {1, . . . , Kn} | T0 ≤ T k
n ≤ T1}.

2. Let P̂ k
n := W ′

n/T k
n + CPn be the fitted power for the kth activity of the nth athlete

under the hyperbolic model. The relative error of the hyperbolic model for the
data from the nth athlete in this exercise duration range is then given by

errorn := 1
#Kn

∑
k∈Kn

∣∣∣∣∣P k
n − P̂ k

n

P k
n

∣∣∣∣∣,
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where #Kn is the cardinality of Kn (i.e. the number of power–duration measure-
ments for the nth athlete in this exercise duration range).

3. Then the average relative error of the hyperbolic model for this exercise duration
range (i.e. the height of one of the red bars in Figures 7, 8 or 9 from the main
manuscript) is then given by the following weighted average (where we weight by
the number of available data points for each athlete):

error :=
N∑

n=1
wnerrorn.

where we have defined the nth weight as:

wn := #Kn∑N
m=1 #Km

.

4. The associated standard error (i.e. the size of the error bar in Figures 7, 8 or 9
from the main manuscript) is then calculated as:

se :=

√√√√var
N∑

n=1
w2

n,

where

var := 1
N

N∑
n=1

[
errorn −

(
1
N

N∑
m=1

errorm

)]2

.

That is, if all weights are equal to 1/N , then se =
√

var/N reduces to the usual
standard error of the (unweighted) mean.

For the power-law model, we proceed analogously. The only difference is that we instead
compute linear-regression estimates (Sn, En) of (S, E) and then define the fitted values
as P̂ k

n := Sn(T k
n )En−1.

B.5 Large-data study in running
Here, we give additional details about the data set used for the study in Section 3.3 in the
main manuscript. The data were collected by Blythe and Király (2016) and are avail-
able for download here: https://figshare.com/articles/dataset/thepowerof10/
3408202. For the study, we removed all runners who have at most three race results
with finishing times in the 2–15 minute range or at most two race results with finishing
times in the 2–15 minute range over distinct distances.
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B.6 Large-data study in rowing
Here, we give additional details about the data set used for the study in Section 3.4 in the
main manuscript. The data were collected on 28 August 2022 from www.nonathlon.com
for the years (i.e. seasons) from 2002 to 2022. The data are given either as finish times
T over fixed distances D (500 m, 1 km, 5 km, 6 km, 10 km, 21.0975 km and 42.195 km)
or as covered distances D over fixed durations (30 min and 60 min). To calculate the
power output P , we use the commonly used conversion, where T is in seconds, D is in
metres and P is in joules per second:

P = 2.8
(

D

T

)3
.

Finally, we removed all athlete seasons which have less than three records in the 2–20
minute range, and any athlete season which reported an (equivalent) average power
output of over 1300 J/s leaving 3244 unique athlete seasons.

B.7 Large-data study in cycling
We downloaded all the possible data (as of 9 June 2022) from Golden Cheetah using the
GoldenCheetahOpenData (v0.2; Kosmidis, 2022) package in R (v4.1.2; R Core Team,
2021). We created a data set consisting of, for each athlete n, the highest measured
average power outputs, MMPn,x, over given durations, x > 0. These are often referred
to as mean maximal power (MMP) values. Before fitting the models, we excluded some
data points. We now give more details.

• Power-meter malfunctions are not uncommon and can overestimate the power
being produced by an athlete. To alleviate this problem, we removed rides which
would have led to unrealistically high MMP values. This is done as follows, where
N is the number of athletes and where x takes values in a set of 54 durations X,
ranging from five seconds to two hours.

1. Calculate “auxiliary” MMP values M̃MPn,x for each athlete n and duration
x based on the original data set.

2. Calculate the 95th percentile qx of M̃MP1,x, . . . , M̃MPN,x.
3. Discard any ride of any athlete n which contains an auxiliary MMP value

which is such that M̃MPn,x > qx.
4. For each athlete n and each duration x, compute the MMP values MMPn,x

based on the remaining rides.

• Many of the MMP values calculated as above likely correspond to submaximal
efforts which should not be used to estimate the models. Unfortunately, it is
unknowable for which of these values this is the case. However, values MMPn,x

such that MMPn,x ≤ MMPn,y, for some x < y, cannot be maximal and were
therefore excluded. We stress that this does not necessarily mean that all the
remaining data points correspond to maximal efforts.

11
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• We removed athletes with fewer than three MMP values in the 2–15 minute range.
This is because both models would have zero error if fitted to only two data points.

B.8 Piecewise-defined models
In this section, we provide details on the “piecewise-defined” models from Péronnet and
Thibault (1989); Puchowicz et al. (2020); Luttikholt and Jones (2022). Throughout,
T∗ > 0 denotes the threshold which is such that the power–duration relationship P (T )
is (approximately) hyperbolic for durations T ≤ T∗ whilst a different functional form
is used for durations T > T∗. Furthermore, we let I denote the indicator function, i.e.
I{T > T∗} = 1 if T > T∗ and I{T > T∗} = 0, otherwise.

B.8.1 Péronnet and Thibault (1989)

Let T∗ = 420 s (7 min) be the threshold parameter (denoted Tmap in Péronnet and
Thibault 1989) and let k1 = 30, k2 = 20, f = −0.233, and BMR = 1.2 be known
constants. Furthermore, let A, MAP > 0 and E < 0 be other unknown (and athlete-
specific) model parameters. Then the model from Péronnet and Thibault (1989) is

P (T ) = A(1 − e−T/k2) − k1(MAP − BMR)(1 − e−T/k1)
T

+ MAP

+ I{T > T∗} log(T/Tmap)
(

Af(1 − e−T/k2) − k1E(1 − e−T/k1)
T

+ E

)
.

Figure 4 illustrates the model and shows that it has a “kink” in the power–duration
curve at duration T = T∗. Note that limT →∞ P (T ) = −∞.
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Figure 4: The velocity–duration relationship posited by the model from Péronnet and
Thibault (1989) fitted to Eliud Kipchoge’s personal records.

B.8.2 Puchowicz et al. (2020)

Let T∗ = 1800 s (30 min) be the threshold parameter (denoted TCPmax in Puchow-
icz et al. 2020) and let W ′, CP, Pmax, A > 0 be unknown athlete-specific parameters.
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Puchowicz et al. (2020) propose the following three models.

• The OmPD model is given by

P (T ) = W ′(1 − e−T (Pmax−CP)/W ′)
T

+ CP − I{T > T∗}A log(T/T∗).

• The Om3CP model is given by

P (T ) = W ′

T + W ′/(Pmax − CP) + CP − I{T > T∗}A log(T/T∗).

• The OmExp model is given by

P (T ) = (Pmax − CP)e−T (Pmax−CP)/(eW ′) + CP − I{T > T∗}A log(T/T∗).

Figure 10 in the main manuscript illustrates these models and shows that they again
have a “kink” in the power–duration curve at duration T = T∗. Additionally, for all of
these models, limT →∞ P (T ) = −∞.

B.8.3 Luttikholt and Jones (2022)

Let T∗ = 360 s (6 min) be the threshold parameter and let W ′, CP > 0 and 0 < E < 1
be athlete-specific parameters. Then the model from Luttikholt and Jones (2022) uses
the hyperbolic (a.k.a. critical-power) model for durations up to T∗ and uses a power-law
model for durations longer than T∗, i.e.:

P (T ) =


W ′

T
+ CP, if T ≤ T∗,

ST E−1, if T > T∗,

where continuity of the power–duration curve is ensured by setting

S := W ′/T E
∗ + CP/T E−1

∗ .

Figure 5 illustrates the model and shows that it again has a “kink” in the power–duration
curve at duration T = T∗. However, this kink is not very pronounced due to the small
value of the threshold T∗, i.e. because the hyperbolic model is only used for durations
up to 6 minutes here.
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Figure 5: The velocity–duration relationship posited by the model from Luttikholt and
Jones (2022) fitted to Eliud Kipchoge’s personal records.

C Additional details for Section 4 in the main
manuscript

C.1 Impossibility of overpacing under the hyperbolic model
Proof (of Proposition 1). Since Strategy Pacecon leads to exhaustion at time T at
which point work W has been accumulated, we must have

T = Thyp(W ) = (W − W ′)/CP.

Likewise, since Strategy Pacevar leads to exhaustion at time T1 + T2 at which point work
W has been accumulated, we must have the identities:

P2 = (W − T1P1)/T2, (3)
W ′ − (P1 − CP)+T1 − (P2 − CP)T2 = 0, (4)

where x+ := max{x, 0} and where we recall that T1 = W1/P1. Substituting (3) in (4)
and solving for T2 then gives

T2 =
(W − W ′)/CP − T1, if P1 ≥ CP,

(W − T1P1 − W ′)/CP, if P1 < CP.

We are now ready to prove Part 1. If P1 ≥ CP, then

T1 + T2 = (W − W ′)/CP = T.

We now prove Part 2. If P1 < CP, then

T1 + T2 = (W − T1P1 − W ′)/CP + T1 = T + T1(1 − P1/CP) > T.

This completes the proof. 2
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C.2 Optimality of even pacing under the power-law model
Proof (of Proposition 2). Since Strategy Pacecon leads to exhaustion when work W
has been accumulated, we must have

P = Ppow(W ) = (S/W 1−1/F )F.

Likewise, since Strategy Pacevar leads to exhaustion at time T1 + T2 at which point work
W has been accumulated, we must have the identities:

P2 = (W − T1P1)/T2, (5)
SF/(F −1) − P

F/(F −1)
1 T1 − P

F/(F −1)
2 T2 = 0, (6)

where we recall that T1 = W1/P1 and where (6) follows from our novel “rate-of-exertion”
interpretation in Equation 4 and 5 from the main manuscript because, noting that
1/(1 − E) = F/(F − 1):

FatigueT1+T2 = 1 ⇐⇒ ratepow(P1)T1 + ratepow(P2)T2 = 1
⇐⇒ P

F/(F −1)
1 T1 + P

F/(F −1)
2 T2 = SF/(F −1).

Substituting (5) in (6) and solving for T2 (now interpreted as a function of P1) then gives

T2 = T2(P1) =
 W − T1P1

(SF/(F −1) − P
F/(F −1)
1 T1)1−1/F

F

.

It remains to show that T̃ (P1) := T1(P1) + T2(P1) = W1/P1 + T2(P1) has a minimum at
P1 = P . We have

∂

∂P1
T̃ (P1) = g(P1)h(P1),

where

h(P1) :=
(

W − W1

(P/P1)1/(F −1)W − W1

)F

− 1,

for some function P1 7→ g(P1) which is strictly positive on (0, Ppow(W1)) for S > 0,
F > 1 and 0 < W1 < W (to keep the notation simple, we do not make the dependence
of g and h on W1, W , S and F explicit in the notation). The proof is then complete
since h((1 + x)P ) is increasing in x and h(P ) = 0; in other words, T̃ = T1 + T2 has a
unique minimum at P1 = P . This completes the proof. 2

D Additional details for Section 5 in the main
manuscript

Here, we provide the mathematical details for the fatigued power–duration relationships
illustrated in Figure 13 from the main manuscript. Assume that the athlete has already
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exercised over some duration t > 0 (starting from a fully rested state). Specifically, let
P ⟨s⟩ be the instantaneous power output generated by the athlete at time 0 ≤ s ≤ t. For
instance, in the numerical example from Section 5.1 of the main manuscript, we have
that P ⟨s⟩ = P for any s > 0.

The specific form of the fatigued power–duration relationship depends on the chosen
model for the fresh (i.e. non-fatigued) power–duration relationship.

• Hyperbolic model. If the fresh power–duration relationship is described by the
hyperbolic model, and assuming for simplicity that P ⟨s⟩ ≥ CP for all 0 ≤ s ≤ t,
then the fatigued power–duration relationship is again a hyperbolic model but with
W ′ replaced by W ′ −

∫ t
0(P ⟨s⟩ − CP) ds.

• Power-law model. If the fresh power–duration relationship is described by the
power-law model, the fatigued power–duration relationship is again a power-law
model but with S replaced by (S1/(1−E) −

∫ t
0 P ⟨s⟩1/(1−E) ds)1−E.

The first result follows directly from Section 2.1.4 in the main manuscript; the second
result is a consequence of the novel “rate-of-exertion interpretation” of the power-law
model which we introduced in Section 2.2.4 in the main manuscript.
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