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1 ML nomenclature

In order to facilitate the understanding of the more mathematical and Machine Learning (ML)
oriented terms in the text, we provide a short description of the main ML terms used in the
manuscript.

• Model is the mathematical relation between any input (in our case, microbiome ASVs, or
metabolites or LOCATE’s representation, Z) and the appropriate output (in our case the
class of the sample/the phenotype). In ML, the model usually contains a set of parameters
called weights, and the ML trains the model by finding the weights for which the model is
in best agreement with the relation between the input and output in the “Training set”.

• Training set The part of the data used to train the model. The quality of the fit between
the input and output data on the training set is not a good measure of the quality of the
model, since it may be an “overfit”.

• Overfitting A problem occurs when a model produces good results on data in the training
set (usually due to too many parameters), but produces poor results on unseen data.

• Validation set is a separate set from the training set that is used to monitor but is not
used for the training process. This set can be used to optimize some parts of the learning
process including setting the “hyperparameters”.

• Model hyperparameters are adjustable values that are not considered part of the model
itself in that they are not updated during training, but still have an impact on the training
of the model and its performance. To ensure that those are not fitted to maximize the test
set performances, the hyperparameters are optimized using an internal validation set.

• Test set Data used to test the model that is not used for either hyperparameter optimiza-
tion or the training. The quality estimated on the test set is the most accurate estimate
of the accuracy.

• k-Fold Cross-Validation (referred to as k CVs) is a resampling procedure used to
evaluate machine learning models on a limited data sample. The data is first partitioned
into k equally (or nearly equally) sized segments or folds. Subsequently, k iterations of
training and validation are performed such that within each iteration a different fold of the
data is held out for validation while the remaining k-1 folds are used for training.

• Receiver Operating Characteristic Curve (ROC) is a graph showing the performance
of a classification model at all classification thresholds. This curve plots two parameters:
True Positive Rate (TPR = is the probability that an actual positive will test positive);
False Positive Rate (FPR = the probability that an actual negative will test positive).
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• Area under the ROC curve (AUC) is a single scalar value that measures the overall
performance of a binary classifier. The AUC value is within the range [0.5–1.0], where the
minimum value represents the performance of a random classifier and the maximum value
corresponds to a perfect classifier (e.g., with a classification error rate equivalent to zero).
It measures the area under the ROC curve defined above.

• Factorization is the process of decomposing a matrix into the product of other smaller
matrices.

• Unit vectors Vectors with a norm of one.

• Orthonormal Two vectors in an inner product space are orthonormal if they are orthog-
onal (or perpendicular along a line, meaning their inner product is zero), and have a norm
of 1.

• Singular Value Decomposition (SVD) is the factorization of a matrix A (in our case,
the microbiome-metabolite relation matrix) into the product of three matrices U , D and
V t, where the columns of U and V are “orthonormal” and the matrix D is diagonal with
positive real entries. By SVD, one can determine the “matrix’s rank”, quantify a linear
system’s sensitivity to numerical error, or obtain an optimal “low rank approximation” to
the matrix.

• Low rank approximation A simplified representation of a matrix obtained by retaining
only the most significant components or factors, typically achieved through techniques like
Singular Value Decomposition (SVD). Lower-rank approximations can reduce data dimen-
sionality while preserving key information. This process helps improve the generalization
ability of models or analyses, making it easier to identify and understand key biological
relationships or features.

• Latent representation is the representation of a high-dimension vector by a lower di-
mension with the appropriate model keeping most of the information.

• CCA is a statistical technique used to explore and quantify the relationships between
two sets of variables. In simpler terms, CCA helps us understand if there are meaningful
connections between two sets of data (in our case, a view (microbiome/metabolites/Z) and
host features.
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Figure 1: LOCATE can be used to predict metabolites in each dataset separately better than
all existing methods. A - E. Comparison between LOCATE and all state-of-the-art metabo-
lites prediction models as well as a Linear network and a Log network over the different
datasets FRANZOSA (A), ERAWIJANTARI(B), MARS (C), WANG (D) and YACHIDA (E).
F. Comparison between LOCATE and all state-of-the-art metabolites prediction models as well
as a Linear network and a Log network over the Kim dataset.
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Figure 2: Intersections between pairs of cohorts of 16S and WGS at the order taxonomic level
(A), and at the species level (B). The overlap between the pairs of the WGS datasets (red) is
much higher than the overlap in the 16S datasets (blue), especially at the species level. The
overlap between 16S and 16S is higher than the overlap between 16S and WGS, although the
number of taxa in WGS is much higher than 16S, and one could expect the 16S taxa to be
included in the WGS.
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Figure 3: Low intersection between the orders microbiome and metabolites of different cohorts.
A - D. Venn diagrams of the microbiome of triads 16S datasets. E - H. Venn diagrams of
the metabolites of triads 16S datasets. Each color represents a dataset, and the intermediate
colors represent the intersection. I. Histogram of average SCCs between each microbe and each
metabolite that appears at least at 2 cohorts (of the 16S cohorts). The histogram’s peak is at 0.0,
which emphasizes the inconsistent SCCs cross datasets. J. Histogram of percent of agreement
with the correlations reported in the literature and the correlations found in the cohorts. Most
of the correlations do not agree with the literature. K. Heatmap of NMF coefficients between
microbes and metabolites over different datasets (He, Kim and Jacob) vs the relations that
are reported in the literature. Blue/Red colors represent positive/negative correlations. The
relations vary between different datasets and do not preserve the known relations from the
literature [1].
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Figure 4: Microbiome-metabolite relations are dataset specific. A - C. Swarm plots of
LOCATE’s predicted metabolites SCCs in the cross-times test over the Direct Plus cohort. The
dark blue points represent the SCCs of the “in-learning”, referred to as “Internal”, where only
one time point was used for the training and the testing, by the 10 CV approach. The light
blue points represent the SCCs of the “ex-learning”, referred as “External”, where LOCATE is
trained on one time point and is tested on another one. There is a decrease in the accuracy of
the ex-learning vs the in-learning. The stars follow all other figures. D - F. Swarm plots of all
of the cross-datasets learning between couples of datasets, Kim-Jacob (D), Direct Plus-Kim(E),
Direct Plus-Jacob (F). G. Swarm plots of all of the cross-datasets learning between couples of
datasets of the Log network model. The decline in performance between the “in-learning” and
“ex-learning” can be seen here, too.
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Figure 5: Robustness of host condition prediction models against overfitting. A - C. AUC com-
parison between training and test sets for binary tasks involving 16S cohorts in microbiome-based
models (A), LOCATE models (B), and metabolite-based models (C). D - F. SCC comparison
between training and test sets for continuous tasks involving 16S cohorts in microbiome-based
models (D), LOCATE models (E), and metabolite-based models (F). G - I. AUC compari-
son between training and test sets for binary tasks involving WGS cohorts in microbiome-based
models (G), LOCATE models (H), and metabolite-based models (I). Dark bars denote training
performance, while light bars signify test set performance. The black error bars represent the
standard errors within the 10 CVs.
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Figure 6: Comparison of various variants of LOCATE: A. Comparison of LOCATE with dif-
ferent normalization strategies for microbiome and metabolites (log and z-scoring) against the
variant without normalization. B. Comparison of LOCATE with its second step of Low-Rank
Approximation (LAP) against a regular encoder-decoder. C. Comparison of different methods
of dimension reduction to create the intermediate representation Z (Fully Connected Network
(FCN), 1D Convolutional Neural Network (1D-CNN), deep network with 5 CNN layers) in terms
of metabolite prediction performance. D. Comparison of the same dimension reduction methods
for the phenotype prediction performance. The black error bars represent the standard errors
within the 10 cross-validation runs.
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Figure 7: Host condition predictions based on targeted metabolites vs. untargeted metabolites.
In each cohort with untargeted metabolites, the condition is predicted, once based on models
that are trained only on classified metabolites (the dark bars), and once on all the metabolites
including unclassified ones. LOCATE based on untargeted metabolites (light blue) outperforms
all the other methods. The performance is measured as the average AUC (for binary phenotypes)
and SCC for continuous phenotypes on a test set over 10 CVs. The black error bars represent
the standard errors within the 10 CVs.
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Figure 8: Average coefficients of each metabolite in the real dataset (dark bar) and in the shuffled
one (light bar). The black error bars are for the standard errors.
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2 Supp. Mat. Tables

Table 1: Summary of current state-of-the-art methods
Model Advantages Disadvantages Ref

PRMT

1. First framework.
2. Significant correlations between PRMT scores
and relative abundances of selected environmental
measurements.

1. Based on biological known networks.
2. Limited only to the KEGG database.
3. Performance is limited.
4. Not transferable (mixed datasets, between datasets).

[2]

MIMOSA

1. Gives information about the contribution of each taxon to the
metabolites.
2. Succeeds in predicting relations in real and simulated datasets.
3. Freely available web server.

1. Based on biological known networks.
2. Limited only to the KEGG database.
3. Requires the original sequences data.
4. Performance is limited (worse than MelonnPan).
5. Not transferable (mixed datasets, between datasets).

[3, 4]

Mangosteen 1. Success in specific metabolites.

1. Based on biological known networks.
2. Limited only to the KEGG database.
3. Performance is limited (worse than MelonnPan and MIMOSA).
4. Not transferable (mixed datasets, between datasets).

[5]

MelonnPan
1. Best performance among existing state-of-the-art.
2. Quite a good definition for well-predicted metabolites.
3. Independent of previous biological knowledge.

1. Long-running times (run for each metabolite separately).
2. Cannot cope with all metabolites.
3. Sometimes returns the same prediction to all samples for specific metabolites.
4. Not transferable (mixed datasets, between datasets).

[6]

MiMeNet

1. Learning multiple metabolites simultaneously enables to find relations
between the metabolites.
2. They claim it is better than existing state-of-the-art methods (PRMT,
MelonnPan, and SparseNED).
3. Independent of previous biological knowledge.

1. Long-running time.
2. Performance is limited in the external test within a dataset.
3. Not transferable (mixed datasets, between datasets).

[7]

SparseNED

1. Learning multiple metabolites simultaneously enables to find relations
between the metabolites.
2. Quite short running times.
3. Independent of previous biological knowledge.

1. Performance is limited within a dataset (worse than MelonnPan).
2. Not transferable (mixed datasets, between datasets).

[8]

mNODE

1. Outperforms existing methods in predicting the metabolomic profiles
of human microbiomes and several environmental microbiomes.
2. Can incorporate dietary information for the prediction.
3. Independent of previous biological knowledge.

1. Performance is limited within a dataset.
2. Hyperparameters tuning as a mandatory step.
3. Long-running time.
4. Deep networks require a lot of training data.

[9]

Khajeh et. al
1. Learning multiple metabolites simultaneously enables to find relations
between the metabolites.
2. Independent of previous biological knowledge.

1. Was tested on a single IBD cohort and a single task.
2. Autoencoders tend to need many samples for training.

[10]

Multiview

1. Achieves higher predictive phenotype accuracy
than separate learning.
2. Powerful when the different views share some underlying
relationships.

1. Falls short of creating a learnable connection between
the microbiome and metabolites.

[11]

Integrated
Learner

1. Achieves higher predictive phenotype accuracy
than separate learning.
2. Enables uncertainty quantification in prediction.
3. Enables interval estimation for a variety of
quantities.

1. Falls short of creating a learnable connection between
the microbiome and metabolites.
2. Does not share information between layers during the
first stage of learning.

[12]
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Table 2: Datasets details
N (subjects) N (samples)

Dataset Cohort description 16S or WGS
N

(species)
N

(metab
olites)

Case Control Case Control
Targeted / untargeted Ref

Direct Plus

18-month randomized clinical trial, we assigned 294
participants with abdominal obesity/dyslipidemia
into healthy dietary guidelines (HDG), MED and
green-MED weight-loss diet groups, all accompanied
by physical activity.

16S 208 62 NA 294 NA 784 Targeted [13]

Kim
Patients with advanced colorectal adenomas,
colorectal cancer, and controls.

16S 85 462 138 102 138 102 Untargeted [14]

He
Infants over several time points during the 1st
year of life, either breast-fed, formula-fed, or
experimental formula fed.

16S 47 120 NA 80 NA 277 Targeted [15]

Jacob
Inflammatory bowel disease patients and
their first degree (healthy) relatives.

16S 79 1307 36 54 36 54 Untargeted [16]

Poyet
Longitudinal samples from healthy donors to the
Broad Institute-OpenBiome Microbiome Library (BIO-ML).

16S 57 156 NA 83 NA 164 Untargeted [17]

ERAWIJANTARI
Patients who underwent colonoscopy, half
with a history of gastrectomyfor gastric
cancer and no signs of gastric cancer recurrence.

WGS 12009 418 42 54 42 54 Targeted [18]

FRANZOSA
Inflammatory bowel disease patients and controls
(PRISM cohort + A validation cohort).

WGS 9154 8848 164 56 164 56 Untargeted [19]

MARS
Longitudinal samples (over 6 months) from patients
with Irritable Bowel Syndrome and controls.

WGS 4155 43 51 24 305 139 Targeted [20]

WANG Adults with end-stage renal disease (ESRD) and controls. WGS 14950 276 220 67 220 67 Untargeted [21]

YACHIDA
Patients who underwent colonoscopy,
with findings from normal to stage 4 colorectal cancer.

WGS 16383 174 220 127 220 127 Targeted [22]

Table 3: LOCATE’s hyperparameters used
BGU He Jacob Kim Poyet

Activation function Tanh elU Tanh Tanh elU
Dropout 0.002 0.070 0.209 0.002 0.079

Weight decay 0.127 0.030 0.138 0.120 0.020
Learning rate 0.001 0.001 0.05 0.001 0.001

Number of neurons layer1 90 20 20 90 20
Number of neurons layer 2 80 10 30 80 10

Representation size 10 10 10 10 10
Optimizer Adam Adam Adam Adam Adam
Max epochs 1000 1000 1000 1000 1000

Table 4: Metadata of each cohort
Dataset Metadata used

Direct Plus Diet, sex, height
He Diet, age, sex

Jacob Sex, age, pedigree

Poyet
Travel abroad last year, seasonal Pollen allergy, weight, height, BMI,

country of birth, sex, relationship status, pet allergy, diet, age
Kim Age, sex, race, smoking history

ERAWIJANTARI
Smoking status, lung cancer, drinking status, breast cancer, glucose, liver cancer,
total cholesterol, diabetes med, analgesic, anticoagulant, gastric acid medication,

high blood pressure, uterine cancer, sex, alcohol consumption, age
FRANZOSA Age, antibiotic, immunosuppressant, mesalamine, steroids,

WANG Age, BMI, Creatinine , Urea, eGFR, sex
MARS Age, BMI, sex, antibiotics

YACHIDA Age, sex, BMI, alcohol
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Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s Pauljensenia turicensis-C5H11NO2 1 light grey
s Collinsella sp900551195-C6H13NO2 1 light grey
s Collinsella sp900551605-C6H13NO2 1 light grey
s Collinsella sp900759435-C4H4N2O2 1 light grey

s Eggerthella lenta-C6H13NO2 1 light grey
s Eggerthella sp014287365-C6H13NO2 1 light grey
s Prevotella sp000431975-C4H4N2O2 1 light grey
s Alistipes sp002428825-C4H4N2O2 1 light grey
s Alistipes sp900021155-C4H4N2O2 1 light grey
s Tidjanibacter inops A-C4H4N2O2 1 light grey

s Confluentibacter sp003258355-C5H4N4O 1 light grey
s Clostridium saudiense-C6H13NO2 1 light grey

s Clostridium sp900543325-C6H13NO2 1 light grey
s Acetatifactor sp002431915-C4H4N2O2 1 light grey
s Acetatifactor sp900771995-C4H4N2O2 1 light grey
s Acetatifactor sp900772845-C4H4N2O2 1 light grey
s Coprococcus sp900548315-C4H4N2O2 1 light grey
s Lachnospira sp900547255-C4H4N2O2 1 light grey
s UBA11774 sp003507655-C3H5O3- 1 light grey
s UBA7182 sp002491115-C4H4N2O2 1 light grey

s Acutalibacter sp009936035-C4H4N2O2 1 light grey
s Acutalibacter sp900543305-C4H4N2O2 1 light grey

s Ruminococcus E sp900315195-C6H14N2O2 1 light grey
s Ruminococcus E sp902797655-C6H14N2O2 1 light grey

s UBA737 sp900554525-C4H4N2O2 1 light grey
s CAG-170 sp000432135-C4H4N2O2 1 light grey

s Dysosmobacter sp900752075-C4H4N2O2 1 light grey
s UBA5446 sp900543085-C4H4N2O2 1 light s Ruminococcus sp900540005-C4H4N2O2

1 light grey
s CAG-145 sp900545135-C4H4N2O2 1 light grey

s Emergencia sp900551775-C4H4N2O2 1 light grey
s NSJ-50 sp014385105-C4H4N2O2 1 light grey
s UBA2862 sp902790525-C3H7NO2 1 light grey

s Christensenella massiliensis-C26H43NO6 1 light grey
s UBA2897 sp002350105-C6H14N2O2 1 light grey

s Fusobacterium A sp900015295-C3H7NO2 1 light grey
s D16-34 sp009911635-C3H5O2- 2 dark grey

s Alistipes sp002428825-C5H4N4O 2 dark grey
s Alistipes sp900549305-C5H4N4O 2 dark grey

s Parabacteroides sp011038785-C4H4N2O2 2 dark grey
s RC9 sp900546445-C5H4N4O 2 dark grey

s Streptococcus hyointestinalis-C6H13NO2 2 dark grey
s Streptococcus parasanguinis A-C6H13NO2 2 dark grey
s Streptococcus parasanguinis B-C6H13NO2 2 dark grey
s Streptococcus parasanguinis C-C6H13NO2 2 dark grey
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Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s Streptococcus parasanguinis D-C6H13NO2 2 dark grey
s Streptococcus sp000314795-C6H13NO2 2 dark grey
s Streptococcus sp000448565-C6H13NO2 2 dark grey
s Streptococcus sp900543065-C6H13NO2 2 dark grey
s Streptococcus sp900766505-C6H13NO2 2 dark grey

s UBA9502 sp004554205-C5H4N4O 2 dark grey
s NSJ-32 sp014384895-C5H4N4O 2 dark grey
s CAG-110 sp003525905-C5H4N4O 2 dark grey
s CAG-83 sp900545585-C5H4N4O 2 dark grey

s Dysosmobacter sp001916835-C5H4N4O 2 dark grey
s ER4 sp900552015-C5H4N4O 2 dark grey

s Flavonifractor sp900549795-C5H4N4O 2 dark grey
s HGM12998 sp900756495-C5H4N4O 2 dark grey

s Intestinimonas butyriciproducens-C5H4N4O 2 dark grey
s Intestinimonas massiliensis-C5H4N4O 2 dark grey

s UBA3855 sp902783005-C3H5O2- 2 dark grey
s UMGS1889 sp900556055-C5H4N4O 2 dark grey

s Emergencia sp900551775-C26H43NO6 2 dark grey
s Phil1 sp001940855-C5H4N4O 2 dark grey

s UMGS692 sp900544545-C3H5O2- 2 dark grey
s Firm-10 sp001603025-C3H5O2- 2 dark grey

s HGM11575 sp002068815-C3H5O2- 2 dark grey
s UBA2862 sp900315585-C3H5O2- 2 dark grey
s UBA2862 sp900318045-C3H5O2- 2 dark grey
s UBA2862 sp902798105-C3H5O2- 2 dark grey

s QALW01 sp003150515-C26H43NO6 2 dark grey
s Akkermansia sp004167605-C3H5O2- 2 dark grey

s Porphyromonas sp900539155-C5H11NO2 3 dim grey
s Alistipes putredinis-C5H11NO2 3 dim grey
s Alistipes senegalensis-C5H11NO2 3 dim grey

s Alistipes shahii-C5H11NO2 3 dim grey
s Alistipes sp900021155-C5H11NO2 3 dim grey
s Alistipes sp900541585-C5H11NO2 3 dim grey
s Alistipes A indistinctus-C5H11NO2 3 dim grey
s UBA940 sp900768115-C5H11NO2 3 dim grey

s W3P20-009 sp004552385-C5H11NO2 3 dim grey
s NSJ-32 sp014384895-C5H11NO2 3 dim grey

s Acutalibacter timonensis-C5H11NO2 3 dim grey
s NSJ-40 sp014384705-C5H11NO2 3 dim grey

s UMGS856 sp900760305-C5H11NO2 3 dim grey
s CAG-390 sp000437015-C5H11NO2 3 dim grey
s CAG-390 sp900753295-C5H11NO2 3 dim grey
s CAG-841 sp000437375-C5H11NO2 3 dim grey
s HGM12650 sp900761725-C5H11NO2 3 dim grey
s UMGS1002 sp900547565-C5H11NO2 3 dim grey
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Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s UMGS1696 sp900763885-C5H11NO2 3 dim grey
s SFLA01 sp004553575-C5H11NO2 3 dim grey
s UCG-010 sp900754535-C5H11NO2 3 dim grey
s CAG-103 sp900317855-C5H11NO2 3 dim grey
s CAG-110 sp900546415-C5H11NO2 3 dim grey
s CAG-110 sp900548795-C5H11NO2 3 dim grey
s CAG-110 sp900551495-C5H11NO2 3 dim grey
s CAG-110 sp900554625-C5H11NO2 3 dim grey
s CAG-110 sp900769995-C5H11NO2 3 dim grey
s CAG-170 sp000436735-C5H11NO2 3 dim grey
s CAG-170 sp002437575-C5H11NO2 3 dim grey
s CAG-170 sp900548625-C5H11NO2 3 dim grey
s CAG-83 sp900548615-C5H11NO2 3 dim grey

s Flavonifractor massiliensis A-C5H11NO2 3 dim grey
s Marseille-P3106 sp900169975-C5H11NO2 3 dim grey

s Pseudoflavonifractor sp900079765-C5H11NO2 3 dim grey
s Anaerotruncus rubiinfantis-C5H11NO2 3 dim grey
s Anaerotruncus sp014385085-C5H11NO2 3 dim grey
s Massilimaliae massiliensis-C5H11NO2 3 dim grey
s UBA1394 sp002305725-C5H11NO2 3 dim grey
s BX12 sp009911365-C5H11NO2 3 dim grey

s CAG-145 sp900545135-C5H11NO2 3 dim grey
s CAG-238 sp002439735-C5H11NO2 3 dim grey
s Phil1 sp001940855-C5H11NO2 3 dim grey

s Firm-11 sp900548145-C5H11NO2 3 dim grey
s SFFS01 sp004557805-C5H11NO2 3 dim grey
s NSJ-63 sp014384805-C5H11NO2 3 dim grey
s Alistipes onderdonkii-C6H13NO2 4 k
s Alistipes sp002358415-C6H13NO2 4 k
s Alistipes sp002362235-C6H13NO2 4 k
s Alistipes sp900290115-C6H13NO2 4 k
s Alistipes sp900541585-C6H13NO2 4 k
s Alistipes sp902388705-C6H13NO2 4 k

s UMGS2068 sp900769635-C6H13NO2 4 k
s Anaerofustis stercorihominis-C6H13NO2 4 k

s Blautia A luti-C3H5O3- 4 k
s Blautia A sp900540785-C4H4N2O2 4 k
s CAG-317 sp011960265-C4H4N2O2 4 k
s HGM11523 sp900756545-C6H13NO2 4 k

s Agathobaculum sp900291975-C6H13NO2 4 k
s Lawsonibacter sp900066825-C6H13NO2 4 k
s Lawsonibacter sp900764755-C6H13NO2 4 k
s Anaerotruncus colihominis-C6H13NO2 4 k
s UBA1409 sp002305045-C24H40O5 4 k
s BX12 sp009911365-C6H13NO2 4 k
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Table 5: WGS 4 different clusters cross-datasets WGS

Pair Cluster num Color
s CAG-145 sp900545135-C6H13NO2 4 k

s Emergencia sp009935805-C6H13NO2 4 k
s Mogibacterium timidum-C4H4N2O2 4 k
s RUG100 sp900315555-C6H13NO2 4 k

s Fusobacterium A varium-C4H4N2O2 4 k

Table 6: Acronym table
Acronym Meaning
LOCATE Latent variables Of miCrobiome And meTabolites rElations

ML Machine Learning
SCFA Short Chain Fatty Acids
T1D Type 1 Diabetes
IBD Inflammatory bowel disease
T2D Type 2 Diabetes
DNN Deep Neural Networks
CNN Convolutional Neural Networks
PRMT Predicted Relative Metabolomic Turnover

MIMOSA Model-based Integration of Metabolite Observations and Species Abundance
MLPNN Multiple-layer Perceptron Neural network
WGS Whole Genome Shotgun Sequencing
HDG Healthy Dietary Guidelines
MRS Magnetic Resonance Spectroscopy
DSC Deep Subcutaneous
SSC Superficial Subcutaneous
VAT Visceral Adipose Tissue
CD Crohn’s Disease
UC Ulcerative Colitis

ESRD End-Stage Renal Disease
NMF Non Negative Matrix Factorization
NNI Neural Network Intelligence
MSE Mean Square Error
SCC Spearman Correlation Coefficient
AUC Area Under the ROC Curve
CCA Canonical-Correlation Analysis
SVD Singular Value Decomposition
CRC Colorectal Cancer
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Table 7: Clustering components of the metadata features in Fig. 5 B, C,D.
Dataset Cluster Cluster components

He
Diet Continuous
Age Continuous
Sex Continuous

Jacob
Sex Continuous
Age Continuous

Pedigree Continuous

Poyet

Travel abroad last year
Bosnia, Canada, China, Costa Rica,Croatia, Europe, Iceland, Japan,
India, South KoreaIreland and England, Italy, France, Spain, Poland,

South AfricaPuerto Rico, Mexico, Caribbean area, Portugal, Switzerland, No

Seasonal Pollen allergy
Hay fever like symptoms, in WA state,

finished 2 years ago, Mild dust allergy, Mild pollen, No,
Pollen, Seasonal, runny nose/stuffy sinuses, Yes, Yes (mold)

Weight Continuous
Height Continuous
BMI Continuous

Country birth Bosnia, Canada, USA
Sex Female, male

Relationship status Dating, Married, Relationship, Single
Pet allergy Cat, dog, No

Diet Omnivore, Vegetarian,
Age Continuous
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Table 8: Clustering components of Fig. 5 F, G and H. Each cluster is represented by 2 colors of
its 2 first dimensions.

Dataset Cluster Cluster components

ERAWIJANTARI

Age Continuous
Alcohol consumption Continuous

Analgesic Binary
Anticoagulant Binary
Breast cancer Binary
DiabetesMed Binary

Drinking status Drink, Not Drinking, Stop Drinking, Unknown
Gastric acid medication Binary

Gender Male, female
Glucose Continuous

High blood pressure Binary
Liver cancer Binary
Lung cancer Binary

Smoking status Smoke, Not smoking, Stop smoking, Unknown
Total cholesterol Continuous
Uterine cancer Binary

FRANZOSA

Age Continuous
Antibiotic Binary

Immunosuppressant Binary
Steroids Binary

Mesalamine Binary

WANG

Age Continuous
Gender Male, female
BMI Continuous
Urea Continuous

Creatinine Continuous
eGFR Continuous
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