Additonal file 1

Computational design and engineering of self-assembling multivalent microproteins with therapeutic potential against SARS-CoV-2

Qin Qin¹, Xinyi Jiang¹, Liyun Huo¹, Jiaqiang Qian¹, Hongyuan Yu², Haixia Zhu¹, Wenhao Du¹, Yuhui Cao², Xing Zhang², and Qiang Huang^{1, 3 *}

¹State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China ²ACROBiosystems Inc., Beijing 100176, China ³Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China

*Corresponding author at: School of Life Sciences, Fudan University, Shanghai 200438, China. Email: huangqiang@fudan.edu.cn

List of Supplementary Materials:

Figure S1. Time-dependent RMSDs of the trivalent constructs.

Figure S2. Principal component analysis (PCA) for a MD trajectory of MP-5ff.

Figure S3. The free energy landscapes (FELs) of the MD conformations of Tr67.

Figure S4. Flowchart for the single-particle cyro-EM analysis.

Figure S5. RBD mutations in the Omicron variants tested.

Figure S6. Best-scoring PyDock docking poses of monovalent Nb67 to the RBDs of the Omicron variants.

Figure S7. Best-scoring PyDock docking poses of Tr67 to the RBDs of the Omicron variants.

Table S1. The amino acid sequences of the trivalent constructs.

Table S2. MM/GBSA binding free energies of trivalent constructs in MD simulations.

Table S3. Cryo-EM data collection and refinement statistics.

Table S4. Interfacial residues of monovalent Nb67 and Tr67 binding to RBD.

Table S5. Interfacial residues of the RBDs of the cluster 1 variants with the monovalent Nb67.

 Table S6. Binding interface areas and numbers of interfacial residues of the best-scoring docking poses
 of Nb67 and Tr67 to the RBDs of the tested Omicron variants.

Figure S1. Time-dependent RMSDs of the trivalent constructs averaged over three independent MD trajectories, with their initial structures as the references. (a) The RMSD results of the four F-scaffold constructs. (b) The RMSD results of the four C-scaffold constructs.

Figure S2. Principal component analysis (PCA) for a MD trajectory of the trivalent construct MP-5ff. (a) Projection of the trajectory onto the first and the second principal components (PC1 and PC2). (b) Projection of the trajectory onto the second and the third principal components (PC2 and PC3). (c) Projection of the trajectory onto the first and the third principal components (PC1 and PC3). (d) Corresponding eigenvalue contributions of the principal components to the variance of the data.

Figure S3. The free energy landscapes (FELs) of the MD conformations of the trivalent nanobody Tr67. (a) FEL for the simulated conformational projections onto the first and the second principal components (PC1 and PC2), indicating that there exists only a deep free-energy well (in blue). (b) FEL for the simulated conformational projections onto two alternative reaction coordinates: root mean square deviation (RMSD) and radius of gyration (Rg), showing again that there exists only a deep free-energy well (in blue). Both FELs showed that Tr67 has only one low-energy trimer conformation, suggesting a good conformational homogeneity similar to that of MP-5ff.

Figure S4. Flowchart for the single-particle cyro-EM analysis of Tr67 in complex with Omicron BA.1 spike protein. The overall resolution of the EM density map is \sim 9 Å with the Fourier shell correlation (FSC) at 0.143.

	с, С	6 6 6	ò çõ	ۍ م	. ~ ~	ب ب ب	, v v	°, °	S 2	3° ×		0. 4	44		0, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	Sr 76	° €	1	o o	A 4	0° 00	0° 0°	°, °, °,	,0 0 0 0	ۍ چې %	`.Ś
BA.1	D	R	L	L	Ρ	F	Т	D	R	Ν	Κ	Κ	۷	S	L	Ν	Ν	Κ	Α	F	F	R	S	R	Υ	Н
BA.2				F			Α	Ν	S					G									G			
BA.2.75	Н			F			Α	Ν	S							Κ						Ø	G			
BA.2.12.1				F			Α	Ν	S					G	Q								G			
BA.3				F				Ν															G			
BA. 4/5				F			Α	Ν	S					G	R					V		Ø	G			
BF.7		Т		F			Α	Ν	S					G	R					V		Ø	G			
BQ.1.1		Т		F			Α	Ν	S			Т		G	R	Κ				<		Ø	G			
XBB.1	Н	Т		F			Α	Ν	S				Ρ			Κ				S	S	Ø	G			
XBB.1.5	Н	Т	I	F			Α	Ν	S				Ρ			Κ				Ρ	S	Q	G			

Figure S5. RBD mutations in the Omicron variants tested. Blank positions indicate residues conserved relative to BA.1, and colored positions highlight residues with mutations different from the BA.1 sequence. Structural models of the RBDs of the variants were built using the BA.1 atomic model as the template and the RosettaRomodel program⁶². A total of 500 low-energy models were generated for each variant, and the lowest-energy model was selected as the input structure for molecular docking.

Figure S6. Best-scoring PyDock docking poses of monovalent Nb67 to the RBDs of the Omicron variants. (a) Nb67 docked to the expected epitope on the upper region of the RBD for variants BA.1, BA.2, BA.2.75, BA.2.12.1, and BA.3 (cluster 1), but to the lower region for variants BA.5, BF.7, BQ.1.1, XBB.1, and XBB.1.5 (cluster 2). (b) The docking Nb67-RBD complexes in the S proteins with the 1-RBD-up conformation. The Nb67s of the cluster 2 variants might collide with other parts of the S protein, suggesting that they are sterically unfavorable for effective binding to the RBDs. The PyDOCK server at https://life.bsc.es/pid/pydock was used to perform the docking simulations, and PyDOCK scoring is based on an empirical potential composed of electrostatic, desolvation, and van der Waals energy terms.

Figure S7. Best-scoring PyDock docking poses of Tr67 to the RBDs of the Omicron variants. The docking Tr67-spike complexes in the superimposed S proteins with the 3-RBD-up conformation. The PyDOCK server at https://life.bsc.es/pid/pydock was used to perform the docking simulations.

Name	Monomer sequence
	NDDELHMLMTDLVYEALHFAKDEEIKKRVFQLFELADKAYKNNDRQKLEKVVEELKELLERLLSGGGGSGG
IVIF-311	GGSGGGGSGYIPEAPRDGQAYVRKDGEWVLLSTFL
	NDDELHMLMTDLVYEALHFAKDEEIKKRVFQLFELADKAYKNNDRQKLEKVVEELKELLERLLSEAAAKEA
IVIP-311	AAKEAAAKGYIPEAPRDGQAYVRKDGEWVLLSTFL
	NDDELHMLMTDLVYEALHFAKDEEIKKRVFQLFELADKAYKNNDRQKLEKVVEELKELLERLLSGGGGSGG
1017-511	GGSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
MP-5rf	NDDELHMLMTDLVYEALHFAKDEEIKKRVFQLFELADKAYKNNDRQKLEKVVEELKELLERLLSEAAAKEA
	AAKEAAAKEAAAKEYIPEAPRDGQAYVRKDGEWVLLSTFL
MP-3fc	NDDELHMLMTDLVYEALHFAKDEEIKKRVFQLFELADKAYKNNDRQKLEKVVEELKELLERLLSGGGGSGG
	GGSGGGGSGEIAALKQEIAALKKEIAALKFEIAALKQGYY
MD 5fc	NDDELHMLMTDLVYEALHFAKDEEIKKRVFQLFELADKAYKNNDRQKLEKVVEELKELLERLLSGGGGSGG
MF-SIC	GGSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
MD 2ro	NDDELHMLMTDLVYEALHFAKDEEIKKRVFQLFELADKAYKNNDRQKLEKVVEELKELLERLLSEAAAKEA
MF-SIC	AAKEAAAKGEIAALKQEIAALKKEIAALKFEIAALKQGYY
MD 5ro	NDDELHMLMTDLVYEALHFAKDEEIKKRVFQLFELADKAYKNNDRQKLEKVVEELKELLERLLSEAAAKEA
MF-SIC	AAKEAAAKEAAAKGEIAALKQEIAALKKEIAALKFEIAALKQGYY
	EVQLVESGGGLVQTGGSLRLSCALSGYTFSIFPTAWFRQAPGKEREFVAGIRWNGSTRDYTEYADFVKGRF
Tr67	TISRDNAKNMVYLQMISLKPEDTALYYCAASDGVIDGTNANAYRYWGQGTQVTVSSGGGGSGGGGSGGGGSGGGGS
	GGGGSGGGGSGYIPEAPRDGQAYVRKDGEWVLLSTFL

Table S1. The amino acid sequences of the trivalent constructs
--

	Trivalent constructs	Trajectory No.	Energies (kcal⋅mol⁻¹)	Mean values (kcal⋅mol⁻¹)	Standard deviations	
		1	-243.29		10.39	
	MP-3rf	2	-232.92	-243.3		
		3	-253.70			
		1	-246.17			
	MP-5rf	2	-220.67	-224.6	19.86	
F-scaffold		3	-207.05			
trimers		1	-246.08			
	MP-3ff	2	-204.52	-235.4	27.17	
		3	-255.62			
		1	-272.36			
	MP-5ff	2	-303.94	-288.6	15.81	
		3	-289.43			
		1	-164.08		6.96	
	MP-3rc	2	-175.91	-172.1		
		3	-176.35			
		1	-246.07		12.36	
	MP-5rc	2	-261.44	-248.2		
C-scaffold		3	-236.98			
trimers		1	-166.84			
	MP-3fc	2	-150.87	-164.2	12.20	
		3	-174.83			
		1				
	MP-5fc	2	-228.43	-222.4	6.18	
		3	-222.65			

Table S2. MM/GBSA binding free energies of trivalent constructs in MD simulations.

	Tr67-spike (Omicron BA.1) complex			
Data collection and processing				
Microscope	FEI Glacios with Falcon 3 direct detector			
Magnification	92,000			
Voltage (kV)	200			
Electron exposure (e⁻/Ų)	43			
Frame exposure (e [_] /Ų)	1.075			
Defocus range (µm)	-1.8 to -2.4			
Pixel size (Å)	1.57			
Total micrographs	4969			
3D reconstruction				
Auto-picked particles	5,250,976			
Particles in final refinement	144,101			
Symmetry imposed	C3			
Final resolution (Å)	9.0			
FSC threshold	0.143			

Table S3. Cryo-EM data collection and refinement statistics

Nb67-spike stru	ucture (PDB:8CYA)	Atomic model of Tr67-spike complex			
Monovalent	RBD	Trivalent	RBD		
Nb67	(Wuhan-Hu-1)	Nb67	(Omicron BA.1)		
P33	L455	E1	R408		
R52	F456	G26	T415		
N54	K458	Y27	G416		
S56	Y473	T28	N417		
T57	A475	S30	D420		
R58	G476	I31	Y421		
Y60	S477	F32	Y453		
E62	V483	P33	R454		
G104	E484	R52	L455		
V105	G485	W53	F456		
I106	F486	N54	K458		
D107	N487	S102	Y473		
G108	C488	D103	N477		
T109	Y489	G104	Y489		
	F490	V105	P491		
	Q493	I106	L492		
		D107	R493		
		T109	S494		
		N110	S496		
		A113	F497		
		<mark>R115</mark>	R498-		
			P499		
			T500		
			Y501		
			H505		

Table S4. Interfacial residues of monovalent Nb67 and Tr67 binding to RBD.^a

^a Interfacial residues were identified by a 4-Å distance cutoff between the atoms of Nb67 and those of RBD. Residues involved in hydrogen bonding are highlighted in red and those forming salt bridges are highlighted in yellow.

Variants	Interfacial residues of RBD
BA.1	449, 455, 456, 475, 483, 484, 485, <mark>486</mark> , 487, 488, 489, 490, 493, 494
BA.2	449, 455, 456, 475, 484, 485, <mark>486</mark> , 487, 488, 489, 490, 492, 493, 494
BA.2.75	449, 483, 484, 485, <mark>486</mark> , 489, 490, 492, 493, 494
BA.2.12.1	449, 452, 455, 456, 475, 484, 485, <mark>486</mark> , 487, 488, 489, 490, 492, 493, 494
BA.3	449, 455, 475, 483, 484, 485, <mark>486,</mark> 487, 488, 489, 490, 493, 494

Table S5. Interfacial residues of the RBDs of the cluster 1 variants with the monovalent Nb67.^b

^bThe mutation at 486 was found to be the key residue for the binding to cluster 1 variants, distinguishing them from cluster 2 variants BA.5, BF.7, BQ.1.1, XBB.1, and XBB.1.5 (as shown in Fig. S5).

	Nb67 docking	to single RBD	Tr67 docking to RBDs			
Variants	Interface area	Number of RBD	Interface area	Number of RBD		
	(Ų)	residues	(Ų)	residues		
BA.2	733.7	14	1005.1	22		
BA.2.75	555.9	10	1024.3	19		
BA.2.12.1	734.4	15	942.3	18		
BA.3	707.9	13	1031.6	21		
BA.5	—	_	945.9	20		
BF.7	—	_	948.3	23		
BQ.1.1	—	_	1001.4	20		
XBB.1	_	_	760.2	15		
XBB.1.5	_	_	738.2	14		

Table S6. Binding interface areas and numbers of interfacial residues of the best-scoring docking poses of Nb67 and Tr67 to the RBDs of the tested Omicron variants.[°]

^c The interface areas and residue numbers of both the Nb67-RBD and Tr67-RBD complexes were calculated based on the binding interactions with a single RBD.