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Theoretical analysis of permuted UCRy gates
In this section, we provide a more detailed analysis of the construction of UCRy and the cyclically permuted UCRy circuits, illustrated in
Fig. 1 in the Main Text. The construction of regular UCRy circuits is well-understood1, 2, but we include a brief discussion about these
concepts for the sake of completeness. The cyclically permuted UCRy and corresponding parallel UCRy circuits are a novel contribution
to the best of our knowledge.

Throughout this text, two elementary properties of Pauli-Y rotations will prove to be useful:

angle addition: Ry(φ0)Ry(φ1) = Ry(φ0 +φ1),

angle negation: XRy(φ)X = Ry(−φ).
(1)

Motivating example
We start with the case of a single address qubit as the simplest possible case to motivate the usage of the compact UCRy(α) circuits.
Using the decomposition for a singly-controlled Ry gate into CX and single-qubit gates3,

a0 •

d Ry(α)
=

a0 • •

d Ry(α/2) Ry(−α/2) , (2)

which directly follows from the properties Eq. (1). We can decompose a UCRy circuit with a single address qubit as follows:

a0 •

d Ry(α0) Ry(α1)
=

a0 X • • X • •

d Ry(α0/2) Ry(−α0/2) Ry(α1/2) Ry(−α1/2)
. (3)

This decomposition is clearly suboptimal as it is known that any two-qubit gate can be decomposed in a circuit with at most 3 CX gates4.
Using a compact UCRy circuit, we can implement the circuit using two CX gates only:

a0 •

d Ry(α0) Ry(α1)
=

a0 • •

d Ry(θ0) Ry(θ1)
, with

α0 = θ0 +θ1

α1 = θ0 −θ1
. (4)

Using Eq. (1), we can verify that Eq. (4) holds by considering the action of the circuit for the two possible basis states of the address qubit:

• If the address (control) qubit is in the |0⟩ state, the circuit on the left applies a Ry(α0) rotation to the second qubit. The circuit on
the right applies Ry(θ0)Ry(θ1) = Ry(θ0 +θ1) to the second qubit, which is equivalent if α0 = θ0 +θ1.

• If the address (control) qubit is in the |1⟩ state, the circuit on the left applies a Ry(α0) rotation to the second qubit. The circuit on
the right applies Ry(θ0)XRy(θ1)X = Ry(θ0)Ry(−θ1) = Ry(θ0 −θ1) to the second qubit, which is equivalent if α1 = θ0 −θ1.

The relation between α0,α1 and θ0,θ1 is the Walsh-Hadamard transformation (Eq. (6) in the Main Text) of dimension 2.
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Cyclically permuted UCRy circuits.
In the case of a single address qubit controlling UCRy, (na = 1), the decomposition Eq. (4) is unique. For na > 1, there are na different
realizations of the UCRy circuit that cyclically permute the index of the control qubit of the CX gates. We illustrate this idea for na = 2.
The first realization UCR(2;0)

y , with the permutation shift s = 0 added as the 2nd superscript. For s = 0, we have the natural ordering of the
address qubits as [0,1]:

a0 • •

a1 • •

d Ry(α0) Ry(α1) Ry(α2) Ry(α3)

=

a0 • •

a1 • •

d Ry(θ0) Ry(θ1) Ry(θ2) Ry(θ3)

with

α0 = θ0 +θ1 +θ0 +θ1,

α1 = θ0 + θ1 −θ0 − θ1,

α2 = θ0 − θ1 −θ0 + θ1,

α3 = θ0 −θ1 +θ0 −θ1.

The linear system relating αi’s to θ j’s can again be derived using Eq. (1). The second realization UCR(2;1)
y cyclically permutes the

position of the control of the CX gates by 1, i.e., s = 1 which leads to the ordering of the address qubits as [1,0]:

a0 • •

a1 • •

d′ Ry(α0) Ry(α1) Ry(α2) Ry(α3)

=

a0 • •

a1 • •

d′ Ry(θ0) Ry(θ1) Ry(θ2) Ry(θ3)

with

α0 = θ0 +θ1 +θ0 +θ1,

α1 = θ0 − θ1 −θ0 + θ1,

α2 = θ0 + θ1 −θ0 − θ1,

α3 = θ0 −θ1 +θ0 −θ1.

The only difference in the s = 1 linear system that relates αi’s to θ j’s are the signs that are highlighted in gray. This is essentially a
permutation of the linear system for s = 1 that can be computed efficiently by computing the position of the bit where two consecutive
Gray code gi and gi+1 differ1, where gi is the reflected binary Gray code of the integer i.

This approach generalizes to any na > 0 address (control) qubits. There always exist na different decompositions of the UCRy gate
using the approach outlined above. The parameters θ j can be computed from angles αi using the Fast Walsh-Hadamard Transform
(FWHT)2 followed by a permutation that depends on the shift s. The classical complexity of this algorithm is O(na2na). As a pUCRy gate
with nd data and na address qubits is equivalent to nd permuted UCRy gates with na address qubits, the cost of classical data preprocessing
for QCrank and QBArt thus is O(ndna2na).

Further experiments using QCrank and QBArt
In addition to the four experiments on real hardware, as presented in “Quantum data processing on H1-1” in the Main Text, we performed
five other experiments using both QCrank and QBArt using noise-free and noisy circuit simulators. These additional experiments explore
the robustness and versatility of the proposed encodings and recovery techniques. General information and setup for the experiments
shown next are summarized in Supplementary Table S1. We use the same three metrics of fidelity as in “Metrics of fidelity” in the Main
Text: dynamic range (Dr), recovered value fidelity (RVF), and recovered sequence fidelity (RSF). These metrics, along with our new
adaptive calibration method, are described in “Methods” in the Main Text.

We use Qiskit-Aer as the primary circuit simulator with four custom noise models, listed in Supplementary Table S2, emulating
the finite fidelities and coherence times of the QPUs that we used in the earlier experiments: (a) noise-free ideal simulator for circuit
validation and probing ideal performance, (b) minimal noise levels to study the impact of introducing some noise over the ideal results,
(c) H1-proxy noise model that approximates the bit-flip and thermal noise present on the H1-1 Quantinuum trapped-ion QPU, (d)

2/8



Experiment #5 #6 #7 #8 #9
QCrank QCrank QCrank QBArt QBArt

Data type Integer sequence Time series
Objective Test Dr, RVF, RSF ECG wave I/O
Simulator noisy† Qiskit-Aer Quantinuum H1-1E‡

addr. qubits (na) 4 4 2 - 7 5 6
data qubits (nd) 8 8 8 10 6
# addresses 16 16 4 - 128 32 64
input (bits) 384 384 96 - 3,000 320 384

†Qiskit simulator with noise level tuned to approximate real QPUs.
‡Quantinuum proprietary simulator H1-1E is tuned to emulate H1-1.

Supplementary Table S1. Summary of simulated experiments using QCrank and QBArt to provide further insights about the
proposed encodings.

IBMQ-proxy noise model based on the IBMQ transmon QPUs. The Qiskit-Aer simulator is set up to use all-to-all connectivity,
which is not valid for IBMQ QPUs, and assumes no limit on the gates multiplicity per cycle, which is not valid for H1-1. Consequently,
the CX-depth of the simulated circuits are shorter in comparison to the real hardware execution, as SWAPs are not required, and the
fidelities retrieved from our simulations are better compared to the respective QPUs.

Noise model ideal minimal H1-proxy IBMQ-proxy

Objective circuit verification fidelity at low noise fidelity of hardware

SPAM error♣ 0 1 ·10−3 3 ·10−3 2.5 ·10−2

U3 error 0 1 ·10−3 5 ·10−5 4.0 ·10−4

CX error 0 1 ·10−3 3 ·10−3 1.4 ·10−2

duration T1/U3♠ ∞ 1 ·105 5000 2000
duration T1/CX ∞ 1 ·105 170 200

RVF 1.0 0.78 0.68 0.26
Dr 0.99 0.90 0.67 0.29

♣bit flip probability error
♠thermal noise model relies only the ratio of coherence time to gates duration.

Supplementary Table S2. Noise model configurations used for simulated experiments listed in Supplementary Table S1.

Adaptive calibration procedure for QCrank (Experiment #5)
The distortion correction function, g(·), that was introduced in Eq. (11) in the Main Text, is a heuristic calibration that can be applied to
the raw QCrank data obtained from the QPU in order to improve the recovery fidelity compared to directly applying Eq. (5) in the Main
Text to the raw measurements. The goal of this experiment is to study the performance of the adaptive calibration for the different noise
models listed in Supplementary Table S2. We use a QCrank circuit with 4 address- and 8 data-qubits such that the circuit has a depth of
32 CX-cycles and can load 24 ×8 = 128 real values. We generate 98 random input data sequences of length 128 with values selected
out of 8 different symbols, i.e, a bit-depth of 3. The total capacity of this circuit configuration is 384 classical bits of information. Each
QCrank circuit is measured for 3 ·103 shots for each noise model and every data set.

Supplementary Fig. S1 shows the distribution of the angles αmeas (reconstructed using Eq. (5) in the Main Text based on 3 ·103 shots
obtained from the four different simulators) as a function of the input symbol. The reconstructed angles are visualized using violin plots
that show the distribution of the measured angles for each different input symbol. The average angle is indicated by the short blue bar. We
observe that, for the ideal noise-free simulator, the measured averages line up exactly with the input angles that are shown as red dashed
lines. Similarly, the recovered angles will have no systematic bias if a large number of shots is used. Even for the ideal simulator there
is a spread in the recovered angles caused by the finite sample size (shot noise). As the level of noise increases in panels (b)-(d), the
position of the blue bars deviates more from the ideal red dashed line, and the spread on αmeas for an individual symbol increases. The
distortions correction function g(.), defined in Eq. (16) in the Main Text, is determined by the horizontal dotted lines, which indicate the
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heuristic intervals that map the measured angle to the most probable input symbol. The edges of these heuristic intervals are chosen as the
average of two consecutive blue bars. The lookup table for the distortion correction has to be precomputed through calibration, which
requires additional shots, but it can then be applied to remove the bias of new measurements on QCrank circuits of data with similar
characteristics. The dynamic range (Dr), defined in Eq. (14) in the Main Text, is naturally visible in Supplementary Fig. S1 as the vertical
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Supplementary Figure S1. Reconstruction of αmeas (vertical axis) for QCrank experiment #5 with 3 ·103 shots and for four noise
models listed in Supplementary Table S2 are shown on panels (a)-(d). The true values of symbols (a.k.a. discrete inputs x ) are on the
horizontal axis. The diagonal dashed red line marks the mathematically correct ideal reconstruction (Eq. (5) in the Main Text) and it is the
same for all 4 panels. The horizontal dotted lines mark adaptive calibration thresholds used for more accurate reconstruction following Eq.
(11) in the Main Text. The width of the violin plots denotes PDF αmeas.

distance between the first and the last blue bars scaled to the full range of π . The RVF, defined in “Methods” in the Main Text, is the
area of each violin that is contained between the respective threshold lines (dotted lines) assigned to a given symbol. The final 2 rows
in Supplementary Table S2 summarize Dr and RVF obtained from the data shown in Supplementary Fig. S1.

Fidelity of QCrank as a function of shots (Experiment #6) and address qubits (Experiment #7)
For Experiment #6, we use the same QCrank setup used in the previous experiment but we vary the number of shots. Supplementary
Fig. S2(a) shows the measured RVF as a function of the number of shots for the four different noise models. The RVF improves with
increasing number of shots, but the rate of improvement depends on the level of noise. Furthermore, with increasing noise, the RVF
saturates at a lower fidelity and an RVF of 1 is only achieved for the noise-free simulator. In other words, running more shots does not
compensate the higher noise and sees a diminishing improvement in RVF. In QCrank Experiment #7, we start again with the setup
used in Experiment #5, but we maintain the number of shots constant at 3 ·103. Instead, we increase the number of address qubits, or
equivalently, the CX depth. The measured RVF is shown in Supplementary Fig. S2(b) as a function of the CX-cycles depth of the final
circuit. The RVF degrades with increasing address count due to the circuit being longer and there being fewer shots available per address.
Consequently, the measured probabilities are less accurate. This effect is more pronounced in the presence of noise.

Fidelity of QBArt as a function of shots (Experiment #8)
In this experiment, we perform a similar analysis of QBArt with majority voting suppressing the noise. The experimental setup is as
follows: we use a QBArt circuit with 5 address qubits and 10 data qubits that has an information capacity of 25 ×10 = 320 classical bits.
We use a random sequence of 320 bits and the same 4 noise models as before (see Supplementary Table S2). Supplementary Fig. S3(a)
shows the RVF as a function of the number of shots. For the noise-free, minimal noise, and H1-proxy models, the fidelity converges to 1.0
for O(103) shots or fewer. For the IBMQ-proxy noise model, the RVF remains low even if an order of magnitude more shots are used.
With this noise model, the bit strings are too corrupted for the majority voting technique to work. Supplementary Fig. S3(b) shows the
RSF, which measures if the full sequence is retrieved correctly, again for the different noise models. This experiment shows that a perfect
recovery is possible using only a moderate number of shots as long as the noise-level is not too high.

Comparing Supplementary Fig. S3 with Supplementary Fig. S2 shows that QBArt requires significantly fewer shots to achieve a
similar RVF. This is due to the sparser encoding and the data encoded in basis states, i.e. orthogonal states, compared to superpositions.
Furthermore, as illustrated by the experiments in the main text, QBArt is more suitable for quantum data processing algorithms that act
on the binary data representation, compared to the angle representation used in QCrank.
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Supplementary Figure S2. Simulated QCrank symbol fidelity for the 4 models of noise listed in Supplementary Table S2. (a)
Experiment #6 shows fidelity dependence on the number of shots, while the problem size is constant. (b) Experiment #7 shows fidelity as
a function of the size of the QCrank addresses space, while the number of shots is kept constant.

102 103 104

number of shots

0.0

0.2

0.4

0.6

0.8

1.0

re
co

   
sy

m
bo

l  
 fi

de
lit

y

(a)
ideal minor-noise H1-proxy IBMQ-proxy

102 103 104

number of shots

0.0

0.2

0.4

0.6

0.8

1.0
re

co
   

se
qu

en
ce

   
fid

el
ity

(b)

Supplementary Figure S3. Simulated QBArt reconstruction fidelity for QBArt Experiment #8 assuming various noise magnitudes.
(a) single value fidelity (b) whole sequence fidelity.

ECG waveform time-series (Experiment #9)
In this final experiment, we encode and recover a waveform consisting of 64 values in 6-bit resolution using our QBArt encoding. We
generate a synthetic electrocardiogram (ECG) signal shown in Supplementary Fig. S4(a). This waveform is digitized into a sequence
of 64 6-bit integers, shown as solid red in Supplementary Fig. S4(b), and used as the QBArt input. The dashed black line in the same
figure shows the recovered ECG signal using majority voting. The simulation is run on the Quantinuum H1-1E emulator and correctly
recovers 63 out of the 64 input values using 2000 shots. The QBArt circuit uses 6 address qubits and 6 data qubits and has the depth
of the transpiled circuit is 64 CX gates. Our other experiments suggest that the actual Quantinuum H1-1 QPU would deliver a similar
performance using 150% of the shots of the simulator.

Additional background information
Shots count requirement for QBArt
The output can be accurately recovered for QBArt, but with a probability that depends on the number of used shots and on the length
of the sequence. The fundamental notion is the minimal number of appearances of each address sub-string (Mmin) during multi-shot
measurements. On average, each QBArt address is measured with the same probability. The Poisson distribution f (x,λ ) governs the
number of appearances of an address. The lower cumulative distribution, P(x,λ ), describes the probability of detecting not more than x
occurrences given the average λ :

P(x,λ ) =
x

∑
t=0

f (t,λ ). (5)
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Supplementary Figure S4. Encoding of an ECG signal using QBArt on the Quantinuum H1-1E emulator. The 12-qubit QBArt
circuit is executed for 2 ·103 shots. (a) synthetic ECG signal. (b) digitized input is shown as a solid line and the reconstructed signal is
shown as a dashed line.

In our case, λ is the ratio of the number of shots per circuit to the number of QBArt addresses. For an ideal QPU, we want each address
to appear at least once (Mmin = 1), which will happen with probability 1−P(0,λ ). For a NISQ device, we will need Mmin > 1 to allow
for a sufficient number of appearances of the data-bits string at a given address, such that, more than once, the measured data bit-string is
the correct one and the majority voting method selects this bit-string. It is possible to state the inverse case, i.e. the hardware agnostic
problem, as follows. How many shots per address, λ , are required to achieve some value of Mmin, while accepting some probability of
failure per address, Faddr? Supplementary Fig. S5(a) shows analytical results of λ (Faddr;Mmin) for 3 choices of Mmin. There is a weak
penalty for requiring a larger Mmin. In the case of QCrank, we want the whole data sequence, meaning the values at all addresses, to
be reconstructed correctly. At the first order, the probability of seeing less than Mmin appearances (Fcirc) in any of L addresses equals
L ·Faddr. Supplementary Fig. S5(b) shows the necessary number of shots per QBArt circuit as a function of the number of addresses for
selected pairs of (Mmin,Fcirc). The Mmin = 1 results relate to an ideal QPU. It shows that we need only 350 shots per QBArt circuit with
32 addresses to obtain the correct answer with the probability of 99.9%, regardless of the number of data qubits. For a NISQ device with
H1-1 QPU fidelity level, we may target Mmin = 8, which requires 800 shots instead. The dependence of the total number of shots on the
failure probability is rather weak.

Classical circuit for DNA matching
DNA is a sequence of codons consisting of three nucleotides. Given that 4 types of nucleotides exist, the base 64 codon requires 6
classical bits to be encoded. Therefore, a reference classical circuit comparing two codons (Supplementary Fig. S6) must have 12 input
bits, labeled a0, ...,a5,b0, ...,b5. The first 6 XNOR gates return 1 if there is a match between their two input bits. The following 5 AND
gates aggregate this information to a single bit m0, set to 1 if all 6 pairs of inputs match. The intermediate output of XOR is accessible via
bits p0, ..., p5. The pi bits can be used as input to the following Hamming weight circuit (not shown) producing the Hamming distance
between the two input codons. For the binary encoding of quantum data, there is a correspondence between a classical XOR gate and
a quantum CX gate. Similarly, a classical AND gate maps to a quantum Toffoli gate. We exploit this correspondence to construct the
quantum circuit in Fig. 4 in the Main Text with almost identical topology as the classical one in Supplementary Fig. S6.

Classical circuit for Hamming weight
The Hamming weight of a bit-string is the number of 1s in the bit-string. For completeness, we show the classical circuit computing
the Hamming weight for a 3-bit input in Supplementary Fig. S7. It can be compared with the equivalent quantum circuit. To highlight
again the analogy between classical and quantum gates, the numbers inside the classical gates in Supplementary Fig. S7 enumerate the
equivalent quantum gates in Fig. 5 in the Main Text. It is easy to verify that the 4 quantum gates from Fig. 5 in the Main Text implement
the 3-bit Hamming weight truth table shown here.
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Supplementary Figure S5. Relationship between the necessary number of shots and the number of QBArt addresses. (a) average
shots per address sufficient for the 3 choices of minimal number of shots to be guaranteed with probability above 99.9%. (b) total shots
per circuit for several choices of minimal number of shots per address and confidence levels.
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Supplementary Figure S6. Classical circuit using 6 XNOR, 5 AND, and 6 NOT gates setting bit m0 to true if the two 6-bit input
registers a0, . . . ,a5 and b0, . . . ,b5 are equal.
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Supplementary Figure S7. (Left) Classical gates computing 3-bit Hamming weight. Logical expressions: s0 = p0 ⊕ p1 ⊕ p2, where
⊕ denotes modulo 2 addition and s1 = p0(p1 ⊕ p2)⊕ p1 p2. The numbers inside classical gates map to equivalent quantum gates in ??.
(Right) Truth table.
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