BMJ Paediatrics Open

BMJ Paediatrics Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Paediatrics Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjpaedsopen.bmj.com</u>).

If you have any questions on BMJ Paediatrics Open's open peer review process please email <u>info.bmjpo@bmj.com</u>

BMJ Paediatrics Open

Prevalence and causes of ocular disorders and visual impairment among preterm children in Ethiopia

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2023-002317
Article Type:	Original research
Date Submitted by the Author:	05-Oct-2023
Complete List of Authors:	SHERIEF, SADIK; Addis Ababa University, Department of Ophthalmology; SickKids Research Institute Muhe, Lulu M; Addis Ababa University College of Health Sciences Mekasha, Amha; Addis Ababa University, Department of Pediatrics and Child Health Demtse, Asrat; Addis Ababa University College of Health Sciences, Paediatrics and Child Health Ali, Asim; The Hospital for Sick Children, Ophthalmology and Vision Sciences
Keywords:	Infant, Neonatology, Ophthalmology

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Review Only

Prevalence and causes of ocular disorders and visual impairment among preterm children in Ethiopia

Sadik Taju Sherief^{1,2}, Lulu Muhe³ Amha Mekasha³, Asrat Demtse³, and Asim Ali⁴

¹Department of Ophthalmology, Addis Ababa University, Addis Ababa, Ethiopia;

² Child Health Evaluative Sciences Program and Centre for Global Child Health, Sickkids Research Institute, Toronto, Canada;

³ Department of Pediatrics and Child Health, Addis Ababa University, Addis Ababa, Ethiopia; ⁴ Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children and University of Toronto, Toronto, Canada.

Short Title: Ocular disorders in Preterms

Corresponding Author:

Sadik T. Sherief, MD Department of Ophthalmology School of Medicine, College of Health Sciences Addis Ababa University P.O. Box 9086, Addis Ababa, Ethiopia Tel: +251917801719 Email: goge4000@yahoo.com

Submitted as an Original Research article to: BMJ Paediatrics Open

- Abstract word count (300 maximum): 235 words
- Manuscript word count (4000 maximum): 3,433 words
- Tables and Figures (maximum 5): 4 Tables
 - **Reference Count: 54**
 - Submitted to: BMJ Paediatrics Open

Key words: Preterm children; Low birth weight; Visual Impairment; Refractive error;

Strabismus; Retinopathy of prematurity; Risk factors of visual impairment; Sub-Saharan Africa; Ethiopia.

ABSTRACT

Objective

The aim of this study was to determine the prevalence, causes of ocular disorders and visual impairment among preterm children previously admitted to neonatal intensive care units in Addis Ababa, Ethiopia.

Methods and Analysis

A prospective screening survey was conducted from Feb. to June 2019 at the pediatric eye clinic of Menelik II Hospital. Children who were preterm at birth and who attended the eye clinic were included in the study. Data on demographic and neonatal characteristics, neonatal and maternal co-morbidities, and ocular disorders were collected. Odds ratio and univariate analysis were used to identify predictors of ocular diseases and visual impairment.

Results

There were 222 children included in the study with a mean age at presentation of 2.62 years (range 2.08- 6.38 years), mean GA 34.11 weeks (range 30-36) weeks, and mean birthweight 1941.72g (range 953-3500g). Nearly 2/3 had ocular disorders with refractive error (51.8%), strabismus (11.3%), and history of ROP (7.2%) being more common. One-fourth of the children had visual impairment, and the prevalence of amblyopia was 40.1%. Uncorrected refractive errors, strabismus, and ROP were causes for visual impairment.

Conclusion

Visual impairment and amblyopia are common in Ethiopia. There is a need to develop a screening protocol for ocular disorders for preterm children to enhance early detection and prevention of childhood visual impairment.

Keywords: Preterm children; Low birth weight; Visual Impairment; Refractive error; Strabismus; Retinopathy of prematurity; Risk factors of visual impairment; Sub-Saharan Africa; Ethiopia.

Key Messages

What is already known about this subject?

- In many low- and middle-income countries, the survival of preterm infants has improved as neonatal systems have improved.
- Preterm children are at a higher risk of developing ocular disorders, visual impairment, and amblyopia than term children.

What this study adds

• The magnitude and causes of ocular morbidity among preterm children are not well studied in sub-Saharan African countries. This study, conducted among preterm children admitted to two NICUs in a sub-Saharan country, shows that preterm infants develop a higher rate of visual impairment and amblyopia.

How this study might affect research, practice or policy

 The findings of this study provide some evidence for screening for ocular diseases in preterm children, but further studies are needed.

INTRODUCTION

Global, regional, and national estimates of preterm birth (defined as childbirth at less than 37 completed weeks) using the 2019 Global Burden of Disease study showed 15.22 million preterm births (1). In the Global Burden of Disease Study, 3.1% of all disability-adjusted lifeyears were attributed to preterm birth, similar to the burden of HIV or malaria (2). More than 95% of preterm births are occurring in developing countries. Globally the estimated preterm birth rate is 11.1%. Over 60% of preterm births occur in Sub-Saharan Africa and South Asia (1). Ethiopia belongs to the top 15 countries that contribute to two-thirds of the world's preterm babies with a preterm rate of 14.1% out of 481 deliveries (3).

From six months of pregnancy to term is considered the most active period for ocular development (4). Improved neonatal care has increased the survival rates of extremely preterm infants with birth weights (BW) of 1,000 g or gestational age (GA) of 28 weeks; at the same time, retinopathy of prematurity (ROP) has become a significant threat to visual function (5-7). Preterm children are reported to have an increased incidence of visual impairment because of perinatal lesions in the brain (8-10).

It has been noted that both preterm birth and retinopathy of prematurity (ROP) have an effect on the developing visual system, leading to decreased visual acuity, decreased contrast sensitivity, and an increase in color vision deficiencies (11-16). Population-based studies suggest that ophthalmic impairments remain common in very low birth weight infants (11,16,17). Effects of prematurity on ocular and neurological development include retinopathy of prematurity (ROP), refractive error, strabismus, cerebral visual impairment, color vision deficits, reduced contrast sensitivity (CS), visual field defects, and decreased visual acuity (16). According to population studies, the incidence of ROP, whether moderate or severe, for infants born at less than 1500–1700 g ranges from 22–49% (17-19).

In a cohort study, children with lower birth weights had significantly worse near and distance visual acuity at ages 10 to 12 years compared to full-term infants (10). Additionally, infants born prematurely without ROP are more likely to have myopia and anisometropia than infants born at term because preterm babies are more likely to experience refractive errors (20). An increased incidence of strabismus has also been reported in children born prematurely,

regardless of the presence of ROP (21-24).

Research on ocular morbidities among preterm infants in sub-Saharan African nations is limited. Before 2020, blindness from ROP was not reported in Ethiopia, including studies in schools for the blind (25, 26).

To determine the top causes of illness and mortality in preterm infants admitted to neonatal intensive units (NICUs) in Ethiopia, an Ethiopian Study of Illness in Preterms (SIP) study was conducted based on standardized diagnostic protocols. This study is part of the SIP study focusing on ocular morbidities among preterms. The present study aimed to identify ocular disorders in a population of preterm children with and without ROP.

METHODS

Study design and subjects

The SIP Study is a prospective study conducted to determine the top causes of illness and mortality in preterm infants admitted to hospitals in Ethiopia based on standardized diagnostic protocols (27). The study participants of this current study are from the SIP study from Feb – June, 2019. The research was performed in accordance with the Declaration of Helsinki and was approved by the Institute Ethics Committee of Addis Ababa University ((Ref No. 003/2016). All parents or legal guardians provided informed consent before the examination. Patients or the public weren't involved in our research's design, conduct, reporting, or dissemination plans.

Study setting

For the SIP study, standard protocols were developed to undertake a physical examination and laboratory investigation, in particular microbiology, radiologic, and ultrasound examinations. There were initial and follow-up examinations to detect the progress of the preterm infant. Addis Ababa University, Gondar University, Jimma University, and St. Paul Millennium Medical College were included in the SIP study. However, for this ocular morbidity aspect of the SIP study, preterms from Addis Ababa, Tikur Anbessa Hospital, Gandhi Hospital, and St. Paul Millennium Medical College were included in the research.

Recruitment methods

Inclusion criteria were (1) GA < 37 weeks and (2) participation in the SIP study. The preterm children were identified from the SIP database. Parents of all preterm infants received a phone call invitation to participate in our investigation.

Assessment of prenatal and postnatal history

History data were assessed from each child's recorded file for the enrolled children. The following data were extracted: antenatal risk factors: maternal age, in vitro fertilization, antenatal corticosteroids, preeclampsia/eclampsia, diabetes, HIV/AIDS, chorioamnionitis, mode of delivery, and multiple births. Neonatal factors included sex, GA, BW, resuscitation in the delivery room, respiratory distress syndrome (RDS), duration of invasive/noninvasive mechanical ventilation and oxygen therapy, intracranial hemorrhage, patent ductus arteriosus (PDA), neonatal sepsis, necrotizing enterocolitis (NEC), number of blood transfusions, and bronchopulmonary dysplasia (BPD). There were no regular ROP screening programmes within the NICUs of the hospitals where the patients were admitted. There was no referral system from the NICUs to Ophthalmology clinic, except if the parents noted a concern. In addition, all parents were interviewed using a standardized protocol to request information concerning medical history of the child and parents, including ocular and general morbidities.

Definitions

Gestational age was determined using last menstrual period [LPM], Ballard and Dubowitz scores and ultrasound assessment. Studies in Papua New Guinea have shown good concordance (0.878, 0.914, and 0.886, respectively) compared to antenatal ultrasound as the gold standard (28). LMP in a low-resource setting such as Bangladesh was found to be a more reliable measure of gestational age than previously thought for the estimation of postnatal gestational age of preterm infants (29).

Preterm infants were further classified as late and moderate preterm (32 to < 37 weeks), very preterm (28 to <32 weeks), and extremely preterm (less than 28 weeks). Glasses were prescribed if there was myopia >1.0D, astigmatism >1.0D, or hypermetropia >+2.0D.

Eye examination

All examinations were performed by the PI and lead author (STS), a pediatric ophthalmologist. Testing of best-corrected visual acuity was performed with Lea symbols until school enrolment, and after that, ETDRS was used in all subjects. In cases of visual acuity below 6/60, depending on the children's age, Lea symbols or Landolt rings were used at a distance of 1 m. Values were converted for analysis into the logarithm of the minimum angle of resolution (logMAR) (30).

Cyclopentolate (0.5%) eye drops were administered three times at 10-min intervals, after which cycloplegic refraction and keratometry were analyzed with an autorefractor (Nidek ARK-1s keratometer, Japan). The spherical equivalent (refractive error) was calculated by adding the spherical value and half of the cylindrical value. Anisometropia was defined as a difference between the patients' eyes of \geq 1.5 diopters of spherical equivalent. Orthoptic examination for strabismus included the cover-uncover test and alternate cover test, the Hirschberg Test and examination of fixation behavior, as well as the presence or absence of nystagmus after having corrected refractive errors. If a child presented with heterotropia, an alternating prism cover test was added to measure the angle of deviation in prism diopters.

Strabismus was defined as constant or intermittent heterotropia of any dimension at a distance and/or near fixation after correcting refractive error. Classification of strabismus was categorized depending on deviation from the primary position (esotropia or exotropia). An anterior segment examination was done using slit lamp biomicroscopy. A dilated posterior segment examination was conducted using indirect ophthalmoscopy with a 28-diopter lens. Retinopathy of prematurity was diagnosed retrospectively from the patients' chart.

Statistical analyses

Statistical analysis was undertaken using IBM SPSS 21.0 (SPSS Inc., Chicago, USA). Continuous variables were expressed as the mean \pm standard deviation (SD) or as the median when appropriate. Categorical variables were expressed as proportions. The chi-square test was used to analyze the association between categorical variables. Associations between ocular morbidities and continuous and categorical variables were computed using Fisher's exact test and Pearson chi-square (χ^2) test, respectively. Continuous variables were compared using ANOVA. Values of p <0.05 were considered statistically significant. Two statistical models were used for risk factor analysis. First, separate univariate logistic regression analysis was performed with the presence of ocular morbidities as a dependent variable and documented potential risk factors for ocular morbidities as independent variables. Second, variables that were significant at the 0.25 level in univariable analysis were used in the multivariable mode. The goodness of fit of the final model was assessed using the Hosmer and Lemeshow test (31). Adjusted odds ratios are reported with 95% confidence-intervals; a p-value of <0.05 was considered statistically significant.

RESULTS

During the study period 222 infants (146 from Saint Paul Hospital and 76 from TASH) were included in this study.

Characteristics of the study population

Slightly more females than males were screened (52.7% and 47.3%, respectively). The majority of the study participants (n=156, 70.3%) were less than 3 years of age and the mean age at presentation was 2.62 ± 0.49 years (range 2.08- 6.38). One hundred and twenty-three of the 222 children (55.4%) had a GA \leq 34 weeks and 43 (19.4%) had a BW \leq 1500g. Birthweight ranged from 953-3500g with a mean of 1941.72g (SD 445.49); GA ranged from 30-36 weeks, with a mean of 34.11 weeks (SD 1.47). One hundred and twenty-three children (55.4%) were delivered vaginally, and 80 (36.1%) had multiple gestations. Forty-eight children (21.7%) were born to mothers with pregnancy-induced hypertension, and eight (3.7%) mothers tested positive for HIV (Table 1).

The mean BWs of children from SPH and TASH NICUs were 1888.5 ± 403.6 (953-3000) g and 2043.94 ± 503.74 (1125-3500) g, respectively; mean GAs were 34.14 ± 1.49 (30-36) weeks and 34.08 ± 1.44 (30-36) weeks, respectively. Differences in these parameters were not statistically significant (Table 2).

2
3
4
5
6 7
8
9
10
11
12
13
14
15
16 17
17
18
19
21
22
23
24
25
26 27
27
28
29
30
31
32
33
34
35
36
36 37
38
39
40
40 41
41
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57 58
58 59
60

Table 1 Character	ristics of premature	childre	n and m	nothers s	creened for	ocular disorder	S
x7 · 11			3.6.1		D 1		

Variable		Total	Male		Female	
		Ν	Ν	%	Ν	%
Diuthusiaht	≤1500 gm	43	20	46.5%	23	53.5%
Birthweight	>1500gm	179	85	47.5%	94	52.5%
Costational aga	≤34 weeks	122	60	49.2%	62	50.8%
Gestational age	> 34 weeks	100	45	45%	55	55%
Multiple	Yes	80	42	52.5%	38	47.5%
gestation	No	142	63	44.4%	79	55.6%
Oxygen	Yes	97	47	48.5%	50	51.5%
supplementation	No	125	58	46.4%	67	53.6%
	Sepsis	6	2	33.3%	4	66.7%
Infantile	IVH	2	0	0%	2	100%
morbidity	BPD and Sepsis	1	1	100%	0	0%
	None	213	102	47.9%	111	52.1%
Mode of delivery	Vaginal delivery	123	53	43.1%	70	56.9%
whole of delivery	Cesarean section	99	52	52.5%	47	47.5%
Multiparity	Yes	47	18	38.3%	29	61.7%
Winniparity	No	175	63	34.3	59	65.7%
	PIH	44	22	50%	22	50%
	HIV	5	2	40%	3	60%
Maternal	HIV & PIH	3	3	100%	0	0%
morbidity	DM	2	0	0%	2	100%
monulary	DM & PIH	1	0	0%	1	100%
	TORCH	1	1	100%	0	0%
	None	166	77	46.4%	89	53.6%
NICU location	SPH	146	65	44.5%	81	55.5%
	TASH	76	40	52,6%	36	47.4%

Legend: BPD- Bronchopulmonary Dysplasia; DM- Diabetes Mellitus; HIV-IVH-Intraventricular Hemorrhage; PIH- Pregnancy-Induced Hypertension; SPH- Saint Paul Hospital; TASH-Tikur Anbessa Specialized Hospital; TORCH- Toxoplasmosis, Rubella, Cytomegalovirus, Herpes simplex, and HIV

Ocular morbidities and risk factors

Overall, 145 (65.3%) of the children had ocular disorders at the presentation, of which 92 (63.4%) had isolated ocular diseases (69 refractive error, 13 nasolacrimal duct obstruction, five strabismus, and five ROP). The mean age at presentation of children with ocular disorders was 2.7 ± 0.5 (2.1- 6.4) years, and there were more females with a male to female ratio of 1:1.27. None of the eyes examined had anomalies of the anterior segment or lens.

The mean GA was 34.14 ± 1.49 (30-36) weeks, and BW was 1927.27 ± 429.19 (953-3100) grams. Refractive errors were the leading type of ocular morbidity seen in 115/222 (51.8%), followed by NLDO (21.2%) (Table 2).

rable 2. Types of ocular disorde	<u>is among pr</u>	cinature ciniuren sereenet
Ocular disorders	n	%
Refractive error	115	51.8
Nasolacrimal duct obstruction	47	21.2
Strabismus	25	11.3
Retinopathy of prematurity	16	7.2
Others	5	2.3

 Table 2. Types of ocular disorders among premature children screened

NB- Some ocular disorders occur more than once.

Refractive error

One hundred and fifteen (51.8) children had a refractive error, of which 55.5% (81/146) and 44.7% (34/76) of children enrolled from the SPH and TASH had refractive errors, respectively. The mean age at presentation was 2.68 ± 0.56 (2.08-6.38) years, and the male-to-female ratio was 1:1.25. Thirty-nine (59%) of children aged > 3 years developed refractive error in comparison with 76 (48.1%) of those aged < 3 years.

The mean gestational age and birthweight of children with refractive errors was 34.11±1.54 (30-36) weeks and 1892.34±414.55 (1080-3100) grams, respectively. Myopia was the commonest type of refractive error, accounting for 78/115 (60.8%) of cases, followed by astigmatism (30, 26.1%) and hyperopia (15, 13.1%). Gender, GA, BW, oxygen supplementation, children, and maternal morbidity were not statistically associated with refractive error. (Table 3)

Strabismus

Twenty-five children (11.3%) had strabismus (5 isolated, 20 in combination with refractive error, nystagmus, ROP, and nasolacrimal duct obstruction). The age at presentation was 2.73 ± 0.52 (2.1-3.6) years, and the male-to-female ratio was 1.08:1.

The mean GA and BW were 34.0 ± 1.41 (30-36) weeks and 906.76 ± 489.92 (1140-3000), respectively. Regarding the types of strabismus, 13 cases had esotropia, and the remaining 12 patients had exotropia. There was no statistically significant association between GA, BW, and strabismus (Table 3). In this study, the prevalence of strabismus among children aged \geq 3years was 16.7% compared to 8.9% in those < 3 years. However, older age was not statistically associated with strabismus.

Retinopathy of prematurity

Previous history of ROP was noted in 16/22 (7.2%) of the children enrolled in this study. Most patients (12, 57%) with ROP were from SPH. Almost all of them (15/16) had a GA < 34 weeks, and the mean GA and BW of patients with ROP were 32.19 ± 1.33 (30-35) weeks and 1596.25 ±483.64 (953-2600) grams, respectively. Nine patients with ROP had an associated refractive error (6 myopia and 3 astigmatism). Only one patient had an associated intermittent exotropia. In univariate analysis, ROP was statistically associated with low GA and low BW (Table 3). Multivariable logistic regression analysis was not conducted due to the small number of children with ROP.

 Table 3. Ocular disorders by sex, gestational age, and birthweight among premature children screened for ocular disorders

Type of	Variables		Yes	No	Odds Ratio	p-Value	
Disorder			n	n		_	
	Sex	Male	51	54	0.78(0.46-1.33)	0.361	
		Female	64	53			
Refractive	BWt	≤1500 gm	22	21	1.03(0.53-2.01)	0.926	
error		>1500gm	93	86			
	GA	≤34 weeks	62	60	1.09)0.64-1.85)	0.746	
		> 34 weeks	53	47			
	Sex	Male	12	93	1.03(0.4501.37)	0.940	
		Female	13	104			
Strabismus	BWt	≤1500 gm	7	36	0.57(0.22-1.48)	0.246	
Strabisinus		>1500gm	18	161			
	GA	\leq 34 weeks	14	108	0.95 (0.41-2.2)	0.911	
		> 34 weeks	11	89			
	Sex	Male	6	99	0.65(0.22-1.85)	0.415	
		Female	10	107			
ROP	BWt	≤1500 gm	7	36	Reference	0.01	
		>1500gm	9	170	0.27(0.09-0.78)		
	GA	\leq 34 weeks	15	107	Reference	0.001	
		> 34 weeks	1	99	0.72 (0.09-0.56)		

Legend: BWt- Birth Weight ; GA-Gestational Age

Visual impairment and ocular disorders

The mean VA of the right and left eyes was 0.22(SD 0.23) logMAR and 0.17 (SD 0.21) logMAR, respectively. The mean VA in the better and worse eyes was 0.17 (SD 0.22) logMAR

and 0.28 (SD 0.21) logMAR, respectively. In this study, 101 (45.9%) and 181 (81.5%) of the children had subnormal visual acuity (>logMAR 0.1) in the better and worst eyes, respectively. Nearly one-fourth (55, 24.8%) of children screened had visual impairment in the better eye. Of this group 51 (92.7%) had uncorrected refractive error alone (34/51) or with strabismus (10/51), ROP (6/51), or nystagmus (1/51). Eighty-nine (40.1%) patients had amblyopia, of which 59/89 (66.3%) had bilateral amblyopia from uncorrected refractive error. Isometropic and anisometropic amblyopia from uncorrected refractive error were the commonest causes of amblyopia, contributing to 49/89 (55%) and 20/89 (22.8%), respectively. Of the 16 cases with ROP, 12 (75%) had a visual impairment associated with other disorders like refractive error, strabismus, and nystagmus.

In univariate analysis, visual impairment in the better eye was statistically associated with ROP, uncorrected refractive error, and strabismus with p-values of 0.001, 0.001, and 0.004, respectively. Amblyopia was not statistically associated with low GA or low BW (Table 4).

		Visual				
		-	ment in the			
		better o	eye	Odds Ratio 95%		
Variables		Yes	No	CI (Lower-Upper)	p-Value	
Sex	Male	23	82	0.75(0.40-1.38)	0.348	
	Female	32	85			
BWt	≤1500 gm	14	29	0.62(0.29-1.27)	0.188	
	>1500gm	41	138			
GA	≤ 34 weeks	28	94	1.24(0.67-2.29)	0.294	
	> 34 weeks	27	73	2		
Refractive	Yes	48	67	10.24(4.37-23.97)	0.001	
error	No	7	100			
	Yes	12	13	3.31 (1.41-7.77)	0.004	
Strabismus	No	43	154			

 Table 4. The presence of visual impairment by types of ocular disorders among premature children screened for ocular disorders.

DISCUSSION

The present prospective study examines the effects of prematurity on visual acuity and ocular disorder in children born preterm. In Sub-Saharan Africa, neonatal death has decreased by 40% since 1990 due to improved newborn care, likely leading to an increase in childhood ocular morbidity and blindness from diseases like ROP (32). Despite this positive progress, data on the extent of ocular diseases among the preterms in Sub-Saharan Africa are limited. Our study has demonstrated that the prevalence of ocular diseases and visual impairment in Ethiopian children born preterm is high. To our knowledge, this is the first study to assess the prevalence and causes of ocular disorders and visual impairment among children born preterm and admitted to NICUs. In Ethiopia, intensive neonatal care has expanded in many public and private hospital NICUs since 2013 (33), and neonatal mortality per thousand live births has declined modestly from 39 in 2000 to 33 in 2019(34). A prospective screening survey among neonates admitted to two NICUs in Ethiopia showed that 32.2% of the screened infants had any stage ROP (35). However, there is no regular ROP screening program in the country. A comparison of studies of ocular morbidity and visual impairment among preterm children is difficult as there are methodological variations such as differing age groups, inclusion or exclusion of ROP, stages of ROP, and cohort size. Even though genetic and visual experiences predominantly determine the prevalence of refractive error, studies have shown that low BW interrupts emmetropisation and increases the prevalence of refractive error (36). In our study, nearly half of the premature screened children (51.8%) had refractive error, which is comparable to a survey from Turkey (53.8%) (37) but higher than in Italy (42.3%) (38), and in cohorts of extremely preterm infants from Sweden (29.7%) (39) and Norway (10%) (40). In our study, the prevalence of myopia was 35.1%, which was higher than a cohort of preterm children at age 10-12 years from the UK (18.9%) (41). India (15.8%) (42), and Sweden (4.1%) (39). The prevalence of hyperopia in our study, 13.5%, is comparable with that reported in Turkey (14.3%) (37) and Sweden (17.1%) (39) but higher than the UK (6.6%) (41) and India (8.54%) (42). In the present study, 13.5% of the preterm children

BMJ Paediatrics Open

had clinically significant astigmatism, which was lower than that reported in Norway (21%) (40) and India (55.6%) (42) and higher than in Turkey (5.7%) (37) and Sweden (6.5%) (39). The higher proportion of myopia seen in our study, in comparison with studies from the UK (41), India (42) and Sweden (39), is supported by long-term studies which have confirmed the increased incidence of myopia following preterm birth (43).

Manifest strabismus was seen in 11.3% of our cohort, which is comparable to studies from Norway (10%) (40), the UK (13.6%) (15), Sweden (13.5%) (20), and Australia (14%) (45), and lower than reported in Sweden (17%) (36), the UK and Ireland (24%) (46) and Germany (26%) (47). It is unclear at what age the different types of strabismus develop (36), and the age at onset of strabismus in low birthweight children is variable, from the first few months of life to many years later (11, 15, 16,21,22, 44). In our study, a higher prevalence of strabismus in those aged > 3 years was noted. This finding (16.7%) is comparable with a similar age group from Sweden (20). Regarding the type of strabismus, we detected similar proportions for esotropia and exotropia. This is similar to the other studies from Germany (47) and England (41). However, other investigations confirmed that esotropia was the most frequent type of strabismus (20, 39, 48) The increased prevalence of strabismus in the low birthweight population is welldocumented (21, 36, and 44). Such an association was not apparent in our study, as most of the children were considerably higher in weight and older than in the studies mentioned above.

The prevalence of ROP in our study is 7.2%, lower than in other studies, from sub-Saharan African countries, including Ethiopia, which ranged from 15-41.7% (35, 49-51). The lower prevalence of ROP in our study can be explained by our data collection method, where we depend on the history of ROP either from the patient's parents or from old features of ROP.

In the present study, 46% of the children had subnormal visual acuity (>logMAR 0.1) in the better eye, which is comparable with a population-based study from Norway (45.9%) (40). The figure is higher than what has been reported for prematurely-born children with BWs 1500– 2000 g (15 %) from Denmark (9) and from Sweden 32 % (20). Birch et al. reported significantly lower visual acuities in low birthweight infants compared to those born full term (52). In our study, there was no statistically significant correlation between BCVA and BW or GA, similar to a study from Turkey (37). However, Dowdeswell et al. (53) found low levels of distance visual acuity in preterm children compared with full-term children. However, in our study, ocular

morbidities like strabismus, refractive error, and ROP were statistically associated with visual impairment.

In our study, the prevalence of amblyopia among premature children was 40.1%. The result in our study is much higher than other studies from Australia (7.3%) (45) and Turkey (7.7%) (37). Previous studies have shown that prematurity and low birthweight are two risk factors for amblyopia (41, 54). Nevertheless, amblyopia was not statistically associated with low GA and BW. Even if we did not find a statistical association between GA and BW with amblyopia, the prevalence among premature children is higher than in other studies; this indicates that more importance should be given to screening amblyopia risk factors for premature infants.

CONCLUSION

In conclusion, the rates of ocular disorders, visual impairment, and amblyopia in these NICUs in Ethiopia were higher than in other studies. Refractive error, strabismus, and ROP were all significant risk factors for visual impairment. These findings underline the importance of early screening of premature infants for vision and amblyopia. As the two NICUs included in the survey are Ethiopia's main neonatal referral centers, it can be postulated that ocular morbidities, visual impairment, and amblyopia are emerging as potentially avoidable causes of childhood blindness among preterm children in Ethiopia. Developing preterm ocular-related screening protocols within the NICUs, strengthening the referral links between the NICUs and eye centers, and further detailed comparative studies between preterm and term children for ocular disorders are recommended.

The strengths of this study were the prospective controlled study design with a high number of participants, the multi-center design which increases the representativeness of our research, and the availability of medical information from all children and mothers, which allowed a very detailed examination and an adjustment for different possible confounding factors. The strict standardization reduced the probability of examiner-dependent variances.

Limitations of the study included the wide age range of the examined children, some of whom were at an early age and phase of refractive development, and other older children that can affect the physiologic refractive changes noted in normal health children. The other limitation is there is a chance that those infants with poor health outcomes did not take part in our study. In subsequent research, we will continue following up with these infants to determine future changes in their refractive error and strabismus.

Lists of Abbreviations

Bronchopulmonary dysplasia (BPD); Necrotizing enterocolitis (NEC); Neonatal Intensive Care Units (NICUs); Patent ductus arteriosus (PDA); Preterm birth (PTBs); Respiratory distress syndrome (RDS); Retinopathy of prematurity (ROP), Saint Paul Hospital (SPH) and Tikur Anbessa Specialized Hospitals (TASH).

Declarations

Ethics Approval and Consent to Participate

The study was conducted following the Helsinki Declaration and after it was approved by the Institute Ethics Committee of Addis Ababa University ((Ref No. 003/2016). All parents or legal guardians provided written informed consent before the examination.

Availability of Data and Materials

All data generated or analysed during this study are included in this published article

Competing Interests

The authors have no conflicts of interest.

Funding

The SIP study was supported by BMG fund.

Authors' Contributions

Drafting of the manuscript: STS., LM., AM., and AD. Revision of the manuscript for important intellectual content: STS., LM., AM., AD and AA. Conception and design of study: STS., LM., AM., and AD. Data acquisition, analysis, or interpretation of data: STS., LM., AM., AD., and AA. Approval of final manuscript to be published: STS., LM., AM., AD., and AA. All authors have read and approved the final version of the manuscript.

Acknowledgements

The authors wish to acknowledge the assistance of the staff of the SIP project (Ahmed, Beleyu, Efrata, and Wagaye) for their support during data collection. Our special appreciation goes to Sr Martha H/Mariam and Sr. Medhanit from Menelik II pediatrics Ophthalmology clinic.

REFERENCES

1. Cao G, Liu J, Liu M. Global, regional, and national incidence and mortality of neonatal preterm birth, 1990-2019. JAMA pediatrics. 2022 Aug 1;176(8):787-96.

2. World Health Organization. 2014. Global Burden of Diseases Estimates http://www.who.int/healthinfo/global burden disease/en/.

3. Adane AA, Ayele TA, Ararsa LG, Bitew BD, Zeleke BM. Adverse birth outcomes among deliveries at Gondar University Hospital, Northwest Ethiopia, BMC Pregnancy and Childbirth 2014, 14:90.

4. Hellström A, Smith LE, Dammann O. Retinopathy of prematurity. The lancet. 2013 Oct 26;382(9902):1445-57.

5. Gogate P, Gilbert C, Zin A. Severe visual impairment and blindness in infants: causes and opportunities for control. Middle East Afr J Ophthalmol. 2011;18(2):109–114.

6. Chen C, Zhang QS. [Advances in medical care for extremely low birth weight infants worldwide]. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(8):703–707. Chinese.

7. Mccolm JR, Fleck BW. Retinopathy of prematurity: causation. Semin Neonatol. 2001;6(6):453–460.

8. Cats BP, Tan KEWP. Prematures with and without regressed retinopathy of prematurity: comparison of long-term (6–10 years) ophthalmological morbidity. J Pediatr Ophthalmol Strab 1989;Nov/Dec:271–5.

9. Fledelius HC, Greisen G. Very pre-term birth and visual impairment. Acta Ophthalmol 1993;Suppl 210:63–5.

10. Gallo JE, Lennerstrand G. A population-based study of ocular abnormalities in premature

BMJ Paediatrics Open

	ren aged 5 to 10 years. Am J Ophthalmol 1991;111:539–47.
	Holmstrom G, el Azzazi M, Kugelberg U. Ophthalmological follow up of preterm infants: a
рори	lation based, prospective study of visual acuity and strabismus. Br J Ophthalmol
1999	9;83:143–50.
12. 5	Sebris SL, Dobson V, Hartmann EE. Assessment and prediction of visual acuity in 3-to 4-
year	old children born prior to term. Human Neurobiol 1984;3:87–92.
13. V	/isual function in low birthweight children A R O'Connor, T J Stephenson, A Johnson, M J
Tobi	n, S Ratib, M Moseley, A R Fielder.
14. I	arsson E, Rydberg A, Holmstrom G. Contrast sensitivity in 10 year old preterm and full
term	children: a population basedstudy. Br J Ophthalmol 2006;90:87–90.
15. 0	Cooke RW, Foulder-Hughes L, Newsham D, Clarke D. Ophthalmic impairment at 7 years of
age i	n children born very preterm. Arch Dis Child Fetal Neonatal Ed 2004;89:F249–53.
16. (D'Connor AR, Stephenson TJ, Johnson A, Tobin MJ, Ratib S, Moseley M, et al. Visual
func	tion in low birthweight children. Br J Ophthalmol 2004;88:1149–53.
17. I	Darlow BA, Clemett RS, Horwood LJ, et al. Prospective study of New Zealand infants with
birth	weight less than 1500 g and screened for retinopathy of prematurity: visual outcome at age
7–8	years. Br J Ophthalmol 1997;81:935–40.
18.1	Jg YK, Fielder AR, Shaw DE, Levene MI. Epidemiology of retinopathy of prematurity.
Lanc	eet 1988; 2(8622): 1235–1238.
19. I	Iolmstrom G, el Azazi M, Jacobson L, Sachs D, Sule J, Lennerstrand G. Epidemiology of
ROP	in the Stockholm area of Sweden. Acta Opthalmol 1993; 210(Suppl): 44–47.
20. H	Iolmström G, El Azazi M, Kugelberg U. Ophthalmological long term follow up of preterm
infar	tts: a population based, prospective study of the refraction and its development. Br J
Oph	thalmol. 1998;82:1265–1271.
21. I	Laws D, Shaw DE, Robinson J, et al. Retinopathy of prematurity: a prospective study.
Revi	ew at six months. Eye 1992;6:477–83.
22. F	Pennefather PM, Clarke MP, Strong NP, et al. Ocular outcome in children born before 32
weel	ss gestation. Eye 1995;9(Suppl):26–30.
23. F	Robinson R, O'Keefe M. Follow-up study on premature infants with and without retinopathy
of pr	ematurity. Br J Ophthalmol 1993;77:91–4.
24 N	AcGinnity FG, Bryars JH. Controlled study of ocular morbidity in school children born

preterm. Br J Ophthalmol 1992;76:520-4. 25. Asferaw M, Woodruff G, Gilbert C. Causes of severe visual impairment and blindness in students in schools for the blind in Northwest Ethiopia. BMJ Glob Health. 2017;2(2):e000264. 26. Kello AB, Gilbert C. Causes of severe visual impairment and blindness in children in schools for the blind in Ethiopia. Br J Ophthalmol. 2003;87(5):526-30. 27. Muhe, L.M., McClure, E.M., Mekasha, A. et al. A Prospective Study of Causes of Illness and Death in Preterm Infants in Ethiopia: The SIP Study Protocol. Reprod Health 15, 116 (2018). https://doi.org/10.1186/s12978-018-0555-y. 28. Karl S. Connie SN, Wai Suen et al. 2015. Preterm or Not – An Evaluation of Estimates of Gestational Age in a Cohort of Women from Rural Papua New Guinea. PLOSONE DOI:10.1371/journal.pone.0124286 May6, 2015. 29. Rosenberg RE, Nawshad ASM, Ahmed U. et al 2009. Determining Gestational Age in a Low-resource Setting: Validity of Last Menstrual Period. J HEALTH POPUL NUTR 2009 Jun;27(3):332-338. 30. Bach M, Kommerell G. Determining visual acuity using European normal values: scientific principles and possibilities for automatic measurement. Klin Monatsbl Augenheilkd. 1998;212(4):190-5. 31. Hosmer DW, Lemesbow S. Goodness of fit tests for the multiple logistic regression model. Communications in statistics-Theory and Methods. 1980 Jan 1;9(10):1043-69. 32. Hug L, Alexander M, You D, Alkema L. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis. The Lancet Global Health. 2019 Jun 1;7(6):e710-20. 33. UNICEF. Investing in Survival: Enhancing the Neonatal Intensive Care Unit of Yekatit 12 Hospital: A Final Report for UNICEF's Next Generation; 2013 file. https://www.unicefusa.org/sites/default/files/Ethiopia%20Report.pdf. Accessed January 2023. 34. Ministry of Health-Ethiopia. Health Sector Transformation Plan-II. 2021. https://www.globalfinancingfacility.org/ethiopia-health-sector-transformation-plan-201920-202425. Accessed January 2023. 35. Sherief ST, Taye K, Teshome T, Demtse A, Gilbert C. Retinopathy of prematurity among infants admitted to two neonatal intensive care units in Ethiopia. BMJ Open Ophthalmology. 2023 Jul 1;8(1):e001257.

2
3
4
5
5 6
6
7
8
9
10
11
12
13
14
14
15
16 17
17
18
19 20
20
21
22
22 23
23 24
24
25
26
27
28
29
30
30 31 32 33
32
22
33 34
34
35
36 37
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
55
56
57
58
59

60

36. O'Connor A, Fielder AR. Long term ophthalmic sequelae of prematurity. Early human development. 2008 Feb 1;84(2):101-6.

37. Özdemir M, Koylu S. Ocular growth and morbidity in preterm children without retinopathy of prematurity. Japanese journal of ophthalmology. 2009 Nov;53:623-8.

38. Ricci B. Refractive errors and ocular motility disorders in preterm babies with and without retinopathy of prematurity. Ophthalmologica. 1999 Oct 1;213(5):295-9.

39. Hellgren KM, Tornqvist K, Jakobsson PG, Lundgren P, Carlsson B, Källén K, Serenius F, Hellström A, Holmström G. Ophthalmologic outcome of extremely preterm infants at 6.5 years of age: Extremely Preterm Infants in Sweden Study (EXPRESS). JAMA ophthalmology. 2016 May 1;134(5):555-62.

40. Haugen OH, Nepstad L, Standal OA, Elgen I, Markestad T. Visual function in 6 to 7 year-old children born extremely preterm: a population-based study. Acta ophthalmologica. 2012 Aug;90(5):422-7.

41. O'Connor AR, Stephenson TJ, Johnson A, Tobin MJ, Ratib S, Fielder AR. Change of refractive state and eye size in children of birth weight less than 1701 g. British journal of ophthalmology. 2006 Apr 1;90(4):456-60.

42. Sathar A, Abbas S, Nujum ZT, Benson JL, Sreedevi GP, Saraswathyamma SK. Visual outcome of preterm infants screened in a tertiary care hospital. Middle East African Journal of Ophthalmology. 2019 Jul;26(3):158.

43. O'Connor AR, Wilson CM, Fielder AR. Ophthalmological problems associated with preterm birth. Eye. 2007 Oct;21(10):1254-60.

44. Theng JT, Wong TY, Ling Y. Refractive errors and strabismus in premature Asian infants with and without retinopathy of prematurity. Singap Med J 2000;41:393–7.

45. Hebbandi SB, Bowen JR, Hipwell GC, Ma PJ, Leslie GI, Arnold JD. Ocular sequelae in extremely premature infants at 5 years of age. Journal of paediatrics and child health. 1997 Aug;33(4):339-42.

46. Marlow N,Wolke D, BracewellMA, SamaraM; EPICure Study Group. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med. 2005;352(1):9-19.

47. Fieß A. Kölb-Keerl R. Schuster AK. Knuf M. Kirchhof B. Muether PS. Bauer J. Prevalence and associated factors of strabismus in former preterm and full-term infants between 4 and 10 Years of age. BMC ophthalmology. 2017 Dec;17(1):1-9. 48. VanderVeen DK, Bremer DL, Fellows RR, Hardy RJ, Neely DE, Palmer EA, Rogers DL, Tung B, Good WV, Early Treatment for Retinopathy of Prematurity Cooperative G. Prevalence and course of strabismus through age 6 years in participants of the early treatment for retinopathy of prematurity randomized trial. J AAPOS. 2011;15(6):536-40. 49. Fajolu IB, Rotimi-Samuel A, Aribaba OT, et al. Retinopathy of prematurity and associated factors in Lagos, Nigeria. Paediatr Int Child Health. 2015;35(4):324-8. 50. Omer IM, Hassan HA. The prevalence and risk factors of retinopathy of prematurity among preterm babies admitted to Soba Neonatal Intensive Care Unit. Sudan J Paed. 2014;14(2):17. 51. Wanjala I ID, Kariuki L. Retinopathy of Prematurity as seen in two major hospitals in Nairobi, Kenya. East Afr J Ophthalmol. 2007 May;13(1):5-14. 52. Birch EE, O'Connor AR. Preterm birth and visual development. InSeminars in Neonatology 2001 Dec 1 (Vol. 6, No. 6, pp. 487-497). WB Saunders. 53. Dowdeswell HJ, Slater AM, Broomhall J, Tripp J. Visual defi cits in children born at less than 32 weeks gestation with and without major ocular pathology and cerebral damage. Br J Ophthalmol 1995;79:447-452. 54. Mocanu V, Horhat R. Prevalence and risk factors of amblyopia among refractive errors in an Eastern European population. Medicina. 2018 Mar 20;54(1):6.

Table 1 Characteristics of premature children and mothers screened for ocular disorders

Table 3. Ocular disorders by sex, gestational age, and birthweight among premature

Table 4. The presence of visual impairment by types of ocular disorders among premature

Perez Oni

Table 2. Types of ocular disorders among premature children screened

·O Sr

children screened for ocular disorders

children screened for ocular disorders.

TABLES LEGEND

https://mc.manuscriptcentral.com/bmjpo

BMJ Paediatrics Open

Prevalence and causes of ocular disorders and visual impairment among preterm children in Ethiopia

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2023-002317.R1
Article Type:	Original research
Date Submitted by the Author:	31-Oct-2023
Complete List of Authors:	SHERIEF, SADIK; Addis Ababa University, Department of Ophthalmology; SickKids Research Institute Muhe, Lulu M; Addis Ababa University College of Health Sciences Mekasha, Amha; Addis Ababa University, Department of Pediatrics and Child Health Demtse, Asrat; Addis Ababa University College of Health Sciences, Paediatrics and Child Health Ali, Asim; The Hospital for Sick Children, Ophthalmology and Vision Sciences
Keywords:	Infant, Neonatology, Ophthalmology

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Review Only

Prevalence and causes of ocular disorders and visual impairment among

5	2	preterm children in Ethiopia
6	3	
7		
8 9	4	Sadik Taju Sherief ^{1,2} , Lulu Muhe ³ Amha Mekasha ³ , Asrat Demtse ³ , and Asim Ali ⁴
10		
11	5	¹ Department of Ophthalmology, Addis Ababa University, Addis Ababa, Ethiopia;
12 13		
14	6	² Child Health Evaluative Sciences Program and Centre for Global Child Health, Sickkids
15	7	Research Institute, Toronto, Canada;
16 17	8	³ Department of Pediatrics and Child Health, Addis Ababa University, Addis Ababa, Ethiopia;
17 18	9	⁴ Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children and
19	10	University of Toronto, Toronto, Canada.
20	11	
21 22		
22	12	
24	13	
25	14	Short Title: Ocular disorders in Preterms
26 27	11	
28	15	
29	15	Corresponding Authory
30 31	10	Corresponding Author: Sadik T. Sherief, MD
32	18	Department of Ophthalmology
33	19	School of Medicine, College of Health Sciences
34	20	Addis Ababa University
35 36	21	P.O. Box 9086, Addis Ababa, Ethiopia
30 37	22	Tel: +251917801719
38	23	Email: goge4000@yahoo.com
39 40	24	Submitted as an Original Research article to: BMJ Paediatrics Open
41 42	25	Abstract word count (300 maximum): 235 words
43	26	Manuscript word count (4000 maximum): 3,433 words
44 45	27	Tables and Figures (maximum 5): 4 Tables
46	28	Tables and Figures (maximum 5): 4 Tables Reference Count: 54
47	29	
48 49	30	Submitted to: BMJ Paediatrics Open
50 51	31	Key words: Preterm children; Low birth weight; Visual Impairment; Refractive error;
52 53	32	Strabismus; Retinopathy of prematurity; Risk factors of visual impairment; Sub-Saharan Africa;
54	33	Ethiopia.
55 56	34	
57		
58 59		

1 2						
3 4	35	ABSTRACT				
5	36 37	Objective				
6 7	38	The aim of this study was to determine the prevalence, causes of ocular disorders and visual				
8 9	38 39					
10		impairment among preterm children previously admitted to neonatal intensive care units in Addis				
11 12	40	Ababa, Ethiopia.				
13 14	41	Methods and Analysis				
15	42	A prospective screening survey was conducted from Feb. to June 2019 at the pediatric eye clinic				
16 17	43	of Menelik II Hospital. Children who were preterm at birth and who attended the eye clinic were				
18 19	44	included in the study. Data on demographic and neonatal characteristics, neonatal and maternal				
20	45	co-morbidities, and ocular disorders were collected. Odds ratio and univariate analysis were used				
21 22	46	to identify predictors of ocular diseases and visual impairment.				
23 24	47	Results				
25	48	There were 222 children included in the study with a mean age at presentation of 2.62 years				
26 27	49	(range 2.08- 6.38 years), mean GA 34.11 weeks (range 30-36) weeks, and mean birthweight				
28 29 30 31 32	50	1941.72g (range 953-3500g). Nearly 2/3 had ocular disorders with refractive error (51.8%),				
	51	strabismus (11.3%), and history of ROP (7.2%) being more common. One-fourth of the children				
	52	had visual impairment, and the prevalence of amblyopia was 40.1%. Uncorrected refractive				
33 34	53	errors, strabismus, and ROP were causes for visual impairment.				
35	54	Conclusion				
36 37	55	Visual impairment and amblyopia are common in Ethiopia. There is a need to develop a				
38 39	56	screening protocol for ocular disorders for preterm children to enhance early detection and				
40 41	57	prevention of childhood visual impairment.				
42	58	Keywords: Preterm children; Low birth weight; Visual Impairment; Refractive error;				
43 44	59	Strabismus; Retinopathy of prematurity; Risk factors of visual impairment; Sub-Saharan Africa;				
45 46	60	Ethiopia.				
47	61	Ethiopia.				
48 49	62					
50 51	63					
52	64 65					
53 54	66					
55 56	67					
57						
58 59		1				
60		https://mc.manuscriptcentral.com/bmjpo				

3 4	69	Key Messages
5	70	
6 7	71	What is already known about this subject?
8 9	72	• In many low- and middle-income countries, the survival of preterm infants has improved as
10 11	73	neonatal systems have improved.
12 13	74	• Preterm children are at a higher risk of developing ocular disorders, visual impairment, and
14 15	75	amblyopia than term children.
16	76	
17 18	77	What this study adds
19 20	78	• The magnitude and causes of ocular morbidity among preterm children are not well studied
21 22	79	in sub-Saharan African countries. This study, conducted among preterm children admitted to
23	80	two NICUs in a sub-Saharan country, shows that preterm infants develop a higher rate of
24 25	81	visual impairment and amblyopia.
26 27	82	
28 29	83	How this study might affect research, practice or policy
30	84	• The findings of this study provide some evidence for screening for ocular diseases in preterm
31 32	85	children, but further studies are needed.
33 34	86	
35	80	children, but further studies are needed.
36 37	87	
38 39		
40 41	88	
42	89	
43 44	0,7	
45 46	90	
47 48	01	
49	91	
50 51	92	
52 53		
54	93	
55 56		
57 58		
59 60		https://mc.manuscriptcentral.com/bmjpo 2
00		

1	
2 3 4	94
5 6 7	95
8 9	96
10	97
11 12	98
13 14	99
15	100
16 17	101
18 19	102
20	103
21 22	104
23 24	105
25 26	106
27	107
28 29	108
30 31	109
32	110
33 34	111
35 36	112
37	113
38 39	114
40 41	115
42	115
43 44	117
45 46	
47	118 119
48 49	119
50 51	
52 53	121
54	122
55 56	123
57 58	
58 59	

5 INTRODUCTION

6 Global, regional, and national estimates of preterm birth (defined as childbirth at less than 7 37 completed weeks) using the 2019 Global Burden of Disease study showed 15.22 million 8 preterm births (1). In the Global Burden of Disease Study, 3.1% of all disability-adjusted life-9 years were attributed to preterm birth, similar to the burden of HIV or malaria (2). More than 95% of preterm births are occurring in developing countries. Globally the estimated preterm n birth rate is 11.1%. Over 60% of preterm births occur in Sub-Saharan Africa and South Asia (1). I Ethiopia belongs to the top 15 countries that contribute to two-thirds of the world's preterm 2 babies with a preterm rate of 14.1% out of 481 deliveries (3). 3

From six months of pregnancy to term is considered the most active period for ocular development (4). Improved neonatal care has increased the survival rates of extremely preterm infants with birth weights (BW) of 1,000 g or gestational age (GA) of 28 weeks; at the same time, retinopathy of prematurity (ROP) has become a significant threat to visual function (5-7). Preterm children are reported to have an increased incidence of visual impairment because of perinatal lesions in the brain (8-10).

0 It has been noted that both preterm birth and retinopathy of prematurity (ROP) have an effect on the developing visual system, leading to decreased visual acuity, decreased contrast sensitivity, and an increase in color vision deficiencies (11-16). Population-based studies suggest 2 3 that ophthalmic impairments remain common in very low birth weight infants (11,16,17). Effects 4 of prematurity on ocular and neurological development include retinopathy of prematurity 5 (ROP), refractive error, strabismus, cerebral visual impairment, color vision deficits, reduced 6 contrast sensitivity (CS), visual field defects, and decreased visual acuity (16). According to 7 population studies, the incidence of ROP, whether moderate or severe, for infants born at less 8 than 1500–1700 g ranges from 22–49% (17-19).

In a cohort study, children with lower birth weights had significantly worse near and distance visual acuity at ages 10 to 12 years compared to full-term infants (10). Additionally, infants born prematurely without ROP are more likely to have myopia and anisometropia than infants born at term because preterm babies are more likely to experience refractive errors (20). An increased incidence of strabismus has also been reported in children born prematurely,

regardless of the presence of ROP (21-24). Research on ocular morbidities among preterm infants in sub-Saharan African nations is limited. Before 2020, blindness from ROP was not reported in Ethiopia, including studies in schools for the blind (25, 26). To determine the top causes of illness and mortality in preterm infants admitted to neonatal intensive units (NICUs) in Ethiopia, an Ethiopian Study of Illness in Preterms (SIP) study was conducted based on standardized diagnostic protocols. This study is part of the SIP study focusing on ocular morbidities among preterms. The present study aimed to identify ocular disorders in a population of preterm children with and without ROP. **METHODS Study design and subjects** The SIP Study is a prospective study conducted to determine the top causes of illness and mortality in preterm infants admitted to hospitals in Ethiopia based on standardized diagnostic protocols (27). The study participants of this current study are from the SIP study from Feb -June, 2019. The research was performed in accordance with the Declaration of Helsinki and was approved by the Institute Ethics Committee of Addis Ababa University ((Ref No. 003/2016). All parents or legal guardians provided informed consent before the examination. Patients or the public weren't involved in our research's design, conduct, reporting, or dissemination plans. **Study setting** For the SIP study, standard protocols were developed to undertake a physical examination and laboratory investigation, in particular microbiology, radiologic, and ultrasound examinations. There were initial and follow-up examinations to detect the progress of the preterm infant. Addis Ababa University, Gondar University, Jimma University, and St. Paul Millennium Medical College were included in the SIP study. However, for this ocular morbidity aspect of the SIP study, preterms from Addis Ababa, Tikur Anbessa Hospital, Gandhi Hospital, and St. Paul Millennium Medical College were included in the research. **Recruitment methods** Inclusion criteria were (1) GA < 37 weeks and (2) participation in the SIP study. The preterm children were identified from the SIP database. Parents of all preterm infants received a phone call invitation to participate in our investigation.

1						
2 3						
3 4 5 6 7 8 9 10 11 12 13 14 15 16	155					
	156					
	157	Assessment of prenatal and postnatal history				
	158	History data were assessed from each child's recorded file for the enrolled children. The				
	159	following data were extracted: antenatal risk factors: maternal age, in vitro fertilization, antenatal				
	160	corticosteroids, preeclampsia/eclampsia, diabetes, HIV/AIDS, chorioamnionitis, mode of				
	161	delivery, and multiple births. Neonatal factors included sex, GA, BW, resuscitation in the				
	162	delivery room, respiratory distress syndrome (RDS), duration of invasive/noninvasive				
17	163	mechanical ventilation and oxygen therapy, intracranial hemorrhage, patent ductus arteriosus				
18 19	164	(PDA), neonatal sepsis, necrotizing enterocolitis (NEC), number of blood transfusions, and				
20 21 22 23 24 25 26 27 28 29	165	bronchopulmonary dysplasia (BPD). There were no regular ROP screening programmes within				
	166	the NICUs of the hospitals where the patients were admitted. There was no referral system from				
	167					
	168	were interviewed using a standardized protocol to request information concerning medical				
	169	history of the child and parents, including ocular and general morbidities.				
	170	Definitions				
30 31	171	Gestational age was determined using last menstrual period [LPM], Ballard and Dubowitz scores				
32 33 34 35 36 37 38 39 40 41 42	172	and ultrasound assessment. Studies in Papua New Guinea have shown good concordance (0.878,				
	173	0.914, and 0.886, respectively) compared to antenatal ultrasound as the gold standard (28). LMP				
	174	in a low-resource setting such as Bangladesh was found to be a more reliable measure of				
	175	gestational age than previously thought for the estimation of postnatal gestational age of preterm				
	176					
	177	Preterm infants were further classified as late and moderate preterm (32 to < 37 weeks), very				
42 43	178	preterm (28 to <32 weeks), and extremely preterm (less than 28 weeks). Glasses were prescribed				
44 45	179	if there was myopia >1.0D, astigmatism >1.0D, or hypermetropia >+2.0D.				
46 47	180					
48	181	All examinations were performed by the PI and lead author (STS), a pediatric ophthalmologist.				
49 50	182	Testing of best-corrected visual acuity was performed with Lea symbols until school enrolment,				
50 51 52	183	and after that, ETDRS was used in all subjects. In cases of visual acuity below 6/60, depending				
53	184	on the children's age, Lea symbols or Landolt rings were used at a distance of 1 m. Values were				
54 55	185	converted for analysis into the logarithm of the minimum angle of resolution (logMAR) (30).				
56 57						
58 50						

Cyclopentolate (0.5%) eye drops were administered three times at 10-min intervals, after which cycloplegic refraction and keratometry were analyzed with an autorefractor (Nidek ARK-1s keratometer, Japan). The spherical equivalent (refractive error) was calculated by adding the spherical value and half of the cylindrical value. Anisometropia was defined as a difference between the patients' eyes of ≥ 1.5 diopters of spherical equivalent. Orthoptic examination for strabismus included the cover-uncover test and alternate cover test, the Hirschberg Test and examination of fixation behavior, as well as the presence or absence of nystagmus after having corrected refractive errors. If a child presented with heterotropia, an alternating prism cover test was added to measure the angle of deviation in prism diopters. Strabismus was defined as constant or intermittent heterotropia of any dimension at a distance and/or near fixation after correcting refractive error. Classification of strabismus was categorized depending on deviation from the primary position (esotropia or exotropia). An anterior segment examination was done using slit lamp biomicroscopy. A dilated posterior segment examination was conducted using indirect ophthalmoscopy with a 28-diopter lens. Retinopathy of prematurity was diagnosed retrospectively from the patients' chart. Data analyzed using IBM SPSS 21.0 (SPSS Inc., Chicago, USA). Continuous variables were expressed as the mean \pm standard deviation (SD) or as the median when appropriate. Categorical variables were expressed as proportions. The chi-square test was used to analyze the association between categorical variables. Associations between ocular morbidities and continuous and categorical variables were computed using Fisher's exact test and Pearson chi-square (γ^2) test, respectively. Continuous variables were compared using ANOVA. Values of p <0.05 were considered statistically significant.

1 2						
2 3 4	216	RESULTS				
5	217	During the study period 222 infants (146 from Saint Paul Hospital and 76 from TASH)				
6 7	218	were included in this study.				
8 9	219	Characteristics of the study population				
10 11	220	Slightly more females than males were screened (52.7% and 47.3%, respectively). The majority				
12	221	of the study participants (n=156, 70.3%) were less than 3 years of age and the mean age at				
 13 14 15 16 17 18 19 20 21 22 23 24 	222	presentation was 2.62 ± 0.49 years (range 2.08- 6.38). One hundred and twenty-three of the 222				
	223	children (55.4%) had a GA \leq 34 weeks and 43 (19.4%) had a BW \leq 1500g. Birthweight ranged				
	224	from 953-3500g with a mean of 1941.72g (SD 445.49); GA ranged from 30-36 weeks, with a				
	225	mean of 34.11 weeks (SD 1.47). One hundred and twenty-three children (55.4%) were delivered				
	226	vaginally, and 80 (36.1%) had multiple gestations. Forty-eight children (21.7%) were born to				
	227	mothers with pregnancy-induced hypertension, and eight (3.7%) mothers tested positive for HIV				
24	228	(Table 1).				
26	229					
25	230	The mean BWs of children from SPH and TASH NICUs were 1888.5 ± 403.6 (953-3000) g and				
	231	2043.94 ± 503.74 (1125-3500) g, respectively; mean GAs were 34.14 ± 1.49 (30-36) weeks and				
	232	34.08 ± 1.44 (30-36) weeks, respectively. Differences in these parameters were not statistically				
	233	significant (Table 2).				
	234	significant (Table 2).				
	235 236					
38	237					
39 40 41	238					
42	239					
43 44	240					
45 46	241					
47	242					
48 49	243					
50 51	244					
52 53	245					
54	246					
55 56	247					
57 58						
59 60		https://mc.manuscriptcentral.com/bmjpo 7				

2	
3	
4	
5	
6	
7	
8	
9 10 11	
10	
11	
12	
13	
14	
12 13 14 15 16	
17	
18	
19	
20	
21	
22	
23	
24	
23 24 25 26	
26 27	
27 28	
20	
30	
31	
32	
33	
34 35 36	
35	
36	
37 38	
39	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51 52	
52 53	
53 54	
54 55	
56	
57	
58	

1

Variable		Total	Male		Female	
		Ν	Ν	%	Ν	%
Diuthausiaht	≤1500 gm	43	20	46.5%	23	53.5%
Birthweight	>1500gm	179	85	47.5%	94	52.5%
Gestational age	≤34 weeks	122	60	49.2%	62	50.8%
Gestational age	> 34 weeks	100	45	45%	55	55%
Multiple	Yes	80	42	52.5%	38	47.5%
gestation	No	142	63	44.4%	79	55.6%
Oxygen	Yes	97	47	48.5%	50	51.5%
supplementation	No	125	58	46.4%	67	53.6%
	Sepsis	6	2	33.3%	4	66.7%
Infantile	IVH	2	0	0%	2	100%
morbidity	BPD and Sepsis	1	1	100%	0	0%
	None	213	102	47.9%	111	52.1%
Mode of delivery	Vaginal delivery	123	53	43.1%	70	56.9%
whole of delivery	Cesarean section	99	52	52.5%	47	47.5%
Multiparity	Yes	47	18	38.3%	29	61.7%
winnparity	No	175	63	34.3	59	65.7%
	PIH	44	22	50%	22	50%
	HIV	5	2	40%	3	60%
Maternal	HIV & PIH	3	3	100%	0	0%
morbidity	DM	2	0	0%	2	100%
monuluty	DM & PIH	1	0	0%	1	100%
	TORCH	1	1	100%	0	0%
	None	166	77	46.4%	89	53.6%
NICU location	SPH	146	65	44.5%	81	55.5%
	TASH	76	40	52,6%	36	47.4%

Legend: BPD- Bronchopulmonary Dysplasia; DM- Diabetes Mellitus; HIV-IVH-Intraventricular Hemorrhage;
 PIH- Pregnancy-Induced Hypertension; SPH- Saint Paul Hospital; TASH-Tikur Anbessa Specialized Hospital;
 TORCH- Toxoplasmosis, Rubella, Cytomegalovirus, Herpes simplex, and HIV

253 Ocular morbidities and risk factors

254 Overall, 145 (65.3%) of the children had ocular disorders at the presentation, of which 92

255 (63.4%) had isolated ocular diseases (69 refractive error, 13 nasolacrimal duct obstruction, five

256 strabismus, and five ROP). The mean age at presentation of children with ocular disorders was

257 2.7±0.5 (2.1-6.4) years, and there were more females with a male to female ratio of 1:1.27. None

258 of the eyes examined had anomalies of the anterior segment or lens.

259 The mean GA was 34.14 ± 1.49 (30-36) weeks, and BW was 1927.27 ± 429.19 (953-3100)

260 grams. Refractive errors were the leading type of ocular morbidity seen in 115/222 (51.8%),

¹ 261 followed by NLDO (21.2%) (Table 2).

53 262

263

	Ocular disorders	n	%			
	Refractive error	115	51.8			
	Nasolacrimal duct obstruction	47	21.2			
	Strabismus	25	11.3			
	Retinopathy of prematurity	16	7.2			
	Others	5	2.3			
	NB- Some ocular disorders occur n	nore than once				
7						
	Refractive error					
)	One hundred and fifteen (51.8) chil	dren had a refr	active error, of which 55.5% (81/146) and		
)	44.7% (34/76) of children enrolled	from the SPH	and TASH had refractive error	s, respectively.		
1	The mean age at presentation was 2	.68 ±0.56 (2.0	8-6.38) years, and the male-to-	female ratio was		
2	1:1.25. Thirty-nine (59%) of childre	en aged > 3 yes	ars developed refractive error i	n comparison		
3	with 76 (48.1%) of those aged < 3 years.					
4	The mean gestational age and birthweight of children with refractive errors was 34.11±1.54 (30-					
5	36) weeks and 1892.34±414.55 (1080-3100) grams, respectively. Myopia was the commonest					
6						
7	type of refractive error, accounting for $78/115$ (60.8%) of cases, followed by astigmatism (30,					
	26.1%) and hyperopia (15, 13.1%). Gender, GA, BW, oxygen supplementation, children, and					
3	maternal morbidity were not statistically associated with refractive error. (Table 3)					
)	Strabismus					
)	Twenty-five children (11.3%) had strabismus (5 isolated, 20 in combination with refractive error,					
1	nystagmus, ROP, and nasolacrimal	duct obstruction	on). The age at presentation wa	us 2.73±0.52		
2	(2.1-3.6) years, and the male-to-fen	nale ratio was	1.08:1.			
3	The mean GA and BW were 34.0±	1.41 (30-36) w	eeks and 906.76±489.92 (1140	-3000),		
4	respectively. Regarding the types o	f strabismus, 1	3 cases had esotropia, and the	remaining 12		
5	patients had exotropia. There was n	o statistically s	significant association between	GA, BW, and		
6	strabismus (Table 3). In this study,	the prevalence	of strabismus among children	aged > 3 years		
7	was 16.7% compared to 8.9% in the	1	e			
3	associated with strabismus.	Joe A S years. I	iowever, order age was not sa	uisuouity		
	associated with strabislitus.					
)						
)						
				-		
	lattice of	//mc manuscript		9		

291 Retinopathy of prematurity

292 Previous history of ROP was noted in 16/22 (7.2%) of the children enrolled in this study. Most

293 patients (12, 57%) with ROP were from SPH. Almost all of them (15/16) had a GA < 34 weeks,

and the mean GA and BW of patients with ROP were 32.19±1.33 (30-35) weeks and 1596.25

±483.64 (953-2600) grams, respectively. Nine patients with ROP had an associated refractive

error (6 myopia and 3 astigmatism). Only one patient had an associated intermittent exotropia.

297 In univariate analysis, ROP was statistically associated with low GA and low BW (Table 3).

298 Multivariable logistic regression analysis was not conducted due to the small number of children

299 with ROP.

 Table 3. Ocular disorders by sex, gestational age, and birthweight among premature children screened for ocular disorders

Type of	Variables		Yes	No	Odds Ratio	p-Value
Disorder			n	n		
	Sex	Male	51	54	0.78(0.46-1.33)	0.361
		Female	64	53		
Refractive	BWt	≤1500 gm	22	21	1.03(0.53-2.01)	0.92
error		>1500gm	93	86		
	GA	≤34 weeks	62	60	1.09)0.64-1.85)	0.74
		> 34 weeks	53	47		
	Sex	Male	12	93	1.03(0.4501.37)	0.94
		Female	13	104		
Strabismus	BWt	≤1500 gm	7	36	0.57(0.22-1.48)	0.24
Strabismus		>1500gm	18	161		
	GA	\leq 34 weeks	14	108	0.95 (0.41-2.2)	0.91
		> 34 weeks	11	89		
	Sex	Male	6	99	0.65(0.22-1.85)	0.41
		Female	10	107		
ROP	BWt	≤1500 gm	7	36	Reference	0.0
		>1500gm	9	170	0.27(0.09-0.78)	
	GA	\leq 34 weeks	15	107	Reference	0.00
		> 34 weeks	1	99	0.72 (0.09-0.56)	

Legend: BWt- Birth Weight ; GA-Gestational Age

305 Visual impairment and ocular disorders

The mean VA of the right and left eyes was 0.22(SD 0.23) logMAR and 0.17 (SD 0.21)

308 logMAR, respectively. The mean VA in the better and worse eyes was 0.17 (SD 0.22) logMAR

309 and 0.28 (SD 0.21) logMAR, respectively. In this study, 101 (45.9%) and 181 (81.5%) of the

310 children had subnormal visual acuity (>logMAR 0.1) in the better and worst eyes, respectively.

Nearly one-fourth (55, 24.8%) of children screened had visual impairment in the better eye. Of
this group 51 (92.7%) had uncorrected refractive error alone (34/51) or with strabismus (10/51),

313 ROP (6/51), or nystagmus (1/51). Eighty-nine (40.1%) patients had amblyopia, of which 59/89

314 (66.3%) had bilateral amblyopia from uncorrected refractive error. Isometropic and

anisometropic amblyopia from uncorrected refractive error were the commonest causes of

amblyopia, contributing to 49/89 (55%) and 20/89 (22.8%), respectively. Of the 16 cases with

317 ROP, 12 (75%) had a visual impairment associated with other disorders like refractive error,

2 318 strabismus, and nystagmus.

In univariate analysis, visual impairment in the better eye was statistically associated with ROP,

320 uncorrected refractive error, and strabismus with p-values of 0.001, 0.001, and 0.004,

 $^{0}_{1}$ 321 respectively. Amblyopia was not statistically associated with low GA or low BW (Table 4).

Table 4. The presence of visual impairment by types of ocular disorders among premature
 children screened for ocular disorders.

		Visual				
	Impair	ment in the				
	better o	eye	Odds Ratio 95%			
Variables		Yes	No	CI (Lower-Upper)	p-Value	
Sex	Male	23	82	0.75(0.40-1.38)	0.348	
	Female	32	85			
BWt	≤1500 gm	14	29	0.62(0.29-1.27)	0.188	
	>1500gm	41	138			
GA	≤ 34 weeks	28	94	1.24(0.67-2.29)	0.294	
	> 34 weeks	27	73			
Refractive	Yes	48	67	10.24(4.37-23.97)	0.001	
error	No	7	100			
	Yes	12	13	3.31 (1.41-7.77)	0.004	
Strabismus	No	43	154			

DISCUSSION

The present prospective study examines the effects of prematurity on visual acuity and ocular disorder in children born preterm. In Sub-Saharan Africa, neonatal death has decreased by 40% since 1990 due to improved newborn care, likely leading to an increase in childhood ocular morbidity and blindness from diseases like ROP (32). Despite this positive progress, data on the extent of ocular diseases among the preterms in Sub-Saharan Africa are limited. Our study has demonstrated that the prevalence of ocular diseases and visual impairment in Ethiopian children born preterm is high. To our knowledge, this is the first study to assess the prevalence and causes of ocular disorders and visual impairment among children born preterm and admitted to NICUs. In Ethiopia, intensive neonatal care has expanded in many public and private hospital NICUs since 2013 (33), and neonatal mortality per thousand live births has declined modestly from 39 in 2000 to 33 in 2019(34). A prospective screening survey among neonates admitted to two NICUs in Ethiopia showed that 32.2% of the screened infants had any stage ROP (35). However, there is no regular ROP screening program in the country. A comparison of studies of ocular morbidity and visual impairment among preterm children is difficult as there are methodological variations such as differing age groups, inclusion or exclusion of ROP, stages of ROP, and cohort size. Even though genetic and visual experiences predominantly determine the prevalence of refractive error, studies have shown that low BW interrupts emmetropisation and increases the prevalence of refractive error (36). In our study, nearly half of the premature screened children (51.8%) had refractive error, which is comparable to a survey from Turkey (53.8%) (37) but higher than in Italy (42.3%) (38), and in cohorts of extremely preterm infants from Sweden (29.7%) (39) and Norway (10%) (40). In our study, the prevalence of myopia was 35.1%, which was higher than a cohort of preterm children at age 10–12 years from the UK (18.9%) (41), India (15.8%) (42), and Sweden (4.1%) (39). The prevalence of hyperopia in our study, 13.5%, is comparable with that reported in Turkey (14.3%) (37) and Sweden (17.1%) (39) but higher than the UK (6.6%) (41) and India (8.54%) (42). In the present study, 13.5% of the preterm children had clinically significant astigmatism, which was lower than that reported in Norway (21%) (40) and India (55.6%) (42) and higher than in Turkey (5.7%) (37) and Sweden (6.5%) (39). The higher proportion of myopia seen in our study, in comparison with studies from the UK (41),

Page 15 of 22

1

BMJ Paediatrics Open

2	
2	
<u></u>	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
21	
3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 37 38 30 31 32 33 34 35 36 37 38 37 38 37 38 37 38 <td></td>	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
33	
21	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

India (42) and Sweden (39), is supported by long-term studies which have confirmed theincreased incidence of myopia following preterm birth (43).

362 Manifest strabismus was seen in 11.3% of our cohort, which is comparable to studies 363 from Norway (10%) (40), the UK (13.6%) (15), Sweden (13.5%) (20), and Australia (14%) (45), 364 and lower than reported in Sweden (17%) (36), the UK and Ireland (24%) (46) and Germany 365 (26%) (47). It is unclear at what age the different types of strabismus develop (36), and the age at 366 onset of strabismus in low birthweight children is variable, from the first few months of life to 367 many years later (11, 15, 16, 21, 22, 44). In our study, a higher prevalence of strabismus in those 368 aged > 3 years was noted. This finding (16.7%) is comparable with a similar age group from 369 Sweden (20). Regarding the type of strabismus, we detected similar proportions for esotropia and 370 exotropia. This is similar to the other studies from Germany (47) and England (41). However, 371 other investigations confirmed that esotropia was the most frequent type of strabismus (20, 39, 372 48) The increased prevalence of strabismus in the low birthweight population is well-373 documented (21, 36, and 44). Such an association was not apparent in our study, as most of the 374 children were considerably higher in weight and older than in the studies mentioned above. 375 The prevalence of ROP in our study is 7.2%, lower than in other studies, from sub-376 Saharan African countries, including Ethiopia, which ranged from 15-41.7% (35, 49-51). The 377 lower prevalence of ROP in our study can be explained by our data collection method, where we 378 depend on the history of ROP either from the patient's parents or from old features of ROP. 379 In the present study, 46% of the children had subnormal visual acuity (>logMAR 0.1) in 380 the better eye, which is comparable with a population-based study from Norway (45.9%) (40).

The figure is higher than what has been reported for prematurely-born children with BWs 1500– 2000 g (15 %) from Denmark (9) and from Sweden 32 % (20). Birch et al. reported significantly lower visual acuities in low birthweight infants compared to those born full term (52). In our study, there was no statistically significant correlation between BCVA and BW or GA, similar to a study from Turkey (37). However, Dowdeswell et al. (53) found low levels of distance visual acuity in preterm children compared with full-term children. However, in our study, ocular

morbidities like strabismus, refractive error, and ROP were statistically associated with visualimpairment.

In our study, the prevalence of amblyopia among premature children was 40.1%. The result in our study is much higher than other studies from Australia (7.3%) (45) and Turkey

BMJ Paediatrics Open

391 (7.7%) (37). Previous studies have shown that prematurity and low birthweight are two risk
392 factors for amblyopia (41, 54). Nevertheless, amblyopia was not statistically associated with low
393 GA and BW. Even if we did not find a statistical association between GA and BW with
394 amblyopia, the prevalence among premature children is higher than in other studies; this
395 indicates that more importance should be given to screening amblyopia risk factors for premature
396 infants.

398 CONCLUSION

 In conclusion, the rates of ocular disorders, visual impairment, and amblyopia in these NICUs in Ethiopia were higher than in other studies. Refractive error, strabismus, and ROP were all significant risk factors for visual impairment. These findings underline the importance of early screening of premature infants for vision and amblyopia. As the two NICUs included in the survey are Ethiopia's main neonatal referral centers, it can be postulated that ocular morbidities, visual impairment, and amblyopia are emerging as potentially avoidable causes of childhood blindness among preterm children in Ethiopia. Developing preterm ocular-related screening protocols within the NICUs, strengthening the referral links between the NICUs and eye centers, and further detailed comparative studies between preterm and term children for ocular disorders are recommended.

The strengths of this study were the prospective controlled study design with a high number of participants, the multi-center design which increases the representativeness of our research, and the availability of medical information from all children and mothers, which allowed a very detailed examination and an adjustment for different possible confounding factors. The strict standardization reduced the probability of examiner-dependent variances. Limitations of the study included the wide age range of the examined children, some of whom were at an early age and phase of refractive development, and other older children that can affect the physiologic refractive changes noted in normal health children. The other limitation is there is a chance that those infants with poor health outcomes did not take part in our study. In subsequent research, we will continue following up with these infants to determine future changes in their refractive error and strabismus.

Page 17 of 22

2 3	422	Lists of Abbreviations
4		
5 6	423	Bronchopulmonary dysplasia (BPD); Necrotizing enterocolitis (NEC); Neonatal Intensive Care
7	424	Units (NICUs); Patent ductus arteriosus (PDA); Preterm birth (PTBs); Respiratory distress
8 9	425	syndrome (RDS); Retinopathy of prematurity (ROP), Saint Paul Hospital (SPH) and Tikur
10 11	426	Anbessa Specialized Hospitals (TASH).
12	427	
13 14	428	Research Ethics Approval
15 16	429	This study involves human participants, and this research was approved by the ethics committee
17	430	of Addis Ababa University Ethics Review Committee (Ref No. 003/2016) in line with the
18 19	431	relevant national and institutional guidelines on care and clinical research. All parents or legal
20 21	432	guardians gave written informed consent before participating in the study.
22	433	Availability of Data and Materials
23 24	434	All data generated or analysed during this study are included in this published article
25 26	435	Competing Interests
27 28	436	The authors have no conflicts of interest.
29	437	Funding
30 31	438	The SIP study was supported by the Bill & Melinda Gates Foundation (OPP1136965)
32 33	439	
34 35	440	Authors' Contributions
36 37	441	Drafting of the manuscript: STS., LM., AM., and AD. Revision of the manuscript for important
38	442	intellectual content: STS., LM., AM., AD and AA. Conception and design of study: STS., LM.,
39 40	443 444	AM., and AD. Data acquisition, analysis, or interpretation of data: STS., LM., AM., AD., and AA. Approval of final manuscript to be published: STS., LM., AM., AD., and AA. All authors
41	445	have read and approved the final version of the manuscript.
42 43	446	
44	447	Acknowledgements
45 46	448	The authors wish to acknowledge the assistance of the staff of the SIP project (Ahmed, Beleyu, Efrata,
47 48	449	and Wagaye) for their support during data collection. Our special appreciation goes to Sr Martha
49	450	H/Mariam and Sr. Medhanit from Menelik II pediatrics Ophthalmology clinic.
50 51	451	
52 53	452	
54	453	
55 56	454	
57		
58 59		15
60		https://mc.manuscriptcentral.com/bmjpo

1		
2 3 4 5 6	455 456 457	REFERENCES
7 8	458	1. Cao G, Liu J, Liu M. Global, regional, and national incidence and mortality of neonatal
9	459	preterm birth, 1990-2019. JAMA pediatrics. 2022 Aug 1;176(8):787-96.
10 11	460	2. World Health Organization. 2014. Global Burden of Diseases Estimates
12 13	461	http://www.who.int/healthinfo/global_burden_disease/en/.
14 15	462	3. Adane AA, Ayele TA, Ararsa LG, Bitew BD, Zeleke BM. Adverse birth outcomes among
16	463	deliveries at Gondar University Hospital, Northwest Ethiopia, BMC Pregnancy and Childbirth
17 18	464	2014, 14:90.
19 20	465	4. Hellström A, Smith LE, Dammann O. Retinopathy of prematurity. The lancet. 2013 Oct
21	466	26;382(9902):1445-57.
22 23	467	5. Gogate P, Gilbert C, Zin A. Severe visual impairment and blindness in infants: causes and
24 25	468	opportunities for control. Middle East Afr J Ophthalmol. 2011;18(2):109–114.
26 27	469	6. Chen C, Zhang QS. [Advances in medical care for extremely low birth weight infants
28	470	worldwide]. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(8):703–707. Chinese.
29 30	471	7. Mccolm JR, Fleck BW. Retinopathy of prematurity: causation. Semin Neonatol.
31 32	472	2001;6(6):453–460.
33 34	473	8. Cats BP, Tan KEWP. Prematures with and without regressed retinopathy of prematurity:
35	474	comparison of long-term (6–10 years) ophthalmological morbidity. J Pediatr Ophthalmol Strab
36 37	475	1989;Nov/Dec:271–5.
38 39	476	9. Fledelius HC, Greisen G. Very pre-term birth and visual impairment. Acta Ophthalmol
40	477	1993;Suppl 210:63–5.
41 42	478	10. Gallo JE, Lennerstrand G. A population-based study of ocular abnormalities in premature
43 44	479	children aged 5 to 10 years. Am J Ophthalmol 1991;111:539–47.
45 46	480	11. Holmstrom G, el Azzazi M, Kugelberg U. Ophthalmological follow up of preterm infants: a
47	481	population based, prospective study of visual acuity and strabismus. Br J Ophthalmol
48 49	482	1999;83:143–50.
50 51	483	12. Sebris SL, Dobson V, Hartmann EE. Assessment and prediction of visual acuity in 3-to 4-
52 53	484	year-old children born prior to term. Human Neurobiol 1984;3:87–92.
54	485	13. Visual function in low birthweight children A R O'Connor, T J Stephenson, A Johnson, M J
55 56	486	Tobin, S Ratib, M Moseley, A R Fielder.
57 58		
59 60		https://mc.manuscriptcentral.com/bmjpo 16

1 2		
3 4	487	14. Larsson E, Rydberg A, Holmstrom G. Contrast sensitivity in 10 year old preterm and full
5	488	term children: a population basedstudy. Br J Ophthalmol 2006;90:87-90.
6 7	489	15. Cooke RW, Foulder-Hughes L, Newsham D, Clarke D. Ophthalmic impairment at 7 years of
8 9	490	age in children born very preterm. Arch Dis Child Fetal Neonatal Ed 2004;89:F249-53.
10	491	16. O'Connor AR, Stephenson TJ, Johnson A, Tobin MJ, Ratib S, Moseley M, et al. Visual
11 12	492	function in low birthweight children. Br J Ophthalmol 2004;88:1149–53.
13 14	493	17. Darlow BA, Clemett RS, Horwood LJ, et al. Prospective study of New Zealand infants with
15 16	494	birth weight less than 1500 g and screened for retinopathy of prematurity: visual outcome at age
17	495	7–8 years. Br J Ophthalmol 1997;81:935–40.
18 19	496	18. Ng YK, Fielder AR, Shaw DE, Levene MI. Epidemiology of retinopathy of prematurity.
20 21	497	Lancet 1988; 2(8622): 1235–1238.
22 23	498	19. Holmstrom G, el Azazi M, Jacobson L, Sachs D, Sule J, Lennerstrand G. Epidemiology of
24	499	ROP in the Stockholm area of Sweden. Acta Opthalmol 1993; 210(Suppl): 44-47.
25 26	500	20. Holmström G, El Azazi M, Kugelberg U. Ophthalmological long term follow up of preterm
27 28	501	infants: a population based, prospective study of the refraction and its development. Br J
29	502	Ophthalmol. 1998;82:1265–1271.
30 31	503	21. Laws D, Shaw DE, Robinson J, et al. Retinopathy of prematurity: a prospective study.
32 33	504	Review at six months. Eye 1992;6:477–83.
34 35	505	22. Pennefather PM, Clarke MP, Strong NP, et al. Ocular outcome in children born before 32
36	506	weeks gestation. Eye 1995;9(Suppl):26–30.
37 38	507	23. Robinson R, O'Keefe M. Follow-up study on premature infants with and without retinopathy
39 40	508	of prematurity. Br J Ophthalmol 1993;77:91–4.
41	509	24. McGinnity FG, Bryars JH. Controlled study of ocular morbidity in school children born
43	510	preterm. Br J Ophthalmol 1992;76:520–4.
44 45	511	25. Asferaw M, Woodruff G, Gilbert C. Causes of severe visual impairment and blindness in
46 47	512	students in schools for the blind in Northwest Ethiopia. BMJ Glob Health. 2017;2(2):e000264.
48	513	26. Kello AB, Gilbert C. Causes of severe visual impairment and blindness in children in schools
50	514	for the blind in Ethiopia. Br J Ophthalmol. 2003;87(5):526-30.
41 42 43 44 45 46 47 48 49	515	27. Muhe, L.M., McClure, E.M., Mekasha, A. et al. A Prospective Study of Causes of Illness and
53 54	516	Death in Preterm Infants in Ethiopia: The SIP Study Protocol. Reprod Health 15, 116 (2018).
55	517	https://doi.org/10.1186/s12978-018-0555-y.
56 57		
58 59		17

- ³ 518 28. Karl S. Connie SN, Wai Suen et al. 2015. Preterm or Not An Evaluation of Estimates of
- 5 519 Gestational Age in a Cohort of Women from Rural Papua New Guinea. PLOSONE
- ⁵ 520 |DOI:10.1371/journal.pone.0124286 May6, 2015.
- ⁸ 521 29. Rosenberg RE, Nawshad ASM, Ahmed U. et al 2009. Determining Gestational Age in a
- Low-resource Setting: Validity of Last Menstrual Period. J HEALTH POPUL NUTR 2009
- 12 523 Jun;27(3):332-338.

4

- ¹³ ₁₄ 524 30. Bach M, Kommerell G. Determining visual acuity using European normal values: scientific
- ¹⁵ 525 principles and possibilities for automatic measurement. Klin
- 17 526 Monatsbl Augenheilkd. 1998;212(4):190–5.
- ¹⁹ 527 31. Hosmer DW, Lemesbow S. Goodness of fit tests for the multiple logistic regression model.
- ²⁰₂₁ 528 Communications in statistics-Theory and Methods. 1980 Jan 1;9(10):1043-69.
- ²² 529 32. Hug L, Alexander M, You D, Alkema L. National, regional, and global levels and trends in
- neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic
- ²⁵²⁶ 531 analysis. The Lancet Global Health. 2019 Jun 1;7(6):e710-20.
- 532 33. UNICEF. Investing in Survival: Enhancing the Neonatal Intensive Care Unit of Yekatit 12

²⁹ 533 Hospital: A Final Report for UNICEF's Next Generation; 2013 file.
 ³⁰ 30

534 <u>https://www.unicefusa.org/sites/default/files/Ethiopia%20Report.pdf</u>. Accessed January 2023.

- 535 34. Ministry of Health-Ethiopia. Health Sector Transformation Plan-II. 2021.
- ³⁴ 536 <u>https://www.globalfinancingfacility.org/ethiopia-health-sector-transformation-plan-201920-</u>
- ³⁶ 537 <u>202425</u>. Accessed January 2023.
- 37
 38 538 35. Sherief ST, Taye K, Teshome T, Demtse A, Gilbert C. Retinopathy of prematurity among
- ³⁹₄₀ 539 infants admitted to two neonatal intensive care units in Ethiopia. BMJ Open Ophthalmology.
- ⁴¹ 540 2023 Jul 1;8(1):e001257.
- 43 541 36. O'Connor A, Fielder AR. Long term ophthalmic sequelae of prematurity. Early human
- ⁴⁴ ₄₅ 542 development. 2008 Feb 1;84(2):101-6.
- 543 37. Özdemir M, Koylu S. Ocular growth and morbidity in preterm children without retinopathy
 544 of prematurity. Japanese journal of ophthalmology. 2009 Nov;53:623-8.
- 49 50 545 38. Ricci B. Refractive errors and ocular motility disorders in preterm babies with and without
- ⁵¹₅₂ 546 retinopathy of prematurity. Ophthalmologica. 1999 Oct 1;213(5):295-9.
- 53 547 39. Hellgren KM, Tornqvist K, Jakobsson PG, Lundgren P, Carlsson B, Källén K, Serenius F,
- 55 548 Hellström A, Holmström G. Ophthalmologic outcome of extremely preterm infants at 6.5 years
- 56 57
- 58

https://mc.manuscriptcentral.com/bmjpo

2 3	- 10	
4	549	of age: Extremely Preterm Infants in Sweden Study (EXPRESS). JAMA ophthalmology. 2016
5 6	550	May 1;134(5):555-62.
7 8	551	40. Haugen OH, Nepstad L, Standal OA, Elgen I, Markestad T. Visual function in 6 to 7 year-old
9	552	children born extremely preterm: a population-based study. Acta ophthalmologica. 2012
10 11	553	Aug;90(5):422-7.
12 13	554	41. O'Connor AR, Stephenson TJ, Johnson A, Tobin MJ, Ratib S, Fielder AR. Change of
14	555	refractive state and eye size in children of birth weight less than 1701 g. British journal of
15 16	556	ophthalmology. 2006 Apr 1;90(4):456-60.
17 18	557	42. Sathar A, Abbas S, Nujum ZT, Benson JL, Sreedevi GP, Saraswathyamma SK. Visual
19	558	outcome of preterm infants screened in a tertiary care hospital. Middle East African Journal of
20 21	559	Ophthalmology. 2019 Jul;26(3):158.
22 23	560	43. O'Connor AR, Wilson CM, Fielder AR. Ophthalmological problems associated with preterm
24 25	561	birth. Eye. 2007 Oct;21(10):1254-60.
26	562	44. Theng JT, Wong TY, Ling Y. Refractive errors and strabismus in premature Asian infants
27 28	563	with and without retinopathy of prematurity. Singap Med J 2000;41:393–7.
29 30	564	45. Hebbandi SB, Bowen JR, Hipwell GC, Ma PJ, Leslie GI, Arnold JD. Ocular sequelae in
31	565	extremely premature infants at 5 years of age. Journal of paediatrics and child health. 1997
32 33	566	Aug;33(4):339-42.
34 35	567	46. Marlow N,Wolke D, BracewellMA, SamaraM; EPICure Study Group. Neurologic and
36 37	568	developmental disability at six years of age after extremely preterm birth. N Engl J Med.
38	569	2005;352(1):9-19.
39 40	570	47. Fieß A, Kölb-Keerl R, Schuster AK, Knuf M, Kirchhof B, Muether PS, Bauer J. Prevalence
41 42	571	and associated factors of strabismus in former preterm and full-term infants between 4 and 10
43	572	Years of age. BMC ophthalmology. 2017 Dec;17(1):1-9.
44 45	573	48. VanderVeen DK, Bremer DL, Fellows RR, Hardy RJ, Neely DE, Palmer EA, Rogers DL,
46 47	574	Tung B, Good WV, Early Treatment for Retinopathy of Prematurity Cooperative G. Prevalence
48 49	575	and course of strabismus through age 6 years in participants of the early treatment for
50	576	retinopathy of prematurity randomized trial. J AAPOS. 2011;15(6):536–40.
51 52	577	49. Fajolu IB, Rotimi-Samuel A, Aribaba OT, et al. Retinopathy of prematurity and associated
53 54	578	factors in Lagos, Nigeria. Paediatr Int Child Health. 2015;35(4):324-8.
55		
56 57		
58 59		19

2			
3 4	579	50. Omer IM, Hassan HA. The prevalence and risk factors of retinopathy of prematurity among	3
5 6	580	preterm babies admitted to Soba Neonatal Intensive Care Unit. Sudan J Paed. 2014;14(2):17.	
7	581	51. Wanjala I ID, Kariuki L. Retinopathy of Prematurity as seen in two major hospitals in	
8 9	582	Nairobi, Kenya. East Afr J Ophthalmol. 2007 May;13(1):5-14.	
10 11	583	52. Birch EE, O'Connor AR. Preterm birth and visual development. InSeminars in Neonatology	y
12	584	2001 Dec 1 (Vol. 6, No. 6, pp. 487-497). WB Saunders.	
13 14	585	53. Dowdeswell HJ, Slater AM, Broomhall J, Tripp J. Visual defi cits in children born at less	
15 16	586	than 32 weeks gestation with and without major ocular pathology and cerebral damage. Br J	
17	587	Ophthalmol 1995;79:447–452.	
18 19	588	54. Mocanu V, Horhat R. Prevalence and risk factors of amblyopia among refractive errors in a	an
20 21	589	Eastern European population. Medicina. 2018 Mar 20;54(1):6.	
22 23	590		
24	591		
25 26	592		
27 28	593		
29	594		
30 31	595		
32 33	596		
34 35	597		
36	598		
37 38	599		
39 40	600	Eastern European population. Medicina. 2018 Mar 20;54(1):6.	
41 42	601		
43	602		
44 45	603		
46 47	604		
48	605		
49 50	606		
51 52	607		
53 54	608		
55	609		
56 57			
58 59			20
60		https://mc.manuscriptcentral.com/bmjpo	20

2 3		
4	610	TABLES LEGEND
5 6	611	Table 1 Characteristics of premature children and mothers screened for ocular disorders
7	612	Table 2. Types of coulou disordays among promotives shildyon says and
8 9	613 614	Table 2. Types of ocular disorders among premature children screened
9 10	615	Table 3. Ocular disorders by sex, gestational age, and birthweight among premature
11	616	children screened for ocular disorders
12 13	617	
14	618	Table 4. The presence of visual impairment by types of ocular disorders among premature
15	619	children screened for ocular disorders.
16 17	620	Table 4. The presence of visual impairment by types of ocular disorders among premature children screened for ocular disorders.
18		
19		
20 21		
22		
23		
24 25		
26		
27		
28 29		
30		
31		
32 33		
34		
35 36		
30 37		
38		
39 40		
40 41		
42		
43 44		
45		
46		
47 48		
49		
50		
51 52		
53		
54		
55 56		
57		
58 59		
59 60		https://mc.manuscriptcentral.com/bmjpo 21

BMJ Paediatrics Open

Prevalence and causes of ocular disorders and visual impairment among preterm children in Ethiopia

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2023-002317.R2
Article Type:	Original research
Date Submitted by the Author:	05-Jan-2024
Complete List of Authors:	SHERIEF, SADIK; Addis Ababa University, Department of Ophthalmology; SickKids Research Institute Muhe, Lulu M; Addis Ababa University College of Health Sciences Mekasha, Amha; Addis Ababa University, Department of Pediatrics and Child Health Demtse, Asrat; Addis Ababa University College of Health Sciences, Paediatrics and Child Health Ali, Asim; The Hospital for Sick Children, Ophthalmology and Vision Sciences
Keywords:	Infant, Neonatology, Ophthalmology

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Review Only

Prevalence and causes of ocular disorders and visual impairment among preterm children in Ethiopia

Sadik Taju Sherief^{1,2}, Lulu Muhe³ Amha Mekasha³, Asrat Demtse³, and Asim Ali⁴

¹Department of Ophthalmology, Addis Ababa University, Addis Ababa, Ethiopia;

² Child Health Evaluative Sciences Program and Centre for Global Child Health, Sickkids Research Institute, Toronto, Canada;

³ Department of Pediatrics and Child Health, Addis Ababa University, Addis Ababa, Ethiopia; ⁴ Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children and University of Toronto, Toronto, Canada.

Short Title: Ocular disorders in Preterms

Corresponding Author:

Sadik T. Sherief, MD Department of Ophthalmology School of Medicine, College of Health Sciences Addis Ababa University P.O. Box 9086, Addis Ababa, Ethiopia Tel: +251917801719 Email: goge4000@yahoo.com

Submitted as an Original Research article to: BMJ Paediatrics Open

- Abstract word count (300 maximum): 235 words
- Manuscript word count (4000 maximum): 3,433 words
- Tables and Figures (maximum 5): 4 Tables
 - **Reference Count: 54**
 - Submitted to: BMJ Paediatrics Open

Key words: Preterm children; Low birth weight; Visual Impairment; Refractive error;

Strabismus; Retinopathy of prematurity; Risk factors of visual impairment; Sub-Saharan Africa; Ethiopia.

ABSTRACT

Objective

The aim of this study was to determine the prevalence, causes of ocular disorders and visual impairment among preterm children previously admitted to neonatal intensive care units in Addis Ababa, Ethiopia.

Methods and Analysis

A prospective screening survey was conducted from Feb. to June 2019 at the pediatric eye clinic of Menelik II Hospital. Children who were preterm at birth and who attended the eye clinic were included in the study. Data on demographic and neonatal characteristics, neonatal and maternal co-morbidities, and ocular disorders were collected. Odds ratio and univariate analysis were used to identify predictors of ocular diseases and visual impairment.

Results

There were 222 children included in the study with a mean age at presentation of 2.62 years (range 2.08- 6.38 years), mean GA 34.11 weeks (range 30-36) weeks, and mean birthweight 1941.72g (range 953-3500g). Nearly 2/3 had ocular disorders with refractive error (51.8%), strabismus (11.3%), and history of ROP (7.2%) being more common. One-fourth of the children had visual impairment, and the prevalence of amblyopia was 40.1%. Uncorrected refractive errors, strabismus, and ROP were causes for visual impairment.

Conclusion

Visual impairment and amblyopia are common in Ethiopia. There is a need to develop a screening protocol for ocular disorders for preterm children to enhance early detection and prevention of childhood visual impairment.

Keywords: Preterm children; Low birth weight; Visual Impairment; Refractive error; Strabismus; Retinopathy of prematurity; Risk factors of visual impairment; Sub-Saharan Africa; Ethiopia.

Key Messages

What is already known about this subject?

- In many low- and middle-income countries, the survival of preterm infants has improved as neonatal systems have improved.
- Preterm children are at a higher risk of developing ocular disorders, visual impairment, and amblyopia than term children.

What this study adds

• The magnitude and causes of ocular morbidity among preterm children are not well studied in sub-Saharan African countries. This study, conducted among preterm children admitted to two NICUs in a sub-Saharan country, shows that preterm infants develop a higher rate of visual impairment and amblyopia.

How this study might affect research, practice or policy

- The findings of this study provide some evidence for screening for ocular diseases in preterm children, but further studies are needed.
- A follow up prospective study commencing in 5 years' time would be of value as the number of surviving very low birth weight infants may significantly increase

INTRODUCTION

Global, regional, and national estimates of preterm birth (defined as childbirth at less than 37 completed weeks) using the 2019 Global Burden of Disease study showed 15.22 million preterm births (1). In the Global Burden of Disease Study, 3.1% of all disability-adjusted lifeyears were attributed to preterm birth, similar to the burden of HIV or malaria (2). More than 95% of preterm births are occurring in developing countries. Globally the estimated preterm birth rate is 11.1%. Over 60% of preterm births occur in Sub-Saharan Africa and South Asia (1). Ethiopia belongs to the top 15 countries that contribute to two-thirds of the world's preterm babies with a preterm rate of 14.1% out of 481 deliveries (3).

From six months of pregnancy to term is considered the most active period for ocular development (4). Improved neonatal care has increased the survival rates of extremely preterm infants with birth weights (BW) of 1,000 g or gestational age (GA) of 28 weeks; at the same time, retinopathy of prematurity (ROP) has become a significant threat to visual function (5-7). Preterm children are reported to have an increased incidence of visual impairment because of perinatal lesions in the brain (8-10).

It has been noted that both preterm birth and retinopathy of prematurity (ROP) have an effect on the developing visual system, leading to decreased visual acuity, decreased contrast sensitivity, and an increase in color vision deficiencies (11-16). Population-based studies suggest that ophthalmic impairments remain common in very low birth weight infants (11,16,17). Effects of prematurity on ocular and neurological development include retinopathy of prematurity (ROP), refractive error, strabismus, cerebral visual impairment, color vision deficits, reduced contrast sensitivity (CS), visual field defects, and decreased visual acuity (16). According to population studies, the incidence of ROP, whether moderate or severe, for infants born at less than 1500–1700 g ranges from 22–49% (17-19).

In a cohort study, children with lower birth weights had significantly worse near and distance visual acuity at ages 10 to 12 years compared to full-term infants (10). Additionally, infants born prematurely without ROP are more likely to have myopia and anisometropia than infants born at term because preterm babies are more likely to experience refractive errors (20). An increased incidence of strabismus has also been reported in children born prematurely, regardless of the presence of ROP (21-24).

Research on ocular morbidities among preterm infants in sub-Saharan African nations is limited. Before 2020, blindness from ROP was not reported in Ethiopia, including studies in schools for the blind (25, 26).

To determine the top causes of illness and mortality in preterm infants admitted to neonatal intensive units (NICUs) in Ethiopia, an Ethiopian Study of Illness in Preterms (SIP) study was conducted based on standardized diagnostic protocols. This study is part of the SIP study focusing on ocular morbidities among preterms. The present study aimed to identify ocular disorders in a population of preterm children with and without ROP.

METHODS

Study design and subjects

The SIP Study is a prospective study conducted to determine the top causes of illness and mortality in preterm infants admitted to hospitals in Ethiopia based on standardized diagnostic protocols (27). The study participants of this current study are from the SIP study from Feb – June, 2019. The research was performed in accordance with the Declaration of Helsinki and was approved by the Institute Ethics Committee of Addis Ababa University ((Ref No. 003/2016). All parents or legal guardians provided informed consent before the examination. Patients or the public weren't involved in our research's design, conduct, reporting, or dissemination plans.

Study setting

For the SIP study, standard protocols were developed to undertake a physical examination and laboratory investigation, in particular microbiology, radiologic, and ultrasound examinations. There were initial and follow-up examinations to detect the progress of the preterm infant. Addis Ababa University, Gondar University, Jimma University, and St. Paul Millennium Medical College were included in the SIP study. However, for this ocular morbidity aspect of the SIP study, preterms from Addis Ababa, Tikur Anbessa Hospital, Gandhi Hospital, and St. Paul Millennium Medical College were included in the research.

Recruitment methods

Inclusion criteria were (1) GA < 37 weeks and (2) participation in the SIP study. The preterm children were identified from the SIP database. Parents of all preterm infants received a phone call invitation to participate in our investigation.

Assessment of prenatal and postnatal history

History data were assessed from each child's recorded file for the enrolled children. The following data were extracted: antenatal risk factors: maternal age, in vitro fertilization, antenatal corticosteroids, preeclampsia/eclampsia, diabetes, HIV/AIDS, chorioamnionitis, mode of delivery, and multiple births. Neonatal factors included sex, GA, BW, resuscitation in the delivery room, respiratory distress syndrome (RDS), duration of invasive/noninvasive mechanical ventilation and oxygen therapy, intracranial hemorrhage, patent ductus arteriosus (PDA), neonatal sepsis, necrotizing enterocolitis (NEC), number of blood transfusions, and bronchopulmonary dysplasia (BPD). There were no regular ROP screening programmes within the NICUs of the hospitals where the patients were admitted. There was no referral system from the NICUs to Ophthalmology clinic, except if the parents noted a concern. In addition, all parents were interviewed using a standardized protocol to request information concerning medical history of the child and parents, including ocular and general morbidities.

Definitions

Gestational age was determined using last menstrual period [LPM], Ballard and Dubowitz scores and ultrasound assessment. Studies in Papua New Guinea have shown good concordance (0.878, 0.914, and 0.886, respectively) compared to antenatal ultrasound as the gold standard (28). LMP in a low-resource setting such as Bangladesh was found to be a more reliable measure of gestational age than previously thought for the estimation of postnatal gestational age of preterm infants (29).

Preterm infants were further classified as late and moderate preterm (32 to < 37 weeks), very preterm (28 to <32 weeks), and extremely preterm (less than 28 weeks). Glasses were prescribed if there was myopia >1.0D, astigmatism >1.0D, or hypermetropia >+2.0D.

Eye examination

All examinations were performed by the PI and lead author (STS), a pediatric ophthalmologist. Testing of best-corrected visual acuity was performed with Lea symbols until school enrolment, and after that, ETDRS was used in all subjects. In cases of visual acuity below 6/60, depending on the children's age, Lea symbols or Landolt rings were used at a distance of 1 m. Values were converted for analysis into the logarithm of the minimum angle of resolution (logMAR) (30).

Cyclopentolate (0.5%) eye drops were administered three times at 10-min intervals, after which cycloplegic refraction and keratometry were analyzed with an autorefractor (Nidek ARK-1s keratometer, Japan). The spherical equivalent (refractive error) was calculated by adding the spherical value and half of the cylindrical value. Anisometropia was defined as a difference between the patients' eyes of \geq 1.5 diopters of spherical equivalent. Orthoptic examination for strabismus included the cover-uncover test and alternate cover test, the Hirschberg Test and examination of fixation behavior, as well as the presence or absence of nystagmus after having corrected refractive errors. If a child presented with heterotropia, an alternating prism cover test was added to measure the angle of deviation in prism diopters.

Strabismus was defined as constant or intermittent heterotropia of any dimension at a distance and/or near fixation after correcting refractive error. Classification of strabismus was categorized depending on deviation from the primary position (esotropia or exotropia). An anterior segment examination was done using slit lamp biomicroscopy. A dilated posterior segment examination was conducted using indirect ophthalmoscopy with a 28-diopter lens. Retinopathy of prematurity was diagnosed retrospectively from the patients' chart.

Data analyzed using IBM SPSS 21.0 (SPSS Inc., Chicago, USA). Continuous variables were expressed as the mean \pm standard deviation (SD) or as the median when appropriate. Categorical variables were expressed as proportions. The chi-square test was used to analyze the association between categorical variables. Associations between ocular morbidities and continuous and categorical variables were computed using Fisher's exact test and Pearson chi-square (χ^2) test, respectively. Continuous variables were compared using ANOVA. Values of p <0.05 were considered statistically significant.

RESULTS

During the study period 222 infants (146 from Saint Paul Hospital and 76 from TASH) were included in this study.

Characteristics of the study population

Slightly more females than males were screened (52.7% and 47.3%, respectively). The majority of the study participants (n=156, 70.3%) were less than 3 years of age and the mean age at presentation was 2.62 ± 0.49 years (range 2.08- 6.38). One hundred and twenty-three of the 222 children (55.4%) had a GA \leq 34 weeks and 43 (19.4%) had a BW \leq 1500g. Birthweight ranged from 953-3500g with a mean of 1941.72g (SD 445.49); GA ranged from 30-36 weeks, with a mean of 34.11 weeks (SD 1.47). One hundred and twenty-three children (55.4%) were delivered vaginally, and 80 (36.1%) had multiple gestations. Forty-eight children (21.7%) were born to mothers with pregnancy-induced hypertension, and eight (3.7%) mothers tested positive for HIV (Table 1).

The mean BWs of children from SPH and TASH NICUs were 1888.5 ± 403.6 (953-3000) g and 2043.94 ± 503.74 (1125-3500) g, respectively; mean GAs were 34.14 ± 1.49 (30-36) weeks and 34.08 ± 1.44 (30-36) weeks, respectively. Differences in these parameters were not statistically significant (Table 2).

https://mc.manuscriptcentral.com/bmjpo

Variable		Total	Male		Female	
		Ν	Ν	%	Ν	%
Diuthausiah4	≤1500 gm	43	20	46.5%	23	53.5%
Birthweight	>1500gm	179	85	47.5%	94	52.5%
Costational aga	≤34 weeks	122	60	49.2%	62	50.8%
Gestational age	> 34 weeks	100	45	45%	55	55%
Multiple	Yes	80	42	52.5%	38	47.5%
gestation	No	142	63	44.4%	79	55.6%
Oxygen	Yes	97	47	48.5%	50	51.5%
supplementation	No	125	58	46.4%	67	53.6%
	Sepsis	6	2	33.3%	4	66.7%
Infantile	IVH	2	0	0%	2	100%
morbidity	BPD and Sepsis	1	1	100%	0	0%
	None	213	102	47.9%	111	52.1%
Mada of delivery	Vaginal delivery	123	53	43.1%	70	56.9%
Mode of delivery	Cesarean section	99	52	52.5%	47	47.5%
Multinovity	Yes	47	18	38.3%	29	61.7%
Multiparity	No	175	63	34.3	59	65.7%
	PIH	44	22	50%	22	50%
	HIV 🔍	5	2	40%	3	60%
Maternal	HIV & PIH	3	3	100%	0	0%
morbidity	DM	2	0	0%	2	100%
morbiuity	DM & PIH	1	0	0%	1	100%
	TORCH	1	1	100%	0	0%
	None	166	77	46.4%	89	53.6%
NICU location	SPH	146	65	44.5%	81	55.5%
	TASH	76	40	52,6%	36	47.4%

Table 1 Characteristics of premature children and mothers screened for ocular disorders

Legend: BPD- Bronchopulmonary Dysplasia; DM- Diabetes Mellitus; HIV-IVH-Intraventricular Hemorrhage; PIH-Pregnancy-Induced Hypertension; SPH- Saint Paul Hospital; TASH-Tikur Anbessa Specialized Hospital; TORCH-Toxoplasmosis, Rubella, Cytomegalovirus, Herpes simplex, and HIV

Ocular morbidities and risk factors

Overall, 145 (65.3%) of the children had ocular disorders at the presentation, of which 92 (63.4%) had isolated ocular diseases (69 refractive error, 13 nasolacrimal duct obstruction, five strabismus, and five ROP). The mean age at presentation of children with ocular disorders was 2.7 ± 0.5 (2.1- 6.4) years, and there were more females with a male to female ratio of 1:1.27. None of the eyes examined had anomalies of the anterior segment or lens.

The mean GA was 34.14 ± 1.49 (30-36) weeks, and BW was 1927.27 ± 429.19 (953-3100) grams. Refractive errors were the leading type of ocular morbidity seen in 115/222 (51.8%), followed by NLDO (21.2%) (Table 2).

Ocular disorders	n	%
Refractive error	115	51.8
Nasolacrimal duct obstruction	47	21.2
Strabismus	25	11.3
Retinopathy of prematurity	16	7.2
Others	5	2.3

Table 2. Types of ocular disorders among premature children screened

NB- Some ocular disorders occur more than once.

Refractive error

One hundred and fifteen (51.8) children had a refractive error, of which 55.5% (81/146) and 44.7% (34/76) of children enrolled from the SPH and TASH had refractive errors, respectively. The mean age at presentation was 2.68 ± 0.56 (2.08-6.38) years, and the male-to-female ratio was 1:1.25. Thirty-nine (59%) of children aged > 3 years developed refractive error in comparison with 76 (48.1%) of those aged < 3 years.

The mean gestational age and birthweight of children with refractive errors was 34.11±1.54 (30-36) weeks and 1892.34±414.55 (1080-3100) grams, respectively. Myopia was the commonest type of refractive error, accounting for 78/115 (60.8%) of cases, followed by astigmatism (30, 26.1%) and hyperopia (15, 13.1%). Gender, GA, BW, oxygen supplementation, children, and maternal morbidity were not statistically associated with refractive error. (Table 3)

Strabismus

Twenty-five children (11.3%) had strabismus (5 isolated, 20 in combination with refractive error, nystagmus, ROP, and nasolacrimal duct obstruction). The age at presentation was 2.73 ± 0.52 (2.1-3.6) years, and the male-to-female ratio was 1.08:1.

The mean GA and BW were 34.0 ± 1.41 (30-36) weeks and 906.76 ± 489.92 (1140-3000), respectively. Regarding the types of strabismus, 13 cases had esotropia, and the remaining 12 patients had exotropia. There was no statistically significant association between GA, BW, and strabismus (Table 3). In this study, the prevalence of strabismus among children aged \geq 3years was 16.7% compared to 8.9% in those < 3 years. However, older age was not statistically associated with strabismus.

Retinopathy of prematurity

Previous history of ROP was noted in 16/22 (7.2%) of the children enrolled in this study. Most patients (12, 57%) with ROP were from SPH. Almost all of them (15/16) had a GA < 34 weeks, and the mean GA and BW of patients with ROP were 32.19 ± 1.33 (30-35) weeks and 1596.25 ±483.64 (953-2600) grams, respectively. Nine patients with ROP had an associated refractive error (6 myopia and 3 astigmatism). Only one patient had an associated intermittent exotropia. In univariate analysis, ROP was statistically associated with low GA and low BW (Table 3). Multivariable logistic regression analysis was not conducted due to the small number of children with ROP.

Table 3. Ocular disorders by sex, gestational age, and birthweight among premature children screened for ocular disorders

Type of	ype of Variables		Yes		No	Odds Ratio	p-Value
Disorder			n		n		•
	Sex	Male		51	54	0.78(0.46-1.33)	0.361
		Female		64	53		
Refractive	Tractive BWt $\leq 1500 \text{ gm}$			22	21	1.03(0.53-2.01)	0.926
error		>1500gm		93	86		
	GA	\leq 34 weeks		62	60	1.09)0.64-1.85)	0.746
		> 34 weeks		53	47		
Strabismus	Sex	Male		12	93	1.03(0.4501.37)	0.940
		Female		13	104		
	BWt	≤1500 gm		7	36	0.57(0.22-1.48)	0.246
		>1500gm		18	161		
	GA	≤34 weeks		14	108	0.95 (0.41-2.2)	0.911
		> 34 weeks		11	89		
	Sex	Male		6	99	0.65(0.22-1.85)	0.415
		Female		10	107		
ROP	BWt	≤1500 gm		7	36	Reference	0.01
		>1500gm		9	170	0.27(0.09-0.78)	
	GA	\leq 34 weeks		15	107	Reference	0.001
		> 34 weeks		1	99	0.72 (0.09-0.56)	

Legend: BWt- Birth Weight ; GA-Gestational Age

Visual impairment and ocular disorders

The mean VA of the right and left eyes was 0.22(SD 0.23) logMAR and 0.17 (SD 0.21) logMAR, respectively. The mean VA in the better and worse eyes was 0.17 (SD 0.22) logMAR and 0.28 (SD 0.21) logMAR, respectively. In this study, 101 (45.9%) and 181 (81.5%) of the children had subnormal visual acuity (>logMAR 0.1) in the better and worst eyes, respectively.

Nearly one-fourth (55, 24.8%) of children screened had visual impairment in the better eye. Of this group 51 (92.7%) had uncorrected refractive error alone (34/51) or with strabismus (10/51), ROP (6/51), or nystagmus (1/51). Eighty-nine (40.1%) patients had amblyopia, of which 59/89 (66.3%) had bilateral amblyopia from uncorrected refractive error. Isometropic and anisometropic amblyopia from uncorrected refractive error were the commonest causes of amblyopia, contributing to 49/89 (55%) and 20/89 (22.8%), respectively. Of the 16 cases with ROP, 12 (75%) had a visual impairment associated with other disorders like refractive error, strabismus, and nystagmus.

In univariate analysis, visual impairment in the better eye was statistically associated with ROP, uncorrected refractive error, and strabismus with p-values of 0.001, 0.001, and 0.004,

respectively. Amblyopia was not statistically associated with low GA or low BW (Table 4).

Table 4. The presence of visual impairment by types of ocular disorders among premature	9
children screened for ocular disorders.	

		Visual Impairment in the				
Variables		better eyeYesNo		Odds Ratio 95% CI (Lower-Upper)	p-Value	
Sex	Male	23	82	0.75(0.40-1.38)	0.348	
	Female	32	85			
BWt	≤1500 gm	14	29	0.62(0.29-1.27)	0.188	
	>1500gm	41	138			
GA	$\frac{\leq 34}{\text{weeks}}$	28	94	1.24(0.67-2.29)	0.294	
	weeks	27	73			
Refractive	Yes	48	67	10.24(4.37-23.97)	0.001	
error	No	7	100			
	Yes	12	13	3.31 (1.41-7.77)	0.004	
Strabismus	No	43	154			

DISCUSSION

The present prospective study examines the effects of prematurity on visual acuity and ocular disorder in children born preterm. In Sub-Saharan Africa, neonatal death has decreased by 40% since 1990 due to improved newborn care, likely leading to an increase in childhood ocular morbidity and blindness from diseases like ROP (32). Despite this positive progress, data on the extent of ocular diseases among the preterms in Sub-Saharan Africa are limited. Our study has demonstrated that the prevalence of ocular diseases and visual impairment in Ethiopian children born preterm is high. To our knowledge, this is the first study to assess the prevalence and causes of ocular disorders and visual impairment among children born preterm and admitted to NICUs. In Ethiopia, intensive neonatal care has expanded in many public and private hospital NICUs since 2013 (33), and neonatal mortality per thousand live births has declined modestly from 39 in 2000 to 33 in 2019(34). A prospective screening survey among neonates admitted to two NICUs in Ethiopia showed that 32.2% of the screened infants had any stage ROP (35). However, there is no regular ROP screening program in the country. A comparison of studies of ocular morbidity and visual impairment among preterm children is difficult as there are methodological variations such as differing age groups, inclusion or exclusion of ROP, stages of ROP, and cohort size. Even though genetic and visual experiences predominantly determine the prevalence of refractive error, studies have shown that low BW interrupts emmetropisation and increases the prevalence of refractive error (36). In our study, nearly half of the premature screened children (51.8%) had refractive error, which is comparable to a survey from Turkey (53.8%) (37) but higher than in Italy (42.3%) (38), and in cohorts of extremely preterm infants from Sweden (29.7%) (39) and Norway (10%) (40). In our study, the prevalence of myopia was 35.1%, which was higher than a cohort of preterm children at age 10-12 years from the UK (18.9%) (41), India (15.8%) (42), and Sweden (4.1%) (39). The prevalence of hyperopia in our study, 13.5%, is comparable with that reported in Turkey (14.3%) (37) and Sweden (17.1%) (39) but higher than the UK (6.6%) (41) and India (8.54%) (42). In the present study, 13.5% of the preterm children had clinically significant astigmatism, which was lower than that reported in Norway (21%) (40) and India (55.6%) (42) and higher than in Turkey (5.7%) (37) and Sweden (6.5%) (39). The higher proportion of myopia seen in our study, in comparison with studies from the UK (41),

BMJ Paediatrics Open

India (42) and Sweden (39), is supported by long-term studies which have confirmed the increased incidence of myopia following preterm birth (43).

Manifest strabismus was seen in 11.3% of our cohort, which is comparable to studies from Norway (10%) (40), the UK (13.6%) (15), Sweden (13.5%) (20), and Australia (14%) (45), and lower than reported in Sweden (17%) (36), the UK and Ireland (24%) (46) and Germany (26%) (47). It is unclear at what age the different types of strabismus develop (36), and the age at onset of strabismus in low birthweight children is variable, from the first few months of life to many years later (11, 15, 16,21,22, 44). In our study, a higher prevalence of strabismus in those aged > 3 years was noted. This finding (16.7%) is comparable with a similar age group from Sweden (20). Regarding the type of strabismus, we detected similar proportions for esotropia and exotropia. This is similar to the other studies from Germany (47) and England (41). However, other investigations confirmed that esotropia was the most frequent type of strabismus (20, 39, 48) The increased prevalence of strabismus in the low birthweight population is welldocumented (21, 36, and 44). Such an association was not apparent in our study, as most of the children were considerably higher in weight and older than in the studies mentioned above.

The prevalence of ROP in our study is 7.2%, lower than in other studies, from sub-Saharan African countries, including Ethiopia, which ranged from 15-41.7% (35, 49-51). The lower prevalence of ROP in our study can be explained by our data collection method, where we depend on the history of ROP either from the patient's parents or from old features of ROP.

In the present study, 46% of the children had subnormal visual acuity (>logMAR 0.1) in the better eye, which is comparable with a population-based study from Norway (45.9%) (40). The figure is higher than what has been reported for prematurely-born children with BWs 1500–2000 g (15%) from Denmark (9) and from Sweden 32% (20). Birch et al. reported significantly lower visual acuities in low birthweight infants compared to those born full term (52). In our study, there was no statistically significant correlation between BCVA and BW or GA, similar to a study from Turkey (37). However, Dowdeswell et al. (53) found low levels of distance visual acuity in preterm children compared with full-term children. However, in our study, ocular morbidities like strabismus, refractive error, and ROP were statistically associated with visual impairment.

In our study, the prevalence of amblyopia among premature children was 40.1%. The result in our study is much higher than other studies from Australia (7.3%) (45) and Turkey

(7.7%) (37). Previous studies have shown that prematurity and low birthweight are two risk factors for amblyopia (41, 54). Nevertheless, amblyopia was not statistically associated with low GA and BW. Even if we did not find a statistical association between GA and BW with amblyopia, the prevalence among premature children is higher than in other studies; this indicates that more importance should be given to screening amblyopia risk factors for premature infants.

The strengths of this study were the prospective controlled study design with a high number of participants, the multi-center design which increases the representativeness of our research, and the availability of medical information from all children and mothers, which allowed a very detailed examination and an adjustment for different possible confounding factors. The strict standardization reduced the probability of examiner-dependent variances.

Limitations of the study included the wide age range of the examined children, some of whom were at an early age and phase of refractive development, and other older children that can affect the physiologic refractive changes noted in normal health children. The other limitation is there is a chance that those infants with poor health outcomes did not take part in our study. In subsequent research, we will continue following up with these infants to determine future changes in their refractive error and strabismus.

CONCLUSION

In conclusion, the rates of ocular disorders, visual impairment, and amblyopia in these NICUs in Ethiopia were higher than in other studies. Refractive error, strabismus, and ROP were all significant risk factors for visual impairment. These findings underline the importance of early screening of premature infants for vision and amblyopia. As the two NICUs included in the survey are Ethiopia's main neonatal referral centers, it can be postulated that ocular morbidities, visual impairment, and amblyopia are emerging as potentially avoidable causes of childhood blindness among preterm children in Ethiopia. Developing preterm ocular-related screening protocols within the NICUs, strengthening the referral links between the NICUs and eye centers, and further detailed comparative studies between preterm and term children for ocular disorders are recommended.

Lists of Abbreviations

Bronchopulmonary dysplasia (BPD); Necrotizing enterocolitis (NEC); Neonatal Intensive Care Units (NICUs); Patent ductus arteriosus (PDA); Preterm birth (PTBs); Respiratory distress syndrome (RDS); Retinopathy of prematurity (ROP), Saint Paul Hospital (SPH) and Tikur Anbessa Specialized Hospitals (TASH).

Research Ethics Approval

This study involves human participants, and this research was approved by the ethics committee of Addis Ababa University Ethics Review Committee (Ref No. 003/2016) in line with the relevant national and institutional guidelines on care and clinical research. All parents or legal guardians gave written informed consent before participating in the study.

Availability of Data and Materials

All data generated or analysed during this study are included in this published article

Competing Interests

The authors have no conflicts of interest.

Funding

The SIP study was supported by the Bill & Melinda Gates Foundation (OPP1136965)

Authors' Contributions

Drafting of the manuscript: STS., LM., AM., and AD. Revision of the manuscript for important intellectual content: STS., LM., AM., AD and AA. Conception and design of study: STS., LM., AM., and AD. Data acquisition, analysis, or interpretation of data: STS., LM., AM., AD., and AA. Approval of final manuscript to be published: STS., LM., AM., AD., and AA. All authors have read and approved the final version of the manuscript.

Acknowledgements

The authors wish to acknowledge the assistance of the staff of the SIP project (Ahmed, Beleyu, Efrata, and Wagaye) for their support during data collection. Our special appreciation goes to Sr Martha H/Mariam and Sr. Medhanit from Menelik II pediatrics Ophthalmology clinic.

REFERENCES

1. Cao G, Liu J, Liu M. Global, regional, and national incidence and mortality of neonatal preterm birth, 1990-2019. JAMA pediatrics. 2022 Aug 1;176(8):787-96.

2. World Health Organization. 2014. Global Burden of Diseases Estimates http://www.who.int/healthinfo/global_burden_disease/en/.

3. Adane AA, Ayele TA, Ararsa LG, Bitew BD, Zeleke BM. Adverse birth outcomes among deliveries at Gondar University Hospital, Northwest Ethiopia, BMC Pregnancy and Childbirth 2014, 14:90.

4. Hellström A, Smith LE, Dammann O. Retinopathy of prematurity. The lancet. 2013 Oct 26;382(9902):1445-57.

5. Gogate P, Gilbert C, Zin A. Severe visual impairment and blindness in infants: causes and opportunities for control. Middle East Afr J Ophthalmol. 2011;18(2):109–114.

6. Chen C, Zhang QS. [Advances in medical care for extremely low birth weight infants worldwide]. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(8):703–707. Chinese.

 Mccolm JR, Fleck BW. Retinopathy of prematurity: causation. Semin Neonatol. 2001;6(6):453–460.

8. Cats BP, Tan KEWP. Prematures with and without regressed retinopathy of prematurity: comparison of long-term (6–10 years) ophthalmological morbidity. J Pediatr Ophthalmol Strab 1989;Nov/Dec:271–5.

9. Fledelius HC, Greisen G. Very pre-term birth and visual impairment. Acta Ophthalmol 1993;Suppl 210:63–5.

10. Gallo JE, Lennerstrand G. A population-based study of ocular abnormalities in premature children aged 5 to 10 years. Am J Ophthalmol 1991;111:539–47.

11. Holmstrom G, el Azzazi M, Kugelberg U. Ophthalmological follow up of preterm infants: a population based, prospective study of visual acuity and strabismus. Br J Ophthalmol 1999;83:143–50.

12. Sebris SL, Dobson V, Hartmann EE. Assessment and prediction of visual acuity in 3-to 4year-old children born prior to term. Human Neurobiol 1984;3:87–92.

13. Visual function in low birthweight children A R O'Connor, T J Stephenson, A Johnson, M J Tobin, S Ratib, M Moseley, A R Fielder.

BMJ Paediatrics Open

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
12 13 14 15 16 17	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25 26	
26	
27	
28	
28 29	
29	
30	
31	
32	
33	
34 35 36	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

14. Larsson E, Rydberg A, Holmstrom G. Contrast sensitivity in 10 year old preterm and full term children: a population basedstudy. Br J Ophthalmol 2006;90:87-90. 15. Cooke RW, Foulder-Hughes L, Newsham D, Clarke D. Ophthalmic impairment at 7 years of age in children born very preterm. Arch Dis Child Fetal Neonatal Ed 2004;89:F249-53. 16. O'Connor AR, Stephenson TJ, Johnson A, Tobin MJ, Ratib S, Moseley M, et al. Visual function in low birthweight children. Br J Ophthalmol 2004;88:1149–53. 17. Darlow BA, Clemett RS, Horwood LJ, et al. Prospective study of New Zealand infants with birth weight less than 1500 g and screened for retinopathy of prematurity: visual outcome at age 7-8 years. Br J Ophthalmol 1997;81:935-40. 18. Ng YK, Fielder AR, Shaw DE, Levene MI. Epidemiology of retinopathy of prematurity. Lancet 1988; 2(8622): 1235-1238. 19. Holmstrom G, el Azazi M, Jacobson L, Sachs D, Sule J, Lennerstrand G. Epidemiology of ROP in the Stockholm area of Sweden. Acta Opthalmol 1993; 210(Suppl): 44-47. 20. Holmström G, El Azazi M, Kugelberg U. Ophthalmological long term follow up of preterm infants: a population based, prospective study of the refraction and its development. Br J Ophthalmol. 1998;82:1265–1271. 21. Laws D, Shaw DE, Robinson J, et al. Retinopathy of prematurity: a prospective study. Review at six months. Eye 1992;6:477–83. 22. Pennefather PM, Clarke MP, Strong NP, et al. Ocular outcome in children born before 32 weeks gestation. Eye 1995;9(Suppl):26-30. 23. Robinson R, O'Keefe M. Follow-up study on premature infants with and without retinopathy of prematurity. Br J Ophthalmol 1993;77:91-4. 24. McGinnity FG, Bryars JH. Controlled study of ocular morbidity in school children born preterm. Br J Ophthalmol 1992;76:520-4. 25. Asferaw M, Woodruff G, Gilbert C. Causes of severe visual impairment and blindness in students in schools for the blind in Northwest Ethiopia. BMJ Glob Health. 2017;2(2):e000264. 26. Kello AB, Gilbert C. Causes of severe visual impairment and blindness in children in schools for the blind in Ethiopia. Br J Ophthalmol. 2003;87(5):526-30. 27. Muhe, L.M., McClure, E.M., Mekasha, A. et al. A Prospective Study of Causes of Illness and Death in Preterm Infants in Ethiopia: The SIP Study Protocol. Reprod Health 15, 116 (2018). https://doi.org/10.1186/s12978-018-0555-y.

28. Karl S. Connie SN, Wai Suen et al. 2015. Preterm or Not – An Evaluation of Estimates of Gestational Age in a Cohort ofWomen from Rural Papua New Guinea. PLOSONE |DOI:10.1371/journal.pone.0124286 May6, 2015.

29. Rosenberg RE, Nawshad ASM, Ahmed U. et al 2009. Determining Gestational Age in a Low-resource Setting: Validity of Last Menstrual Period. J HEALTH POPUL NUTR 2009 Jun;27(3):332-338.

30. Bach M, Kommerell G. Determining visual acuity using European normal values: scientific principles and possibilities for automatic measurement. Klin

Monatsbl Augenheilkd. 1998;212(4):190–5.

31. Hosmer DW, Lemesbow S. Goodness of fit tests for the multiple logistic regression model. Communications in statistics-Theory and Methods. 1980 Jan 1;9(10):1043-69.

32. Hug L, Alexander M, You D, Alkema L. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis. The Lancet Global Health. 2019 Jun 1;7(6):e710-20.

33. UNICEF. Investing in Survival: Enhancing the Neonatal Intensive Care Unit of Yekatit 12 Hospital: A Final Report for UNICEF's Next Generation; 2013 file.

https://www.unicefusa.org/sites/default/files/Ethiopia%20Report.pdf. Accessed January 2023.

34. Ministry of Health-Ethiopia. Health Sector Transformation Plan-II. 2021.

https://www.globalfinancingfacility.org/ethiopia-health-sector-transformation-plan-201920-

<u>202425</u>. Accessed January 2023.

35. Sherief ST, Taye K, Teshome T, Demtse A, Gilbert C. Retinopathy of prematurity among infants admitted to two neonatal intensive care units in Ethiopia. BMJ Open Ophthalmology. 2023 Jul 1;8(1):e001257.

36. O'Connor A, Fielder AR. Long term ophthalmic sequelae of prematurity. Early human development. 2008 Feb 1;84(2):101-6.

37. Özdemir M, Koylu S. Ocular growth and morbidity in preterm children without retinopathy of prematurity. Japanese journal of ophthalmology. 2009 Nov;53:623-8.

38. Ricci B. Refractive errors and ocular motility disorders in preterm babies with and without retinopathy of prematurity. Ophthalmologica. 1999 Oct 1;213(5):295-9.

39. Hellgren KM, Tornqvist K, Jakobsson PG, Lundgren P, Carlsson B, Källén K, Serenius F, Hellström A, Holmström G. Ophthalmologic outcome of extremely preterm infants at 6.5 years

1
2
3
4
5
6
7
8
9
10
11
10
12
15
14
15
16
17
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
19
20
12 13 14 15 16 17 18 19 20 21
22 23
24 25 26 27 28 29 30
25
26
20
27
20
29
30
31
32
33
34
34 35 36 37 38
36
37
38
39
40
41
42
43
43 44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
50 59
72

of age: Extremely Preterm Infants in Sweden Study (EXPRESS). JAMA ophthalmology. 2016 May 1;134(5):555-62.

40. Haugen OH, Nepstad L, Standal OA, Elgen I, Markestad T. Visual function in 6 to 7 year-old children born extremely preterm: a population-based study. Acta ophthalmologica. 2012 Aug;90(5):422-7.

41. O'Connor AR, Stephenson TJ, Johnson A, Tobin MJ, Ratib S, Fielder AR. Change of refractive state and eye size in children of birth weight less than 1701 g. British journal of ophthalmology. 2006 Apr 1;90(4):456-60.

42. Sathar A, Abbas S, Nujum ZT, Benson JL, Sreedevi GP, Saraswathyamma SK. Visual outcome of preterm infants screened in a tertiary care hospital. Middle East African Journal of Ophthalmology. 2019 Jul;26(3):158.

43. O'Connor AR, Wilson CM, Fielder AR. Ophthalmological problems associated with preterm birth. Eye. 2007 Oct;21(10):1254-60.

44. Theng JT, Wong TY, Ling Y. Refractive errors and strabismus in premature Asian infants with and without retinopathy of prematurity. Singap Med J 2000;41:393–7.

45. Hebbandi SB, Bowen JR, Hipwell GC, Ma PJ, Leslie GI, Arnold JD. Ocular sequelae in extremely premature infants at 5 years of age. Journal of paediatrics and child health. 1997 Aug;33(4):339-42.

46. Marlow N,Wolke D, BracewellMA, SamaraM; EPICure Study Group. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med. 2005;352(1):9-19.

47. Fieß A, Kölb-Keerl R, Schuster AK, Knuf M, Kirchhof B, Muether PS, Bauer J. Prevalence and associated factors of strabismus in former preterm and full-term infants between 4 and 10 Years of age. BMC ophthalmology. 2017 Dec;17(1):1-9.

48.VanderVeen DK, Bremer DL, Fellows RR, Hardy RJ, Neely DE, Palmer EA, Rogers DL, Tung B, Good WV, Early Treatment for Retinopathy of Prematurity Cooperative G. Prevalence and course of strabismus through age 6 years in participants of the early treatment for retinopathy of prematurity randomized trial. J AAPOS. 2011;15(6):536–40.

49. Fajolu IB, Rotimi-Samuel A, Aribaba OT, et al. Retinopathy of prematurity and associated factors in Lagos, Nigeria. Paediatr Int Child Health. 2015;35(4):324-8.

50. Omer IM, Hassan HA. The prevalence and risk factors of retinopathy of prematurity among preterm babies admitted to Soba Neonatal Intensive Care Unit. Sudan J Paed. 2014;14(2):17.

51. Wanjala I ID, Kariuki L. Retinopathy of Prematurity as seen in two major hospitals in Nairobi, Kenya. East Afr J Ophthalmol. 2007 May;13(1):5-14.

52. Birch EE, O'Connor AR. Preterm birth and visual development. InSeminars in Neonatology 2001 Dec 1 (Vol. 6, No. 6, pp. 487-497). WB Saunders.

I-497).
Broomhall J,
and without major o. *J*2.
Prevalence and risk factors of an.
ation. Medicina. 2018 Mar 20;54(1):6. 53. Dowdeswell HJ, Slater AM, Broomhall J, Tripp J. Visual defi cits in children born at less than 32 weeks gestation with and without major ocular pathology and cerebral damage. Br J Ophthalmol 1995;79:447-452.

54. Mocanu V, Horhat R. Prevalence and risk factors of amblyopia among refractive errors in an Eastern European population. Medicina. 2018 Mar 20;54(1):6.

TABLES LEGEND

Table 1 Characteristics of premature children and mothers screened for ocular disorders

Table 2. Types of ocular disorders among premature children screened

 Table 3. Ocular disorders by sex, gestational age, and birthweight among premature children screened for ocular disorders

Table 4. The presence of visual impairment by types of ocular disorders among premature children screened for ocular disorders.

BMJ Paediatrics Open

Prevalence and causes of ocular disorders and visual impairment among preterm children in Ethiopia

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2023-002317.R3
Article Type:	Original research
Date Submitted by the Author:	15-Jan-2024
Complete List of Authors:	SHERIEF, SADIK; Addis Ababa University, Department of Ophthalmology; SickKids Research Institute Muhe, Lulu M; Addis Ababa University College of Health Sciences Mekasha, Amha; Addis Ababa University, Department of Pediatrics and Child Health Demtse, Asrat; Addis Ababa University College of Health Sciences, Paediatrics and Child Health Ali, Asim; The Hospital for Sick Children, Ophthalmology and Vision Sciences; University of Toronto, Department of Ophthalmology and Vision Sciences
Keywords:	Infant, Neonatology, Ophthalmology

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Review Only

Prevalence and causes of ocular disorders and visual impairment among preterm children in Ethiopia

Sadik Taju Sherief^{1,2}, Lulu Muhe³ Amha Mekasha³, Asrat Demtse³, and Asim Ali^{4,5}

¹Department of Ophthalmology, Addis Ababa University, Addis Ababa, Ethiopia;

² Child Health Evaluative Sciences Program and Centre for Global Child Health, Sickkids Research Institute, Toronto, Canada;

³ Department of Pediatrics and Child Health, Addis Ababa University, Addis Ababa, Ethiopia; ⁴ Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.

⁵ Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.

Short Title: Ocular disorders in Preterms

Corresponding Author:

Sadik T. Sherief, MD Department of Ophthalmology School of Medicine, College of Health Sciences Addis Ababa University P.O. Box 9086, Addis Ababa, Ethiopia Tel: +251917801719 Email: goge4000@yahoo.com

Submitted as an Original Research article to: BMJ Paediatrics Open

Abstract word count (300 maximum): 235 words

Manuscript word count (4000 maximum): 3,433 words

Tables and Figures (maximum 5): 4 Tables

Reference Count: 54

Submitted to: BMJ Paediatrics Open

Key words: Preterm children; Low birth weight; Visual Impairment; Refractive error; Strabismus; Retinopathy of prematurity; Risk factors of visual impairment; Sub-Saharan Africa; Ethiopia.

ABSTRACT

Objective

The aim of this study was to determine the prevalence, causes of ocular disorders and visual impairment among preterm children previously admitted to neonatal intensive care units in Addis Ababa, Ethiopia.

Methods and Analysis

A prospective screening survey was conducted from February to June 2019 at the pediatric eye clinic of Menelik II Hospital. Children who were preterm at birth and who attended the eye clinic were included in the study. Data on demographic and neonatal characteristics, neonatal and maternal co-morbidities, and ocular disorders were collected. Odds ratio and univariate analysis were used to identify predictors of ocular diseases and visual impairment.

Results

There were 222 children included in the study with a mean age at presentation of 2.62 years (range 2.08- 6.38 years), mean gestational age (GA) 34.11 weeks (range 30-36) weeks, and mean birthweight 1941.72g (range 953-3500g). Nearly 2/3 had ocular disorders with refractive error (51.8%), strabismus (11.3%), and history of retinopathy of prematurity (ROP) (7.2%) being more common. One-fourth of the children had visual impairment, and the prevalence of amblyopia was 40.1%. Uncorrected refractive errors, strabismus, and ROP were causes for visual impairment.

Conclusion

Visual impairment and amblyopia are common in Ethiopia. There is a need to develop a screening protocol for ocular disorders for preterm children to enhance early detection and prevention of childhood visual impairment.

Keywords: Preterm children; Low birth weight; Visual Impairment; Refractive error; Strabismus; Retinopathy of prematurity; Risk factors of visual impairment; Sub-Saharan Africa; Ethiopia.

Key Messages

What is already known about this subject?

- In many low- and middle-income countries, the survival of preterm infants has improved as neonatal systems have improved.
- Preterm children are at a higher risk of developing ocular disorders, visual impairment, and amblyopia than term children.

What this study adds

• The magnitude and causes of ocular morbidity among preterm children are not well studied in sub-Saharan African countries. This study of preterm children admitted to two neonatal intensive care units in a sub-Saharan country shows that preterm infants develop a higher rate of visual impairment and amblyopia.

How this study might affect research, practice or policy

- The findings of this study provide some evidence for screening for ocular diseases in preterm children, but further studies are needed.
- A follow up prospective study commencing in 5 years' time would be of value as the number of surviving very low birth weight infants may significantly increase.

INTRODUCTION

Global, regional, and national estimates of preterm birth (defined as childbirth at less than 37 completed weeks) using the 2019 Global Burden of Disease study showed 15.22 million preterm births (1). In the Global Burden of Disease Study, 3.1% of all disability-adjusted lifeyears were attributed to preterm birth, similar to the burden of HIV or malaria (2). More than 95% of preterm births are occurring in developing countries. Globally the estimated preterm birth rate is 11.1%. Over 60% of preterm births occur in Sub-Saharan Africa and South Asia (1). Ethiopia belongs in the top 15 countries that contribute to two-thirds of the world's preterm babies with a preterm rate of 14.1% out of 481 deliveries (3).

From six months of pregnancy to term is considered the most active period for ocular development (4). Improved neonatal care has increased the survival rates of extremely preterm infants with birth weights (BW) of 1,000g or gestational age (GA) of 28 weeks; at the same time, retinopathy of prematurity (ROP) has become a significant threat to visual function (5-7). Preterm children are reported to have an increased incidence of visual impairment because of perinatal lesions in the brain (8-10).

It has been noted that both preterm birth and ROP have an effect on the developing visual system, leading to decreased visual acuity, decreased contrast sensitivity, and an increase in color vision deficiencies (11-16). Population-based studies suggest that ophthalmic impairments remain common in very low birth weight infants (11,16,17). Effects of prematurity on ocular and neurological development include ROP, refractive error, strabismus, cerebral visual impairment, color vision deficits, reduced contrast sensitivity (CS), visual field defects, and decreased visual acuity (16). According to population studies, the incidence of ROP, whether moderate or severe, for infants born at less than 1500–1700g ranges from 22–49% (17-19).

In a cohort study, children with lower birth weights had significantly worse near and distance visual acuity at ages 10 to 12 years compared to full-term infants (10). Additionally, infants born prematurely without ROP are more likely to have myopia and anisometropia than infants born at term because preterm babies are more likely to experience refractive errors (20). An increased incidence of strabismus has also been reported in children born prematurely, regardless of the presence of ROP (21-24).

Research on ocular morbidities among preterm infants in sub-Saharan African nations is limited. Before 2020, blindness from ROP was not reported in Ethiopia, including studies based on schools for the blind (25, 26).

To determine the top causes of illness and mortality in preterm infants admitted to neonatal intensive units (NICUs) in Ethiopia, an Ethiopian Study of Illness in Preterms (SIP) study was conducted based on standardized diagnostic protocols. This study is part of the SIP study focusing on ocular morbidities among preterms. The present study aimed to identify ocular disorders in a population of preterm children with and without ROP.

METHODS

Study design and subjects

The SIP Study is a prospective study conducted to determine the top causes of illness and mortality in preterm infants admitted to hospitals in Ethiopia based on standardized diagnostic protocols (27). The study participants of this current study are from the SIP study from Feb – June, 2019. The research was performed in accordance with the Declaration of Helsinki and was approved by the Institute Ethics Committee of Addis Ababa University ((Ref No. 003/2016). All parents or legal guardians provided informed consent before the examination. Patients or the public were not involved in research design, conduct, reporting, or dissemination plans.

Study setting

For the SIP study, standard protocols were developed to undertake a physical examination and laboratory investigation, in particular microbiology, radiologic, and ultrasound examinations. There were initial and follow-up examinations to detect the progress of the preterm infant. Addis Ababa University, Gondar University, Jimma University, and St. Paul Millennium Medical College were included in the SIP study. However, for this ocular morbidity aspect of the SIP study, only preterm children from Addis Ababa, Tikur Anbessa Hospital, Gandhi Hospital, and St. Paul Millennium Medical College were included.

Recruitment methods

Inclusion criteria were (1) GA < 37 weeks and (2) participation in the SIP study. The preterm children were identified from the SIP database. Parents of all preterm infants received a phone call invitation to participate in our investigation.

Assessment of prenatal and postnatal history

History data were assessed from each child's recorded file for the enrolled children. The following antenatal risk factors were extracted: maternal age, in vitro fertilization, antenatal corticosteroids, preeclampsia/eclampsia, diabetes, HIV/AIDS, chorioamnionitis, mode of delivery, and multiple births. Neonatal factors extracted included sex, GA, BW, resuscitation in the delivery room, respiratory distress syndrome (RDS), duration of invasive/noninvasive mechanical ventilation and oxygen therapy, intracranial hemorrhage, patent ductus arteriosus (PDA), neonatal sepsis, necrotizing enterocolitis (NEC), number of blood transfusions, and bronchopulmonary dysplasia (BPD). There were no regular ROP screening programmes within the NICUs of the hospitals where the patients were admitted. There was no referral system from the NICUs to the Ophthalmology clinic, except if the parents noted a concern. In addition, all parents were interviewed using a standardized protocol to request information concerning medical history of the child and parents, including ocular and general morbidities.

Definitions

Gestational age was determined using last menstrual period [LPM], Ballard and Dubowitz scores and ultrasound assessment. Studies in Papua New Guinea have shown good concordance (0.878, 0.914, and 0.886, respectively) compared to antenatal ultrasound as the gold standard (28). LMP in a low-resource setting such as Bangladesh was found to be a more reliable measure of gestational age than previously thought for the estimation of postnatal gestational age of preterm infants (29).

Preterm infants were further classified as late and moderate preterm (32 to < 37 weeks), very preterm (28 to <32 weeks), and extremely preterm (less than 28 weeks). Glasses were prescribed if there was myopia >1.0D, astigmatism >1.0D, or hypermetropia >+2.0D.

Eye examination

All examinations were performed by the PI and lead author (STS), a pediatric ophthalmologist. Testing of best-corrected visual acuity was performed with Lea symbols until school enrolment, and after that, ETDRS was used in all subjects. In cases of visual acuity below 6/60, depending on the children's age, Lea symbols or Landolt rings were used at a distance of 1 m. Values were converted for analysis into the logarithm of the minimum angle of resolution (logMAR) (30).

Cyclopentolate (0.5%) eye drops were administered three times at 10-min intervals, after which cycloplegic refraction and keratometry were analyzed with an autorefractor (Nidek ARK-1s keratometer, Japan). The spherical equivalent refractive error was calculated by adding the spherical value and half of the cylindrical value. Anisometropia was defined as a difference between the patients' eyes of \geq 1.5 diopters of spherical equivalent. Orthoptic examination for strabismus included the cover-uncover test and alternate cover test, the Hirschberg Test and examination of fixation behavior, as well as the presence or absence of nystagmus after having corrected refractive errors. If a child presented with heterotropia, an alternating prism cover test was added to measure the angle of deviation in prism diopters.

Strabismus was defined as constant or intermittent heterotropia of any dimension at a distance and/or near fixation after correcting refractive error. Classification of strabismus was categorized depending on deviation from the primary position (esotropia or exotropia). An anterior segment examination was done using slit lamp biomicroscopy. A dilated posterior segment examination was conducted using indirect ophthalmoscopy with a 28-diopter lens. Retinopathy of prematurity was diagnosed retrospectively from the patients' chart.

Data analyzed using IBM SPSS 21.0 (SPSS Inc., Chicago, USA). Continuous variables were expressed as the mean \pm standard deviation (SD) or as the median when appropriate. Categorical variables were expressed as proportions. The chi-square test was used to analyze the association between categorical variables. Associations between ocular morbidities and continuous and categorical variables were computed using Fisher's exact test and Pearson chi-square (χ^2) test, respectively. Continuous variables were compared using ANOVA. Values of p <0.05 were considered statistically significant.

RESULTS

During the study period 222 infants (146 from Saint Paul Hospital and 76 from TASH) were included in this study.

Characteristics of the study population

Slightly more females than males were screened (52.7% and 47.3%, respectively). The majority of the study participants (n=156, 70.3%) were less than 3 years of age and the mean age at presentation was 2.62 ± 0.49 years (range 2.08- 6.38). One hundred and twenty-three of the 222 children (55.4%) had a GA \leq 34 weeks and 43 (19.4%) had a BW \leq 1500g. Birthweight ranged from 953-3500g with a mean of 1941.72g (SD 445.49); GA ranged from 30-36 weeks, with a mean of 34.11 weeks (SD 1.47). One hundred and twenty-three children (55.4%) were delivered vaginally, and 80 (36.1%) had multiple gestations. Forty-eight children (21.7%) were born to mothers with pregnancy-induced hypertension, and eight (3.7%) mothers tested positive for HIV (Table 1).

The mean BWs of children from SPH and TASH NICUs were 1888.5 ± 403.6 (953-3000) g and 2043.94 ± 503.74 (1125-3500) g, respectively; mean GAs were 34.14 ± 1.49 (30-36) weeks and 34.08 ± 1.44 (30-36) weeks, respectively. Differences in these parameters were not statistically significant (Table 2).

https://mc.manuscriptcentral.com/bmjpo

Variable		Total	Male		Female	
		Ν	Ν	%	Ν	%
Diuthanai ah t	<u><</u> 1500g	43	20	46.5%	23	53.5%
Birthweight	> 1500g	179	85	47.5%	94	52.5%
Costational aga	\leq 34 weeks	122	60	49.2%	62	50.8%
Gestational age	> 34 weeks	100	45	45%	55	55%
Multiple	Yes	80	42	52.5%	38	47.5%
gestation	No	142	63	44.4%	79	55.6%
Oxygen	Yes	97	47	48.5%	50	51.5%
supplementation	No	125	58	46.4%	67	53.6%
	Sepsis	6	2	33.3%	4	66.7%
Infantile	IVH	2	0	0%	2	100%
morbidity	BPD and sepsis	1	1	100%	0	0%
	None	213	102	47.9%	111	52.1%
Mada of dolivory	Vaginal delivery	123	53	43.1%	70	56.9%
Mode of delivery	Cesarean section	99	52	52.5%	47	47.5%
N T 14 · · · ·	Yes	47	18	38.3%	29	61.7%
Multiparity	No	175	63	34.3	59	65.7%
	PIH	44	22	50%	22	50%
	HIV 💟	5	2	40%	3	60%
Matornal	HIV & PIH	3	3	100%	0	0%
Maternal morbidity	DM	2	0	0%	2	100%
	DM & PIH	1	0	0%	1	100%
	TORCH	1	1	100%	0	0%
	None	166	77	46.4%	89	53.6%
NICU location	SPH	146	65	44.5%	81	55.5%
NICU location	TASH	76	40	52,6%	36	47.4%

Table 1 Characteristics of premature children and mothers screened for ocular disorders

Legend: BPD- Bronchopulmonary Dysplasia; DM- Diabetes Mellitus; HIV-IVH-Intraventricular Hemorrhage; PIH-Pregnancy-Induced Hypertension; SPH- Saint Paul Hospital; TASH-Tikur Anbessa Specialized Hospital; TORCH-Toxoplasmosis, Rubella, Cytomegalovirus, Herpes simplex, and HIV

Ocular morbidities and risk factors

Overall, 145 (65.3%) of the children had ocular disorders at the presentation, of which 92 (63.4%) had isolated ocular diseases (69 refractive error, 13 nasolacrimal duct obstruction, five strabismus, and five ROP). The mean age at presentation of children with ocular disorders was 2.7 ± 0.5 (2.1- 6.4) years, and there were more females with a male to female ratio of 1:1.27. None of the eyes examined had anomalies of the anterior segment or lens.

The mean GA was 34.14 ± 1.49 (30-36) weeks, and BW was 1927.27 ± 429.19 (953-3100) g. Refractive errors were the leading type of ocular morbidity seen in 115/222 (51.8%), followed by NLDO (21.2%) (Table 2).

Ocular disorders	n	%
Refractive error	115	51.8
Nasolacrimal duct obstruction	47	21.2
Strabismus	25	11.3
Retinopathy of prematurity	16	7.2
Others	5	2.3

Table 2. Types of ocular disorders among premature children screened

NB- Some ocular disorders occurred more than once.

Refractive error

One hundred and fifteen (51.8%) children had a refractive error, of which 55.5% (81/146) and 44.7% (34/76) of children enrolled from the SPH and TASH had refractive errors, respectively. The mean age at presentation was 2.68 \pm 0.56 (2.08-6.38) years, and the male-to-female ratio was 1:1.25. Thirty-nine (59%) of children aged > 3 years developed refractive error in comparison with 76 (48.1%) of those aged < 3 years.

The mean gestational age and birthweight of children with refractive errors was 34.11±1.54 (30-36) weeks and 1892.34±414.55 (1080-3100) g, respectively. Myopia was the commonest type of refractive error, accounting for 78/115 (60.8%) of cases, followed by astigmatism (30, 26.1%) and hyperopia (15, 13.1%). Gender, GA, BW, oxygen supplementation, children, and maternal morbidity were not statistically associated with refractive error. (Table 3)

Strabismus

Twenty-five children (11.3%) had strabismus (5 isolated, 20 in combination with refractive error, nystagmus, ROP, and nasolacrimal duct obstruction). The age at presentation was 2.73 ± 0.52 (2.1-3.6) years, and the male-to-female ratio was 1.08:1.

The mean GA and BW were 34.0 ± 1.41 (30-36) weeks and 1906.76 ± 489.92 (1140-3000) g, respectively. Thirteen children had esotropia, and the rest had exotropia. There was no statistically significant association between GA, BW, and strabismus (Table 3). In this study, the prevalence of strabismus among children aged \geq 3 years was 16.7% compared to 8.9% in those < 3 years. However, older age was not statistically associated with strabismus.

Retinopathy of prematurity

Previous history of ROP was noted in 16/222 (7.2%) of the children enrolled in this study. Most patients (12, 57%) with ROP were from SPH. Almost all of them (15/16) had a GA < 34 weeks, and the mean GA and BW of patients with ROP were 32.19 ± 1.33 (30-35) weeks and 1596.25 ±483.64 (953-2600) g, respectively. Nine patients with ROP had an associated refractive error (6 myopia and 3 astigmatism). Only one patient had an associated intermittent exotropia. In univariate analysis, ROP was statistically associated with low GA and low BW (Table 3). Multivariable logistic regression analysis was not conducted due to the small number of children with ROP.

Table 3. Ocular disorders by sex, gestational age, and birthweight among premature children screened for ocular disorders

Type of	Variables		Yes	No	Odds Ratio	p-Value
Disorder			n	n		-
	Sex	Male	51	54	0.78(0.46-1.33)	0.361
		Female	64	53		
Refractive	BWt	≤1500 gm	22	21	1.03(0.53-2.01)	0.926
error		>1500gm	93	86		
	GA	≤34 weeks	62	60	1.09(0.64-1.85)	0.746
		> 34 weeks	53	47		
	Sex	Male	12	93	1.03(0.4501.37)	0.940
		Female	13	104		
Strabismus	BWt	≤1500 gm	7	36	0.57(0.22-1.48)	0.246
Strabismus		>1500gm	18	161		
	GA	\leq 34 weeks	14	108	0.95 (0.41-2.2)	0.911
		> 34 weeks	11	89		
	Sex	Male	6	99	0.65(0.22-1.85)	0.415
		Female	10	107		
ROP	BWt	≤1500 gm	7	36	4	0.01
		>1500gm	9	170	0.27(0.09-0.78)	
	GA	≤34 weeks	15	107		0.001
		> 34 weeks	1	99	0.72 (0.09-0.56)	

Legend: BWt- Birth Weight ; GA-Gestational Age

Visual impairment and ocular disorders

The mean VA of the right and left eyes was 0.22(SD 0.23) logMAR and 0.17 (SD 0.21) logMAR, respectively. The mean VA in the better and worse eyes was 0.17 (SD 0.22) logMAR and 0.28 (SD 0.21) logMAR, respectively. In this study, 101 (45.9%) and 181 (81.5%) of the children had subnormal visual acuity (>logMAR 0.1) in the better and worst eyes, respectively.

Nearly one-fourth (55, 24.8%) of children screened had visual impairment in the better eye. Of this group 51 (92.7%) had uncorrected refractive error alone (34/51) or with strabismus (10/51), ROP (6/51), or nystagmus (1/51). Eighty-nine (40.1%) patients had amblyopia, of which 59/89 (66.3%) had bilateral amblyopia from uncorrected refractive error. Isometropic and anisometropic amblyopia from uncorrected refractive error were the commonest causes of amblyopia, contributing to 49/89 (55%) and 20/89 (22.8%) of cases, respectively. Of the 16 cases with ROP, 12 (75%) had a visual impairment associated with other disorders like refractive error, strabismus, and nystagmus.

In univariate analysis, visual impairment in the better eye was statistically associated with ROP, uncorrected refractive error, and strabismus with p-values of 0.001, 0.001, and 0.004,

respectively. Amblyopia was not statistically associated with low GA or low BW (Table 4).

Table 4. The presence of visual impairment by types of ocular disorders among premature children screened for ocular disorders.

		Visual impairment in the better eye		pairment in the	
Variables		Yes	No	CI (Lower-Upper)	p-Value
Sex	Male	23	82	0.75(0.40-1.38)	0.348
	Female	32	85		
BWt	<u><</u> 1500g	14	29	0.62(0.29-1.27)	0.188
	>1500g	41	138		
GA	\leq 34 weeks	28	94	1.24(0.67-2.29)	0.294
	> 34 weeks	27	73	····	
Refractive	Yes	48	67	10.24(4.37-23.97)	0.001
error	No	7	100		
	Yes	12	13	3.31 (1.41-7.77)	0.004
Strabismus	No	43	154		

DISCUSSION

 The present prospective study examines the effects of prematurity on visual acuity and ocular disorder in children born preterm. In Sub-Saharan Africa, neonatal death has decreased by 40% since 1990 due to improved newborn care, likely leading to an increase in childhood ocular morbidity and blindness from diseases like ROP (32). Despite this positive progress, data on the extent of ocular diseases among the preterms in Sub-Saharan Africa are limited. Our study has demonstrated that the prevalence of ocular diseases and visual impairment in Ethiopian children born preterm is high. To our knowledge, this is the first study to assess the prevalence and causes of ocular disorders and visual impairment among children born preterm and admitted to NICUs.

In Ethiopia, intensive neonatal care has expanded in many public and private hospital NICUs since 2013 (33), and neonatal mortality per thousand live births has declined modestly from 39 in 2000 to 33 in 2019(34). A prospective screening survey among neonates admitted to two NICUs in Ethiopia showed that 32.2% of the screened infants had any stage ROP (35). However, there is no regular ROP screening program in the country. A comparison of studies of ocular morbidity and visual impairment among preterm children is difficult as there are methodological variations such as differing age groups, inclusion or exclusion of ROP, stages of ROP, and cohort size.

Even though genetic and visual experiences predominantly determine the prevalence of refractive error, studies have shown that low BW interrupts emmetropisation and increases the prevalence of refractive error (36). In our study, nearly half of the premature screened children (51.8%) had refractive error, which is comparable to a survey from Turkey (53.8%) (37) but higher than in Italy (42.3%) (38), and in cohorts of extremely preterm infants from Sweden (29.7%) (39) and Norway (10%) (40). In our study, the prevalence of myopia was 35.1%, which was higher than a cohort of preterm children at age 10–12 years from the UK (18.9%) (41), India (15.8%) (42), and Sweden (4.1%) (39). The prevalence of hyperopia in our study, 13.5%, is comparable with that reported in Turkey (14.3%) (37) and Sweden (17.1%) (39) but higher than the UK (6.6%) (41) and India (8.54%) (42). In the present study, 13.5% of the preterm children had clinically significant astigmatism, which was lower than that reported in Norway (21%) (40) and India (55.6%) (42) and higher than in Turkey (5.7%) (37) and Sweden (6.5%) (39). The higher proportion of myopia seen in our study, in comparison with studies from the UK (41),

BMJ Paediatrics Open

India (42) and Sweden (39), is supported by long-term studies which have confirmed the increased incidence of myopia following preterm birth (43).

Manifest strabismus was seen in 11.3% of our cohort, which is comparable to studies from Norway (10%) (40), the UK (13.6%) (15), Sweden (13.5%) (20), and Australia (14%) (45), and lower than reported in Sweden (17%) (36), the UK and Ireland (24%) (46) and Germany (26%) (47). It is unclear at what age the different types of strabismus develop (36), and the age at onset of strabismus in low birthweight children is variable, from the first few months of life to many years later (11, 15, 16,21,22, 44). In our study, a higher prevalence of strabismus in those aged > 3 years was noted. This finding (16.7%) is comparable with a similar age group from Sweden (20). Regarding the type of strabismus, we detected similar proportions for esotropia and exotropia. This is similar to the other studies from Germany (47) and England (41). However, other investigations confirmed that esotropia was the most frequent type of strabismus (20, 39, 48) The increased prevalence of strabismus in the low birthweight population is welldocumented (21, 36, and 44). Such an association was not apparent in our study, as most of the children were considerably higher in weight and older than in the studies mentioned above.

The prevalence of ROP in our study is 7.2%, lower than in other studies, from sub-Saharan African countries, including Ethiopia, which ranged from 15-41.7% (35, 49-51). The lower prevalence of ROP in our study can be explained by our data collection method, where we depend on the history of ROP either from the patient's parents or from old features of ROP.

In the present study, 46% of the children had subnormal visual acuity (>logMAR 0.1) in the better eye, which is comparable with a population-based study from Norway (45.9%) (40). The figure is higher than what has been reported for prematurely-born children with BWs 1500–2000 g (15%) from Denmark (9) and from Sweden 32% (20). Birch et al. reported significantly lower visual acuities in low birthweight infants compared to those born full term (52). In our study, there was no statistically significant correlation between BCVA and BW or GA, similar to a study from Turkey (37). However, Dowdeswell et al. (53) found low levels of distance visual acuity in preterm children compared with full-term children. However, in our study, ocular morbidities like strabismus, refractive error, and ROP were statistically associated with visual impairment.

In our study, the prevalence of amblyopia among premature children was 40.1%. The result in our study is much higher than other studies from Australia (7.3%) (45) and Turkey

(7.7%) (37). Previous studies have shown that prematurity and low birthweight are two risk factors for amblyopia (41, 54). Nevertheless, amblyopia was not statistically associated with low GA and BW. Even if we did not find a statistical association between GA and BW with amblyopia, the prevalence among premature children is higher than in other studies; this indicates that more importance should be given to screening amblyopia risk factors for premature infants.

The strengths of this study were the prospective controlled study design with a high number of participants, the multi-center design which increases the representativeness of our research, and the availability of medical information from all children and mothers, which allowed a very detailed examination and an adjustment for different possible confounding factors. The strict standardization reduced the probability of examiner-dependent variances.

Limitations of the study included the wide age range of the examined children, some of whom were at an early age and phase of refractive development, and other older children that can affect the physiologic refractive changes noted in normal health children. The other limitation is there is a chance that those infants with poor health outcomes did not take part in our study. In subsequent research, we will continue following up with these infants to determine future changes in their refractive error and strabismus.

CONCLUSION

In conclusion, the rates of ocular disorders, visual impairment, and amblyopia in these NICUs in Ethiopia were higher than in other studies. Refractive error, strabismus, and ROP were all significant risk factors for visual impairment. These findings underline the importance of early screening of premature infants for vision and amblyopia. As the two NICUs included in the survey are Ethiopia's main neonatal referral centers, it can be postulated that ocular morbidities, visual impairment, and amblyopia are emerging as potentially avoidable causes of childhood blindness among preterm children in Ethiopia. Developing preterm ocular-related screening protocols within the NICUs, strengthening the referral links between the NICUs and eye centers, and further detailed comparative studies between preterm and term children for ocular disorders are recommended.

1.

Lists of Abbreviations

Bronchopulmonary dysplasia (BPD); Necrotizing enterocolitis (NEC); Neonatal Intensive Care Units (NICUs); Patent ductus arteriosus (PDA); Preterm birth (PTBs); Respiratory distress syndrome (RDS); Retinopathy of prematurity (ROP), Saint Paul Hospital (SPH) and Tikur Anbessa Specialized Hospitals (TASH).

Research Ethics Approval

This study involves human participants, and this research was approved by the Addis Ababa University Ethics Review Committee (Ref No. 003/2016) in line with the relevant national and institutional guidelines on care and clinical research. All parents or legal guardians gave written informed consent before participating in the study.

Availability of Data and Materials

All data generated or analysed during this study are included in this published article

Competing Interests

The authors have no conflicts of interest.

Funding

The SIP study was supported by the Bill & Melinda Gates Foundation (OPP1136965)

Authors' Contributions

Drafting of the manuscript: STS., LM., AM., and AD. Revision of the manuscript for important intellectual content: STS., LM., AM., AD and AA. Conception and design of study: STS., LM., AM., and AD. Data acquisition, analysis, or interpretation of data: STS., LM., AM., AD., and AA. Approval of final manuscript to be published: STS., LM., AM., AD., and AA. All authors have read and approved the final version of the manuscript.

Acknowledgements

The authors wish to acknowledge the assistance of the staff of the SIP project (Ahmed, Beleyu, Efrata, and Wagaye) for their support during data collection. Our special appreciation goes to Sr Martha H/Mariam and Sr. Medhanit Tesfaye from Menelik II pediatrics Ophthalmology clinic.

REFERENCES

1. Cao G, Liu J, Liu M. Global, regional, and national incidence and mortality of neonatal preterm birth, 1990-2019. JAMA pediatrics. 2022 Aug 1;176(8):787-96.

2. World Health Organization. 2014. Global Burden of Diseases Estimates http://www.who.int/healthinfo/global_burden_disease/en/.

3. Adane AA, Ayele TA, Ararsa LG, Bitew BD, Zeleke BM. Adverse birth outcomes among deliveries at Gondar University Hospital, Northwest Ethiopia, BMC Pregnancy and Childbirth 2014, 14:90.

4. Hellström A, Smith LE, Dammann O. Retinopathy of prematurity. The lancet. 2013 Oct 26;382(9902):1445-57.

5. Gogate P, Gilbert C, Zin A. Severe visual impairment and blindness in infants: causes and opportunities for control. Middle East Afr J Ophthalmol. 2011;18(2):109–114.

6. Chen C, Zhang QS. [Advances in medical care for extremely low birth weight infants worldwide]. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(8):703–707. Chinese.

 Mccolm JR, Fleck BW. Retinopathy of prematurity: causation. Semin Neonatol. 2001;6(6):453–460.

8. Cats BP, Tan KEWP. Prematures with and without regressed retinopathy of prematurity: comparison of long-term (6–10 years) ophthalmological morbidity. J Pediatr Ophthalmol Strab 1989;Nov/Dec:271–5.

9. Fledelius HC, Greisen G. Very pre-term birth and visual impairment. Acta Ophthalmol 1993;Suppl 210:63–5.

10. Gallo JE, Lennerstrand G. A population-based study of ocular abnormalities in premature children aged 5 to 10 years. Am J Ophthalmol 1991;111:539–47.

11. Holmstrom G, el Azzazi M, Kugelberg U. Ophthalmological follow up of preterm infants: a population based, prospective study of visual acuity and strabismus. Br J Ophthalmol 1999;83:143–50.

12. Sebris SL, Dobson V, Hartmann EE. Assessment and prediction of visual acuity in 3-to 4year-old children born prior to term. Human Neurobiol 1984;3:87–92.

13. Visual function in low birthweight children A R O'Connor, T J Stephenson, A Johnson, M J Tobin, S Ratib, M Moseley, A R Fielder.

BMJ Paediatrics Open

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
12 13 14 15 16 17	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25 26	
26	
27	
28	
28 29	
29	
30	
31	
32	
33	
34 35 36	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

14. Larsson E, Rydberg A, Holmstrom G. Contrast sensitivity in 10 year old preterm and full term children: a population basedstudy. Br J Ophthalmol 2006;90:87-90. 15. Cooke RW, Foulder-Hughes L, Newsham D, Clarke D. Ophthalmic impairment at 7 years of age in children born very preterm. Arch Dis Child Fetal Neonatal Ed 2004;89:F249-53. 16. O'Connor AR, Stephenson TJ, Johnson A, Tobin MJ, Ratib S, Moseley M, et al. Visual function in low birthweight children. Br J Ophthalmol 2004;88:1149–53. 17. Darlow BA, Clemett RS, Horwood LJ, et al. Prospective study of New Zealand infants with birth weight less than 1500 g and screened for retinopathy of prematurity: visual outcome at age 7-8 years. Br J Ophthalmol 1997;81:935-40. 18. Ng YK, Fielder AR, Shaw DE, Levene MI. Epidemiology of retinopathy of prematurity. Lancet 1988; 2(8622): 1235-1238. 19. Holmstrom G, el Azazi M, Jacobson L, Sachs D, Sule J, Lennerstrand G. Epidemiology of ROP in the Stockholm area of Sweden. Acta Opthalmol 1993; 210(Suppl): 44-47. 20. Holmström G, El Azazi M, Kugelberg U. Ophthalmological long term follow up of preterm infants: a population based, prospective study of the refraction and its development. Br J Ophthalmol. 1998;82:1265–1271. 21. Laws D, Shaw DE, Robinson J, et al. Retinopathy of prematurity: a prospective study. Review at six months. Eye 1992;6:477–83. 22. Pennefather PM, Clarke MP, Strong NP, et al. Ocular outcome in children born before 32 weeks gestation. Eye 1995;9(Suppl):26-30. 23. Robinson R, O'Keefe M. Follow-up study on premature infants with and without retinopathy of prematurity. Br J Ophthalmol 1993;77:91-4. 24. McGinnity FG, Bryars JH. Controlled study of ocular morbidity in school children born preterm. Br J Ophthalmol 1992;76:520-4. 25. Asferaw M, Woodruff G, Gilbert C. Causes of severe visual impairment and blindness in students in schools for the blind in Northwest Ethiopia. BMJ Glob Health. 2017;2(2):e000264. 26. Kello AB, Gilbert C. Causes of severe visual impairment and blindness in children in schools for the blind in Ethiopia. Br J Ophthalmol. 2003;87(5):526-30. 27. Muhe, L.M., McClure, E.M., Mekasha, A. et al. A Prospective Study of Causes of Illness and Death in Preterm Infants in Ethiopia: The SIP Study Protocol. Reprod Health 15, 116 (2018). https://doi.org/10.1186/s12978-018-0555-y.

28. Karl S. Connie SN, Wai Suen et al. 2015. Preterm or Not – An Evaluation of Estimates of Gestational Age in a Cohort ofWomen from Rural Papua New Guinea. PLOSONE |DOI:10.1371/journal.pone.0124286 May6, 2015.

29. Rosenberg RE, Nawshad ASM, Ahmed U. et al 2009. Determining Gestational Age in a Low-resource Setting: Validity of Last Menstrual Period. J HEALTH POPUL NUTR 2009 Jun;27(3):332-338.

30. Bach M, Kommerell G. Determining visual acuity using European normal values: scientific principles and possibilities for automatic measurement. Klin

Monatsbl Augenheilkd. 1998;212(4):190–5.

31. Hosmer DW, Lemesbow S. Goodness of fit tests for the multiple logistic regression model. Communications in statistics-Theory and Methods. 1980 Jan 1;9(10):1043-69.

32. Hug L, Alexander M, You D, Alkema L. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis. The Lancet Global Health. 2019 Jun 1;7(6):e710-20.

33. UNICEF. Investing in Survival: Enhancing the Neonatal Intensive Care Unit of Yekatit 12 Hospital: A Final Report for UNICEF's Next Generation; 2013 file.

https://www.unicefusa.org/sites/default/files/Ethiopia%20Report.pdf. Accessed January 2023.

34. Ministry of Health-Ethiopia. Health Sector Transformation Plan-II. 2021.

https://www.globalfinancingfacility.org/ethiopia-health-sector-transformation-plan-201920-

202425. Accessed January 2023.

35. Sherief ST, Taye K, Teshome T, Demtse A, Gilbert C. Retinopathy of prematurity among infants admitted to two neonatal intensive care units in Ethiopia. BMJ Open Ophthalmology. 2023 Jul 1;8(1):e001257.

36. O'Connor A, Fielder AR. Long term ophthalmic sequelae of prematurity. Early human development. 2008 Feb 1;84(2):101-6.

37. Özdemir M, Koylu S. Ocular growth and morbidity in preterm children without retinopathy of prematurity. Japanese journal of ophthalmology. 2009 Nov;53:623-8.

38. Ricci B. Refractive errors and ocular motility disorders in preterm babies with and without retinopathy of prematurity. Ophthalmologica. 1999 Oct 1;213(5):295-9.

39. Hellgren KM, Tornqvist K, Jakobsson PG, Lundgren P, Carlsson B, Källén K, Serenius F, Hellström A, Holmström G. Ophthalmologic outcome of extremely preterm infants at 6.5 years

1
2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
19
20
12 13 14 15 16 17 18 19 20 21
22 23
24 25 26 27 28 29 30
25
26
20
27
20
29
30
31
32
33
34
34 35 36 37 38
36
37
38
39
40
41
42
43
43 44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
50 59
72

of age: Extremely Preterm Infants in Sweden Study (EXPRESS). JAMA ophthalmology. 2016 May 1;134(5):555-62.

40. Haugen OH, Nepstad L, Standal OA, Elgen I, Markestad T. Visual function in 6 to 7 year-old children born extremely preterm: a population-based study. Acta ophthalmologica. 2012 Aug;90(5):422-7.

41. O'Connor AR, Stephenson TJ, Johnson A, Tobin MJ, Ratib S, Fielder AR. Change of refractive state and eye size in children of birth weight less than 1701 g. British journal of ophthalmology. 2006 Apr 1;90(4):456-60.

42. Sathar A, Abbas S, Nujum ZT, Benson JL, Sreedevi GP, Saraswathyamma SK. Visual outcome of preterm infants screened in a tertiary care hospital. Middle East African Journal of Ophthalmology. 2019 Jul;26(3):158.

43. O'Connor AR, Wilson CM, Fielder AR. Ophthalmological problems associated with preterm birth. Eye. 2007 Oct;21(10):1254-60.

44. Theng JT, Wong TY, Ling Y. Refractive errors and strabismus in premature Asian infants with and without retinopathy of prematurity. Singap Med J 2000;41:393–7.

45. Hebbandi SB, Bowen JR, Hipwell GC, Ma PJ, Leslie GI, Arnold JD. Ocular sequelae in extremely premature infants at 5 years of age. Journal of paediatrics and child health. 1997 Aug;33(4):339-42.

46. Marlow N,Wolke D, BracewellMA, SamaraM; EPICure Study Group. Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med. 2005;352(1):9-19.

47. Fieß A, Kölb-Keerl R, Schuster AK, Knuf M, Kirchhof B, Muether PS, Bauer J. Prevalence and associated factors of strabismus in former preterm and full-term infants between 4 and 10 Years of age. BMC ophthalmology. 2017 Dec;17(1):1-9.

48.VanderVeen DK, Bremer DL, Fellows RR, Hardy RJ, Neely DE, Palmer EA, Rogers DL, Tung B, Good WV, Early Treatment for Retinopathy of Prematurity Cooperative G. Prevalence and course of strabismus through age 6 years in participants of the early treatment for retinopathy of prematurity randomized trial. J AAPOS. 2011;15(6):536–40.

49. Fajolu IB, Rotimi-Samuel A, Aribaba OT, et al. Retinopathy of prematurity and associated factors in Lagos, Nigeria. Paediatr Int Child Health. 2015;35(4):324-8.

50. Omer IM, Hassan HA. The prevalence and risk factors of retinopathy of prematurity among preterm babies admitted to Soba Neonatal Intensive Care Unit. Sudan J Paed. 2014;14(2):17.

51. Wanjala I ID, Kariuki L. Retinopathy of Prematurity as seen in two major hospitals in Nairobi, Kenya. East Afr J Ophthalmol. 2007 May;13(1):5-14.

52. Birch EE, O'Connor AR. Preterm birth and visual development. InSeminars in Neonatology 2001 Dec 1 (Vol. 6, No. 6, pp. 487-497). WB Saunders.

μ.497).
Broomhall J,
and without major 0.
μ.
γ.
Prevalence and risk factors of an.
ation. Medicina. 2018 Mar 20;54(1):6. 53. Dowdeswell HJ, Slater AM, Broomhall J, Tripp J. Visual defi cits in children born at less than 32 weeks gestation with and without major ocular pathology and cerebral damage. Br J Ophthalmol 1995;79:447-452.

54. Mocanu V, Horhat R. Prevalence and risk factors of amblyopia among refractive errors in an Eastern European population. Medicina. 2018 Mar 20;54(1):6.

TABLE LEGEND

Table 1 Characteristics of premature children and mothers screened for ocular disorders

Table 2. Types of ocular disorders among premature children screened

 Table 3. Ocular disorders by sex, gestational age, and birthweight among premature children screened for ocular disorders

Table 4. The presence of visual impairment by types of ocular disorders among premature children screened for ocular disorders.