

Supplementary Fig.1 I Quantification of SV-MR spectra obtained in posterior cingulate with single-voxel proton MRS. Bar diagrams demonstrate means (errors bars represent standard error of the mean) of concentration comparisons quantified from the first and last time-point spectra following ²H-Glc and ¹H-Glc administration for 5 healthy volunteers. Peaks that originated from the specific carbon position undergoing deuteration, namely, the 6th carbon position for Glc (Glc₆) the 4th carbon position for Glu (Glu₄) and Gln (Gln₄) and the 2nd carbon position for GABA (GABA₂), were separated. Concentrations were compared with a standard, two-tailed, paired t-test between the first and last time-point within the ²H-Glc and ¹H-Glc sessions. Concentration differences in Glc₆ (p = 0.0086), Gln₄ (p = 0.0029) and Glu₄ (p = 0.0003, no correction for multiple comparisons) appeared significant and reflect continuous concentration decrease over time, whereas all other metabolites were stable.

Supplementary Fig. 2 I Glycemia (panel A) and the separated glucose spectra components Glc_{1-5+Tau} (panel B) and Glc₆ (panel C) measured in the brain. The values were measured in the session #2, after ²H-Glc oral administration in 5 volunteers. The glycemic time-course reflects prolonged mild hyperglycemia as expected after oral administration of glucose load. While the Glc₁₋₅ is the non-deuterated part of the glucose molecule and according to LCModel strongly correlates with Tau, Glc₆ stands for the deuterated part of Glc and could be analyzed separately. Glc₆ time-course shows decrease reflecting the continuous ²H-Glc supply into the brain.

Supplementary Fig. 3 I Linear fits of time-courses measured in 5 subjects in 3 sessions. While session number #1 and #2 were measured after oral administration of deuterated glucose, the session number #3 was conducted as a control experiment after administration of normal dextrose (non-deuterated Glc). Data were fitted with linear regression. The significance of the slopes was assessed by two-tailed test. P-values were not corrected for multiple comparisons.

Supplementary Fig. 4 I Example of spectra time-series obtained from one individual in the white matter, in the posterior cingulate and precentral gyrus using 3D-¹H-MRSI.

Supplementary Fig. 5 I Repeatability of ¹**H-MRSI fits.** The time-courses from averaged regional maps were linearly fitted. The session #1 and #2 were scanned after 2H-Glc ingestion, data in session #3 were acquired after 1H-Glc ingestion as a control condition.

	Posterior cingulum						Whole gray matter						Whole white matter					
Metabolite	conc.	CV	CV ∆conc.		Δcor		conc.	CV	∆conc.		∆conc.		conc.	CV	∆conc.		Δconc.	
	(mean±SD)	(mean±SD)	(mean±SD)	p-value	(mean±SD)	p-value	(mean±SD)	(mean±SD)	(mean±SD)	p-value	(mean±SD)	p-value	(mean±SD)	(mean±SD)	(mean±SD)	p-value	(mean±SD)	p-value
	(/tCr)	(%)	(%)		(%)		(/tCr)	(%)	(%)		(%)		(/tCr)	(%)	(%)		(%)	
Asp	1.29±0.23	15.0±6.2	19.4±27.6	0.2002	17.1±18.0	0.11	0.44 ± 0.02	6.2 ± 8.0	-5.9±6.4	0.107	$-3.4{\pm}1.8$	0.01	0.47 ± 0.03	3.9±2.4	1.6±1.5	0.0848	-2.3±4.7	0.36
GABA	—	_	_	-	—	_	0.23±0.02	2.9±1.7	-3.0 ± 4.4	0.215	-5.1±7.4	0.20	$0.23 {\pm} 0.01$	2.8±1.1	-2.2 ± 4.8	0.3675	-3.9 ± 7.1	0.26
GABA ₂	1.15±0.25	9.8±1.9	11.9±21.4	0.1909	-3.6 ± 15.6	0.60	_	-	_	-	-	_	_	-	-	-	_	-
GABA ₃₊₄	2.38±0.43	14.1±7.5	-2.9±16.8	0.5735	-6.1±19.7	0.44	-		_	-	-	_	-		-	-	-	-
Glc ₁₋₅ +Tau	2.32±0.28	12±4.3	-1.3 ± 11.8	0.8136	9.2±17.4	0.22	_	-	_	-	-	_	1	-	_	-	-	_
Glc ₁₋₅	1.06±0.23	23.9±9.6	1.0±24.4	0.8801	16.8±34.4	0.22	-		_	-	-	_	-		-	-	-	-
Glc ₆	3.37±0.21	8.2±4.3	21.8±10.3	0.0086*	4.5±10.8	0.38												
Gln	-		-	-	_	I	0.30±0.03	6.3±4.1	-4.8 ± 7.9	0.288	-3.1 ± 8.5	0.46	0.30 ± 0.02	5.5±3.1	0.3±6.2	0.8439	-9.4 ± 8.8	0.07
Gln ₂₊₃	-	-	_	-	_	1	_	-	_	-	-	_	1	-	_	-	-	_
Gln₄	2.60±0.31	4.5±1.6	14.4±3.7	0.0029*	2.4±4.4	0.25	_	-	_	_	_	_	_	_	_	_	_	_
Glu ₂₊₃	_	_	_	_	_	-	0.72 ± 0.04	2.3±2.6	-5.1±2.6	0.012	-4.2±6.7	0.23	0.71±0.02	2.7±2.7	-5.1±2.3	0.0068	-3.9 ± 6.8	0.28
Glu₄	7.67±0.22	1.4±0.1	14.9±2.8	0.0003*	-0.8 ± 2.2	0.49	0.54 ± 0.04	1.7±1.8	13.4±3.5	0.001*	-0.7 ± 1.3	0.35	0.50 ± 0.03	1.6±1.5	14.0±2.9	0.0007*	-2.4 ± 3.8	0.24
Glx ₂₊₃	13.26 ± 0.57	1.1±0.1	-3.4 ± 3.0	0.0651	-0.5 ± 0.7	0.19	_	-	_	-	-	_	_	-	-	-	_	-
GPC	0.76±0.09	4.3±1.0	1.9±3.8	0.3373	-2.4 ± 4.0	0.30	_	-	_	-	-	_	1	-	_	-	-	_
GSH	0.74 ± 0.11	8.0±4.4	4.8±7.7	0.2804	0.3±10.0	0.85	_	-	_	-	-	_	_	-	-	-	_	_
myo-Ins	5.60±0.27	1.0±0.2	-0.2 ± 1.6	0.7935	-0.8 ± 1.1	0.20	0.82 ± 0.05	2.3±0.9	-0.1 ± 2.7	0.931	-0.6 ± 2.7	0.65	$0.84{\pm}0.07$	2.2±0.6	-0.4 ± 2.6	0.7662	-0.7 ± 3.8	0.74
Lac	0.61±0.27	23.0±23.2	-11.1±24.7	0.3110	-18.6 ± 54.1	0.95	_	-	_	_	_	_	-	-	_	_	_	_
NAA	9.72±0.38	1.1±0.7	-1.6±2.3	0.1861	-0.2 ± 0.7	0.55	-		_	-	-	_	-		-	-	-	-
NAAG	0.70±0.15	8.2±3.2	8.8±7.4	0.0527	-2.7 ± 5.8	0.34	-	-	-	-	-	_	_	-	-	-	_	-
PCh	0.28 ± 0.04	12.0±3.5	-9.1±8.1	0.0676	-0.6±19.0	0.86	-	_	-	-	-	_	-	-	-	-	-	_
PE	2.55±0.24	3.6±1.2	5.2±7.8	0.2085	0.4±6.8	0.82	_	-	_	_	_	_	-	-	_	_	_	_
scyllo-Ins	0.10±0.05	12.7±6.3	2.4±14.1	0.6303	1.4±18.6	0.54	_	I	_	_	_	_	_	I	_	_	_	_
Tau	1.26±0.15	3.9±0.3	-3.5 ± 5.6	0.2474	2.1±4.0	0.26	0.35±0.02	4.2±1.2	-5.9 ± 5.6	0.077	-1.2±6.2	0.69	0.38 ± 0.03	3.6±1.5	-3.4±9.7	0.4758	-3.0 ± 7.2	0.39
tCh	1.04±0.06	1.8±0.6	-1.0±4.5	0.6782	-1.2±3.9	0.53	0.33±0.02	0.9±0.8	-2.3 ± 1.8	0.050	-0.5 ± 1.9	0.60	0.35±0.23	1.0±0.6	-1.7 ± 1.8	0.1051	-0.9 ± 2.1	0.43
tCr	6.28±0.12	1.3±0.5	-1.3±2.4	0.2870	-1.8±1.5	0.05	1.00±0.00	_	_	_	-	_	1.00 ± 0.00	_	-	_	_	-
tNAA	10.42±0.49	1.2±0.7	-1.0 ± 2.3	0.4015	-0.3±0.5	0.19	1.47±0.08	1.9 ± 2.5	1.1±3.9	0.575	-1.2 ± 2.2	0.30	1.59±0.06	1.7±2.2	1.4±3.2	0.4114	-0.3 ± 2.1	0.78

Supplementary Table 1 I Metabolite concentration estimates, stability, and temporal changes with and without deuterated glucose all healthy volunteers (N = 5). Data are calculated from concentrations quantified in μ mol/g for single-voxel ¹H-MRS and referenced to total creatine (tCr) for 3D-¹H-MRSI. The regional means from the gray and white matter voxels were used to calculate between-subject averages in metabolite concentrations. The average concentrations and their respective coefficients of variations were measured immediately after ¹H-Glc administration (the first time-point). The within-session differences were calculated by subtracting the concentrations of the first and last data point, and their statistical significance was assessed via a standard, two-tailed, paired t-test (separately for ²H-Glc and ¹H-Glc scans). The asterisks indicate statistical significance after correction for multiple comparisons with the false discovery rate method, which limited the likelihood of false positives to 7% (single-voxel data) and 3% (MRSI data).