
 
 

1 
 

Supplemental Material for  
 
Predictability of cortico-cortical connections in the mammalian 
brain  
 
 
Ferenc Molnár, Szabolcs Horvát, Ana R. Ribeiro Gomes, Jorge Martinez Armas, Botond Molnár 
Maria Ercsey-Ravasz, Kenneth Knoblauch, Henry Kennedy, Zoltan Toroczkai* 
 
*Corresponding author: Zoltan Toroczkai  
Email:  toro@nd.edu 
 
 
This PDF file includes: 
 

Figures S1 to S14 
Tables S1 to S3  
SI References  
 
 

Supplemental data files (downloadable, see descriptions in this file): 
 

• all_weighted_macaque_data.csv 
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• Mouse_Database_RF_FIN_unnormalized.csv 

 
 
 
 
 
 
 
 
 
  



 
 

2 
 

Supplementary Figures 
 

 
 
Fig. S1 ROC curves for binary link prediction with various ML features in the macaque, using 
the KNN classifier. Using 3-fold cross-validation, averaged over 100 samples. 
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Fig. S2 ROC curves for binary link prediction with various ML features in the macaque, 
using the MLP classifier. Using 3-fold cross-validation, averaged over 100 samples. 
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Fig. S3 ROC curves for binary link prediction with various ML features in the macaque, using 
the RF classifier. Using 3-fold cross-validation, averaged over 100 samples. 
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Fig. S4 ROC curves for binary link prediction with various ML features in the macaque, using 
the GB classifier. Using 3-fold cross-validation, averaged over 100 samples. 
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Fig. S5 ROC curves for binary link prediction in the macaque, using only the distance feature 
and both ML and CL algorithms. 3-fold cross-validation, averaged over 100 samples. 
  



 
 

7 
 

 

Fig. S6 Testing overfitting of the MLP predictor against the number of nodes in the hidden 
layer based on the macaque dataset. Accuracy on both the training set (dashed lines) and on 
the test set (continuous lines) as function of the hidden layer neuron count N, and as function of 
the organization of the hidden neurons into 1 (blue), 2 (orange and green) and 3 (red) layers. One 
can see that the internal organization does not significantly affect the performance, with the single 
layer doing slightly better than the multi-layer structure. This is a known fact in the machine learning 
community, namely, that true deep layered networks are not needed for small datasets.  
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Fig. S7 Testing overfitting of the MLP predictor against the number of training epochs, 
macaque dataset. Another key test to do for testing overfitting is to test against the number of 
training epochs. Repeatedly training the network on the same data too many times also starts fitting 
the noise. This can be well seen in this figure. The gray curves indicate the test set accuracy of 
individual training runs; the orange curve shows their average. It shows that going beyond about 
20 training epochs we start losing performance on the test set, while of course continuing to 
increase accuracy on the training set, because we are training to noise after that point.  Thus, we 
choose 20 training epochs, to avoid this sort of overfitting. 
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Fig. S8 ROC curves for binary link prediction using various fold sizes in k-fold cross-
validation. As one can see, 𝒌 = 𝟑 is already sufficient for achieving a close-to-the-best 
performance. Selecting higher 𝒌 value, however, decreases the size of the dataset within a fold 
and increases uncertainty. Throughout we choose to work with 𝒌 = 𝟑. Using the fln-plus-distance 
feature, averaged over 100 samples. 
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Fig. S9 ROC curves for binary link prediction in the mouse. These are based on ML (continuous 
lines) and CL (dashed lines) algorithms. 3-fold cross-validation, averaged over 100 samples. 
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Fig. S10 ROC curves for binary link prediction after learning only within one weight class. 
The training set for each panel has been filtered to contain only links within that weight class (see 
main text for the definition of weight classes), before training. We then use the trained models to 
predict the existence of links in the test set irrespective of their weight class.  
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Fig. S11 Residuals analysis for the Gradient Boosting (GB) algorithm in cross-validation 
predictions. Macaque dataset. Based on the fln-plus-distance feature, 3-folded cross-validation, 
100 samples. Residual: 𝑌!"#$(𝑖) − 𝑌%"$&(𝑖), or prediction error, for link 𝑖. Relative prediction error is 
)𝑌!"#$(𝑖) − 𝑌%"$&(𝑖))/𝑌!"#$(𝑖) where 𝑌!"#$(𝑖) is the true link weight in the data. Predictions are done 
on the dataset with no-links excluded (so all 𝑌!"#$(𝑖) values are non-zero). Standardized error = 
+𝑌!"#$(𝑖) − 𝑌%"$&(𝑖), /𝑠𝑡𝑑_𝑑𝑒𝑣. (A), (B) relative prediction errors (relative absolute residuals) as 
function of true weights and as function of distance. (C) shows the standardized residuals as 
function of predicted values. If the points scatter roughly symmetrically around zero along the y-
axis, the model is good, most of the pattern/signal has been learned from the data. 
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Fig. S12 Scaling of the external prediction errors. Here we consider a random subset of 𝑚 
areas from all the targets and instead of leaving an area out of the selected 𝑚 (as for the case of 
internal errors shown in Figure 7 of the main text) we train the predictors based on all the data from 
the 𝑚 targets to make a prediction for the out-links of all the others, complementary to 𝑚 in the total 
set of targets (i.e., 29 −𝑚 for the macaque and 19 −𝑚 for the mouse). These predictions are 
compared to ground truth and the errors averaged over 500 random target set selections in the 
same way. We call these the external relative prediction errors. Although they look similar to the 
internal errors shown in Figure 7 of the main text, the values are somewhat different. 
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Fig. S13. ROC curves by link weight classes in macaque. (A) Is Fig 4 of the main text. (B) 
Shows the performance of the algorithms on the randomly rewired network, called the 
configurational model. (C) An example for a weighted network in which the predictability by weight 
class is flipped: now the weak and medium-weak links are more predictable. In (C) the Jaccard CL 
algorithm consistently makes the worst predictions because the rule in which it is based on (it is a 
pre-conceived model based predictor) is no longer valid for this (artificial) distribution of link weights. 
 

Original network Configurational networkA B C Flipped predictability network
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Fig. S14 ROC curves for binary link prediction in EDR networks. These are based on the 
distance matrix of the macaque, and 𝜆 = 0.19	𝑚𝑚'( (Ercsey-Ravasz et al., 2013). Using 3-fold 
cross validation, averaged over 100 samples. 
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Supplementary Tables 
 
Table S1. Abbreviations, area names and region assignments for the macaque. 

Abbreviation Area name Region 
1 Somatosensory area 1 Parietal 
10 Area 10 Prefrontal 
11 Area 11 Prefrontal 
12 Area 12 Prefrontal 
13 Area 13 Prefrontal 
14 Area 14 Prefrontal 
2 Somatosensory area 2 Parietal 
23 Area 23 Cingulate 
24a Area 24, part a Cingulate 
24b Area 24, part b Cingulate 
24c Area 24, part c Cingulate 
24d Area 24, part d Cingulate 
25 Area 25 Cingulate 
29/30 Areas 29 and 30 of the retrosplenial cortex Cingulate 
3 Somatosensory area 3 (includes the primary somatosensory cortex) Parietal 
31 Area 31 Cingulate 
32 Area 32 Cingulate 
35/36 Areas 35 and 36 of the perirhinal cortex Temporal 
44 Area 44 Prefrontal 
45A Area 45A Prefrontal 
45B Area 45B Prefrontal 
46d Area 46, dorsal part Prefrontal 
46v Area 46, ventral part Prefrontal 
5 Somatosensory area 5 Parietal 
7A Area 7A  Parietal 
7B Area 7B Parietal 
7m Area 7m Parietal 
7op Area 7op Parietal 
8B Area 8B Prefrontal 
8l Area 8l Prefrontal 
8m Area 8m Prefrontal 
8r Area 8r Prefrontal 
9 Area 9 Prefrontal 
9/46d Area 9/46d Prefrontal 
9/46v Area 9/46v Prefrontal 
AIP Anterior intraparietal area Parietal 
Core Auditory core (includes the primary auditory cortex) Temporal 
DP Dorsal prelunate area Parietal 
Ento Entorhinal cortex Temporal 
F1 Frontal area F1 (primary motor cortex) Frontal 
F2 Frontal area F2 Frontal 
F3 Frontal area F3 Frontal 
F4 Frontal area F4 Frontal 
F5 Frontal area F5 Frontal 
F6 Frontal area F6 Frontal 
F7 Frontal area F7 Frontal 
FST Fundus of the superior temporal sulcus Temporal 
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Gu Gustatory cortex Frontal 
Ins Insular cortex Parietal 
IPa Intraparietal sulcus associated area in the superior temporal sulcus Temporal 
LB Belt region of the auditory cortex, lateral part Temporal 
LIP Lateral intraparietal area Parietal 
MB Belt region of the auditory cortex, medial part Temporal 
MIP Medial intraparietal area Parietal 
MST Medial superior temporal area Temporal 
MT Middle temporal area Temporal 
OPAl Orbital periallocortex Prefrontal 
OPro Orbital proisocortex Prefrontal 
Pi Parainsular cortex Parietal 
PBc Parabelt region of the auditory cortex, caudal part Temporal 
PBr Parabelt region of the auditory cortex, rostral part Temporal 
PGa PG associated area of the superior temporal sulcus Temporal 
PIP Posterior intaparietal area Parietal 
Pir Piriform cortex Temporal 
ProM Area ProM (promotor)  Frontal 
ProSt Prostriata Temporal 
SII Secondary somatosensory area  Parietal 
STPc Superior temporal polysensory area, caudal part Temporal 
STPi Superior temporal polysensory area, intermediate part Temporal 
STPr Superior temporal polysensory area, rostral part Temporal 
Sub Subicular complex Temporal 
TEad Anterior TE, dorsal part Temporal 
TEa/m a Superior temporal sulcus ventral bank area, anterior part Temporal 
TEa/m p Superior temporal sulcus ventral bank area, posterior part Temporal 
TEav Anterior TE, ventral part Temporal 
TEO Temporal area TE, occipital part  Occipital 
TEOm Temporal area TE, occipitomedial part Temporal 
TEpd Posterior TE, dorsal part Temporal 
TEpv Posterior TE, ventral part Temporal 
TH/TF Areas TH and TF of the parahippocampal cortex Temporal 
Temp.Pole Temporal pole Temporal 
TPt Temporoparietal area  Temporal 
V1 Visual area 1 (primary visual cortex) Occipital 
V2 Visual area 2 Occipital 
V3 Visual area 3 Occipital 
V3A Visual area 3, part A Occipital 
V4 Visual area 4 Occipital 
V4t Visual area 4, transitional part Temporal 
V6 Visual area 6 Parietal 
V6A Visual area 6A Parietal 
VIP Ventral intraparietal sulcal area Parietal 
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Table S2. Abbreviations, area names and region assignments for the mouse. 
Abbreviation Area name Region 
A Anterior area Occipital 
ACAd Anterior cingulate area, dorsal part Cingulate 
ACAv Anterior cingulate area, ventral part Cingulate 
AId Agranular insular area, dorsal part Insular 
AIp Agranular insular area, posterior part Insular 
AIv Agranular insular area, ventral part Insular 
AL Anterolateral area Occipital 
AM Anteromedial area Occipital 
AUDd Auditory cortex, dorsal area Temporal 
AUDp Auditory cortex, primary area Temporal 
AUDpo Auditory cortex, posterior area Temporal 
AUDv Auditory cortex, ventral area Temporal 
DP Dorsal posterior area (also known as PD) Temporal 
ECT Ectorhinal area (also referred to as area 36) Temporal 
FRP Frontal pole Frontal 
GU Gustatory area Insular 
ILA Infralimbic area Frontal 
LI Laterointermediate area Occipital 
LLA Laterolateral anterior area Occipital 
LM Lateromedial area Occipital 
MM Mediomedial area Cingulate 
MOp Motor cortex primary Frontal 
MOs Motor cortex secondary Frontal 
ORBl Orbitofrontal area, lateral part Frontal 
ORBm Orbitofrontal area, medial part Frontal 
P Posterior area Occipital 
PERI Perirhinal area (also referred to as area 35) Temporal 
PL Prelimbic area Frontal 
PM Posteromedial area Occipital 
POR Postrhinal area Occipital 
PORa Postrhinal anterior Occipital 
RL Rostrolateral area Occipital 
RSPagl Retrosplenial area, agranular part Cingulate 
RSPd Retrosplenial area, dorsal part Cingulate 
RSPv Retrosplenial area, ventral part Cingulate 
SSp-bfd Somatosensory cortex primary, barrel field Parietal 
SSp-lj Somatosensory cortex primary, lower jaw Parietal 
SSp-ll Somatosensory cortex primary, lower limb Parietal 
SSp-nm Somatosensory cortex primary, nose and mouth Parietal 
SSp-tr Somatosensory cortex primary, trunk Parietal 
SSp-ul Somatosensory cortex primary, upper limb Parietal 
SSp-un Somatosensory cortex primary (unassigned) Parietal 
SSs Somatosensory cortex, secondary Parietal 
TEa Temporal area, anterior part Temporal 
TEp Temporal area, posterior part Temporal 
V1 Primary visual area Occipital 
VISC Visceral area Insular 

 



 
 

19 
 

Table S3. Prediction errors by link weight based only on existing links (w > 0). Definitions are 
the same as in Table 1 of the main text.  Since the non-links are excluded from the data, the 
predictors can only predict actual links (cannot predict non-links). Notice, the errors in general are 
somewhat smaller than in the case when we include the non-links as well.  
 
Non-links excluded Macaque Mouse Mac/Mus 

MAE RMAE MAE RMAE RMAE ratio 
Weak (𝒘𝒄𝒖𝒕 < 𝒘 < 𝟑) 0.970 0.439 1.029 0.449 0.977 
Weak-&-Medium (𝒘𝒄𝒖𝒕 < 𝒘 < 𝟓) 0.787 0.268 0.637 0.194 1.383 
Medium-&-Strong (𝒘 > 𝟑) 0.783 0.174 0.555 0.124 1.404 
Strong (𝒘 > 𝟓) 1.005 0.178 0.562 0.101 1.769 
All links (𝒘 > 𝒘𝒄𝒖𝒕) 0.835 0.248 0.613 0.164 1.511 

 
 
 

Supplementary data files (downloadable) 
 
all_weighted_macaque_data.csv :  

 Contains all weighted data for the macaque for 29 area injections, including the ground 
truth 𝐹𝐿𝑁,-, 𝑤,- = 7 + log(.H𝐹𝐿𝑁,-I and predicted 𝑤,--s and corresponding relative mean absolute 
errors (RMAE). 

all_weighted_mouse_data.csv :  

 Contains all weighted data for the mouse for 19 area injections, including the ground truth 
𝐹𝐿𝑁,-, 𝑤,- = 7 + log(.H𝐹𝐿𝑁,-I and predicted 𝑤,--s and corresponding relative mean absolute 
errors (RMAE).  

distances_macaque.csv :  

 Contains all macaque interareal distances in mm-s (91 × 91 values). 

distances_mouse.csv :  

 Contains all mouse interareal distances in mm-s (47 × 47 values). 

 

 

Full Interareal Networks (FIN) 
Starting from the 29x91 weighted data matrix for the macaque and the 19x47 data matrix for the 
mouse, weighted FINs were imputed both for macaque (91x91 matrix) and mouse (47x47 matrix) 
using GB and RF, respectively. Note, in the experimentally obtained data files (29x91 for macaque 
and 19x47 for mouse) the FLN values are normalized around every target (label counts in a source 
area divided by the sum of all label counts in all areas extrinsic to the target, for that target injection), 
because label counts in the target areas themselves are not available. Thus, in the data matrices 
(29x91 mac and 19x47 mus), all rows add up to one. However, this is not a hard constraint for the 
prediction algorithms and thus in the FINs the row sums are no longer unity. They can be 
normalized, if the reader wishes to do so, we are including the output of the prediction algorithms 
as they are generated. 

 
Macaque_29x91_Arithmean_DBV23.45_GB_FIN_unnormalized.csv  

macaque FIN imputed with GB. 
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Mouse_Database_GB_FIN_unnormalized.csv  

mouse FIN imputed with GB. 
Macaque_29x91_Arithmean_DBV23.45_RF_FIN_unnormalized.csv  

macaque FIN imputed with RF. 
Mouse_Database_RF_FIN_unnormalized.csv  

mouse FIN imputed with GB. 
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