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Supporting Information Text13

1. Data pre-processing and code availability14

Code and data availability. All codes and references to data are available on github through:15

https://github.com/StatPhysBio/protein_holography.16

17

Processing of the protein structure data. We minimally process the protein structures from the Protein Data Bank (PDB) (1). We use18

PyRosetta (2) to infer coordinates of hydrogen atoms in the protein structure. We also use PyRosetta to assign solvent accessible surface area19

(SASA) and partial charge to all atoms.20

21

Constructing the training, the validation, and the test sets for protein neighborhood classifications. We classified amino acid neigh-22

borhoods extracted from the tertiary protein structures from the PDB. We used ProteinNet’s splittings for training and validation sets of23

the CASP12 competition to avoid redundancy due to similarities in homologous protein domains (3). Since PDB identifiers in ProteinNet24

were only provided for the training and the validation sets, we used ProteinNet’s training set as the base of both our training and validation25

and ProteinNet’s validation set as our testing set. Specifically, to define our training and validation sets, we make a [80%, 20%] split in the26

ProteinNet’s training data of proteins with X-ray crystallography structures of 2.5Å resolution or better. Furthermore, in anticipation of27

validating our model on experimental stabilities of T4 Lysozyme and SARS-CoV2 receptor-binding domain (RBD), we removed all structures28

that shared the same UniProtKB accession as the domains from each of these proteins. We used all of ProteinNet’s validation structures as our29

testing set.30

ProteinNet has divided the testing set into subsets depending on sequence similarity to the entire set of protein sequences that were used for31

the different thinnings of training sets. We evaluated the model’s accuracy on each of these subsets to examine how sequence similarity affects32

the model’s performance. For slicing with sequence identity > 10%, H-CNN performance is insensitive to exact splitting of sequences in33

training and test sets (Fig. S5C), irrespective of the amplitude of the noise injected in the coordinated of the atoms in the training and test34

sets. We used ProteinNet’s 30% splitting to have less chance of evolutionary redundancy in our training set. This splitting resulted in 10,95735

training structures, 2,730 validation structures, and 212 testing structures, each of which contained 2,810,503 training neighborhoods, 682,68936

validation neighborhoods, and 4,472 testing neighborhoods.37

In addition to ProteinNet, we also used ProteinMPNN’s CATH-based splitting of the PDB (4). Specifically, ProteinMPNN assigns PDB38

structures to clusters based on structural similarity. We used a 80/10/10 train/val/test split of these clusters and took one representative structure39

per cluster at random. This splitting resulted in 14,052 training structures, 1,754 validation structures, and 1,756 testing structures. All residues40

in each structure were used in each set resulting in 3,331,033 training neighborhoods, 421,578 validation neighborhoods, and 415,360 testing41

neighborhoods.42

43

Noising of training and testing structures. Noised neighborhoods were generated by adding Gaussian noise ε ∼ N (0, σ2) where the44

standard deviation was fixed across a given noised ensemble. The channel information including SASA and charge were taken directly from45

the un-noised structure. We evaluated the accuracy of models trained on un-noised data in predicting amino acid identities in noised test sets.46

The range of noise levels for these test sets were chosen as σ ∈ {0.001, 0.01, 0.03, 0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. We also47

trained models on noised structures and evaluated their accuracies on noised and un-noised test sets. The range of noise levels for these training48

sets were chosen as σ ∈ {0.02, 0.1, 0.3, 0.5}.49

50

Data processing to assess the stability effect of mutations in the T4 Lysozyme protein. Predictions for the stability effect of mutations in the51

T4 Lysozyme protein were made using the PDB structure 2LZM (5) as the wild-type. The PDB identifiers for structures of all the T4 Lysozyme52

variants used in our analyses (shown in Figs. 4 and S10) along with the reported ∆∆G and the pH values of the stability measurements are53

reported in Table S2.54

Experimental measurements of ∆∆G values in variants for which we do not have a matching protein structure (shown in Fig. S9) are taken55

from the dataset FireProtDB (6).56

The AlphaFold prediction of the T4 Lysozyme protein structure, used in Fig. 4C and S9, was performed using the AlphaFold GoogleColab57

notebook (7).58

Relaxation of mutant T4 Lysozyme structures for the in silico model in Figs. 4B,C and S10, was done using PyRosetta FastRelax with59

the score function ref2015_cart (2). Backbone flexible positions were restricted to the mutated residue and the neighboring residues in60

the sequence. Side-chain flexible positions were restricted to the neighbors with alpha carbons within 10 Å of the mutated residue’s alpha carbon.61

62

Data processing to assess the fitness effect of mutations in the RBD of SARS-CoV-2. Deep mutational scanning experiments from ref. (8)63

were used to obtain the SARS-CoV-2 RBD expression and binding to the ACE2 receptor. Predictions of the RBD-ACE2 binding strength,64

shown in Fig. 5B, were made using the co-crystallized protein structure with the PDB identifier 6M0J (9). The predictions for the RBD65

stability, shown in Fig. 5A, were made using the 6M0J structure with the ACE2 chain computationally removed. This computational removal66

was performed by selecting the RBD structure in PyMol (10) and exporting a PDB file from said selection.67

68

Data processing to assess the effect of shearing in Protein G. To analyze the effect of shearing in protein G, shown in Figs. 3 and S8, we69

used the native structure of protein G with the PDB identifier 1PGA (11). Sheared structures were produced with PyRosetta by manually70

editing the backbone angles φ and ψ of each residue (Fig. 3A) via Pose.set_phi and Pose.set_psi (2).71
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2. Rotationally equivariant structure-to-function map for proteins72

The tertiary protein structure is a result of a folding process whereby amino acid side-chains interact with each other and the backbone structure73

to form the three-dimensional (3D) shape of the protein. The favorability of a certain amino acid occurring at a given site in a protein is74

determined by numerous factors: the presence of this amino acid during translation, the ability of the polypeptide chain to fold with that amino75

acid present, the amino acid’s interactions with the local structural surroundings of the protein, and the amino acid’s interactions with the76

surrounding environment. Our work focuses on revealing the third factor’s contribution. Specifically, we aim to learn how a micro-environment77

in a protein’s tertiary structure (i.e., atoms in a given structural neighborhood) constrain the usage of different amino acids in the neighborhood.78

We define a structural neighborhood surrounding a focal amino acid by the coordinates (and identities) of all the N atoms from the79

surrounding amino acids in the structure, within a given radius of the focal residue. Mathematically, we want to find a map f : RN×3 → [R+
≤1]19

80

between the 3D coordinates of the N neighboring atoms and the vector of probabilities p ∈ [R+
≤1]19 associated with preferences for different81

types of amino acids that can be placed at the center of the neighborhood; note that the amino acid probability vector has 19 independent82

entries due to normalization.83

Assuming that the protein structure is a crystal (at least on average), the local interactions between the amino acid at the focal site of84

interest and the surrounding ones in the protein structure have rotational symmetry, in that they only depend on the pairwise distances of85

atoms and not on their absolute orientation in space. This symmetry implies that the interactions are unchanged under global rotations since a86

global rotation preserves pairwise distances and relative orientations. Therefore, any model of amino acid preferences based on local structural87

information should respect 3D rotational symmetry. Thus, our goal becomes learning a map f , as described above, that is also invariant to88

global rotations acting on the inputs. A rotation acting on any Cartesian vector can be expressed as an Euler angle matrix Reuler (Fig. S1). Since89

our inputs x for coordinates of the atoms in a structural neighborhood are Cartesian vectors x ∈ RN×3, a global rotation R would act on90

these vectors via a Euler angle matrix, which we represent by Dcart.(R). Therefore, the rotationally invariant map should have the property91

f(Dcart.(R)x) = f(x).92

In the rest of this section, we describe the mathematical foundation to construct 3D rotationally equivariant models for protein structure93

data. In the following section (Section A), we specifically focus on our approach in encoding the structural data and training neural networks to94

learn 3D rotationally equivariant models for protein neighborhoods. The methodology discussed in Sections B, C is self-contained, and if a95

reader wishes they can choose to skip Section A on the mathematical foundation of our approach.96

A. Mathematical foundation for 3D rotationally equivariant transformations. The simplest approach to train a neural network model97

that is invariant to global rotations of proteins is to use invariant descriptors of the tertiary structure as inputs to the neural network. For example,98

one can use dot products between all Cartesian vectors describing the coordinates of atoms within a structural neighborhood. However, recent99

work has shown that neural networks that are allowed to work with full geometric data as opposed to simple invariants have higher expressivity100

and perform better on learning tasks (12).101

Networks that build more complex invariants rely on representation theory and the idea of equivariance to build more expressive models.102

Equivariance is a generalization of invariance. Rather than requiring no change when inputs are transformed, equivariance allows the outputs103

of a map to change but requires them to change in a well-defined way. Under a transformation of the inputs corresponding to a rotation R, an104

equivariant map f satisfies the relation105

f(Dinput(R)x) = Dout(R)f(x) [S1]106

where Dinput(R) is the operator corresponding to the rotation in the input space, and Dout(R) is the operator corresponding to the rotation in107

the output space. Note that if Dout(R) is the identity matrix for all rotations, then the map is invariant.108

The key to building an equivariant map is to know the operator Dout for the transformation of interest. The prevailing method in the field of109

equivariant machine learning is to modularly build a neural network out of equivariant units where each unit has an input and output space110

where these operators are known. The input and output space are often the same and tend to be the Fourier space defined by the symmetry that111

is respected.112

Rotations in three dimensions are non-commutative which means that the output of two consecutive rotations can depend on the order by113

which they act on the input vector. As a result, the Fourier space for rotations is more complicated than that of a commutative transformation114

like translations. Here, we will first use translations as an illustrative example for equivariant operations in Fourier space and then generalize to115

rotations.116

117

Translational equivariance. The Fourier transform of a signal on a real line f(x) can be expressed as F̂ (k) =
∫∞
−∞ e

−ikxf(x)dx. We define118

a translated signal fa(x) = f(x− a) which is the original signal translated by a distance a. The Fourier transform of this translated signal119

follows120

F̂a(k) =
∫ ∞
−∞

e−ikxfa(x)dx121

=
∫ ∞
−∞

e−ikxf(x− a)dx122

=
∫ ∞
−∞

e−ik(x′+a)f(x′)dx′123

= e−ikaF̂ (k)124

[S2]125
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Thus, the Fourier transform of a translated signal transforms as F̂a
a−→ e−ikaF̂ (k), implying that the Fourier transform is equivariant under126

translation with an output operator that is simply a phase shift Dout(a) = e−ika. These operators Dout(a) form a representation of the group of127

1D translations (13).128

In three dimensions, translations act on vectors via x→ x + a and the representation is given by the operators operator Dout(a) = e−ik·a.129

130

Rotational equivariance. Similar to translation, we can use Fourier space to define an equivariant transformation for rotations. We consider131

rotations about a given reference point that defines an origin for a spherical coordinate system in which points in 3D can be expressed by the132

resulting spherical coordinates (r, θ, φ). Since the radius r (i.e., the distance of a point from to the reference) does not change under rotations133

about the origin, we will ignore the radial component for now and consider a signal over the sphere of radius r, f(θ, φ) : S2(r)→ R. The134

Fourier transform F̂ of the signal on the sphere follows,135

F̂`m =
∫ 2π

0

∫ π

0
f(θ, φ)Y`m(θ, φ) sin θ dθ dφ [S3]136

where Y`m(θ, φ) is the spherical harmonic of degree ` and order m defined as137

Y`m(θ, φ) =
√

2n+ 1
4π

(n−m)!
(n+m)!e

imφPm` (cos θ) [S4]138

where ` is a non-negative integer (0 ≤ `), and m is an integer within the interval −` ≤ m ≤ `. Pm` (cos θ) is the Legendre polynomial of139

degree ` and order m, which, together with the complex exponential eimφ, define sinusoidal functions over the angles θ and φ. In quantum140

mechanics, spherical harmonics are used to represent the orbital angular momenta, e.g., for an electron in a hydrogen atom. In this context, the141

degree ` relates to the eigenvalue of the square of the angular momentum, and the order m is the eigenvalue of the angular momentum about142

the azimuthal axis.143

The operators that describe how spherical harmonics transform under rotations are called the Wigner D-matrices, denoted byD`
mm′(R) (13);144

this operator is a matrix because the rotation group in 3D is not commutative. Under a rotation R, spherical harmonics transform as145

Y`m(θ, φ) R−→
`∑

m′=−`

D`
m′m(R)Y`m′(θ, φ) [S5]146

Since spherical harmonics transform in this well-defined way, we can now examine how a rotation acts on the Fourier transform of a signal147

over the sphere. Suppose we have a signal f(n) defined on the elements n of the spherical shell S2 (i.e., the set of angular coordinates for148

points on the sphere). The Fourier coefficients associated with the rotated signal fR(n) = f(Rn) follow,149

F̂R`m =
∫
Y`m(n)fR(n)dΩ =

∫
Y`m(n)f(Rn)dΩ150

=
∫
Y`m(−Rn′)f(n′)dΩ′151

=
∫ ∑̀

m′=−`

D`
m′m(−R)Y`m(n′)f(n′)dΩ′152

=
`∑

m′=−`

D`
m′m(−R)

∫
Y`m(n′)f(n′)dΩ′153

=
`∑

m′=−`

D`
m′m(−R)F̂lm154

[S6]155

where dΩ = sin2 θ dθ dφ is the angular differential in the spherical coordinate system. Under a rotation R about the origin, the spherical156

Fourier coefficients of a real-space signal transform according to F̂`m
R−→
∑`

m′=−`D
`
m′m(−R)F̂`m′ , which is simply a matrix product.157

It should be noted that the Wigner D-matrices form an irreducible representation of SO(3), which is the group of all rotations around a fixed158

origin in three-dimensional Euclidean space. Therefore, it provides a natural basis to expand functions in SO(3) while respecting the rotational159

symmetry.160

161

Nonlinear transforms respecting rotational equivariance. One key feature of neural networks is applying nonlinear activations, which162

enable a network to approximately model complex and non-linear phenomena. Commonly used nonlinearities include reLU, tanh, and163

softmax functions. However, these conventional nonlinearities can break rotational equivariance in the Fourier space. To construct expressive164

rotationally equivariant neural networks we can use the Clebsch-Gordan tensor product, which is the natural nonlinear (or bilinear in the case165

of using two sets of Fourier coefficients) operation in the space of spherical harmonics (13).166

Given two spherical tensors F̂`1 and Ĝ`2 , we can take a product between all of their components F̂`1m1Ĝ`2m2 , which would allow us to167

express nonlinearities. Although these products do not behave well under rotations, linear combinations of them do transform in well-defined168
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ways. The Clebsch-Gordan coefficients are the coefficients that decompose these products back into the space of spherical harmonics, where169

Wigner D-matrices define the rotation operations. Specifically, the product of spherical tensors F̂`1 and Ĝ`2 will yield spherical tensors of170

degree L such that |`1 − `2| < L < `1 + `2 in the following way,171

ĤLM =
`1∑

m1=−`1

`2∑
m2=−`2

〈LM |`1m1; `2m2〉F̂`1m1Ĝ`2m2 [S7]172

where 〈LM |`1m1; `2m2〉 is a Clebsch-Gordan coefficient and can be precomputed for all degrees of spherical tensors (13). Similar to173

spherical harmonics, Clebsch-Gordan products also appear in quantum mechanics, and they are used to express couplings between angular174

momenta. In following with recent work on group-equivariant machine learning (12, 14–16), we will use Clebsch-Gordan products to express175

nonlinearities in 3D rotationally equivariant neural networks for protein structures.176

B. Rotationally equivariant encoding of protein micro-environments as spherical holograms. We define an amino acid’s micro-177

environment as all the atoms associated with the surrounding amino acids within a 10 Å of the central residue’s α-carbon. We use the position178

of the central residue’s α-carbon as the reference point of the neighborhood N . Each atom i within this neighborhood, located at position179

ri with respect to the reference point, has three attributes associated with it: (i) the element type of the atom, ei ∈ {C,N,O, S,H}, (ii) the180

partial charge of the atom Qi, and (iii) the SASA Ai of the atom. With these characteristics we define a feature vector vci where c indexes the181

input channels {C,N,O, S,H, charge, SASA}. This vector takes on values given by182

vci =


δei,c for c ∈ {C,N,O, S,H}
Qi for c = charge
Ai for c = SASA

[S8]183

where δij is a Kronecker delta function, and takes the value 1 if i = j and 0 otherwise. Thus, for c ∈ {C,N,O, S,H} the feature vector vci184

takes value 1 if atom i is of type c and 0 otherwise. Qi and Ai denote the partial charge and the SASA (in units of Å2) of atom i, respectively.185

These quantities are computed by PyRosetta for each protein structure (2).186

Each channel defines a point cloud with the attributed values stored at the coordinates of the corresponding atoms. We express the point187

cloud of each channel in a spherical coordinate system with the origin set at the alpha carbon of the central amino acid in the neighborhood.188

We then define an atomic density as a sum of Dirac delta distributions parameterized by each atomic coordinate in the neighborhood189

ρc(r) =
∑

i∈N v
c
i δ

(3)(r− ri). Here δ(3)(x) denotes a normalized Dirac delta probability density in 3D, which is zero everywhere except190

at the origin x = 0, where it is infinite. We use 3D Zernike transforms to encode the point clouds associated with each channel in a 3D191

rotationally equivariant fashion in the spherical Fourier space:192

Ẑcn`m =
∫
ρc(r)Y`m(θ, φ)Rn`(r) dΩ. [S9]193

where dΩ is the angular differential in the spherical coordinate system, Y`m(θ, φ) is the spherical harmonics (eq. S4), and Rn`(r) is the radial194

function of the 3D Zernike transform, which can be expressed as,195

Rn`(r) = (−1)
n−`

2
√

2n+ 3
(
n+`+3

2 − 1
n−`

2

)
|r|` 2F1

(
−n− 1

2 ,
n+ `+ 3

2 ; `+ 3
2 ; |r|2

)
[S10]196

where 2F1(·) is the ordinary hypergeometric function. The index n ≥ 0 is a non-negative integer, and the radial functionRn`(r) is nonzero only197

for even values of n− ` ≥ 0. Zernike polynomials form a complete orthonormal basis in 3D and, therefore, can be used to expand and retrieve198

any 3D shape, if large enough ` and n coefficients are used. Approximations that restrict the series to finite n and ` are often sufficient for199

shape retrieval, and hence, desirable algorithmically. Importantly, expansion of an input signal by Zernike polynomials (eq. S9) is rotationally200

equivariant since a rotation R transforms the resulting coefficients through Wigner-D matrices as Ẑcn`m
R−→
∑`

m′=−`D
`
m′m(−R)Ẑcn`m′201

(eq. S5).202

Zernike projections in the spherical Fourier space can be thought of as a superposition of spherical holograms of an input point cloud, and203

thus, we term this operation the holographic encoding of protein micro-environments.204

C. Rotationally equivariant model of protein micro-environments with H-CNN. We use the coefficients of the Zernike expansion Ẑcnlm205

in eq. S9 (i.e., the holographic encoding of the data) as inputs to a rotationally equivariant convolutional neural network to classify amino acids206

based on their surrounding atomic micro-environments. We term this network holographic convolutional neural network (H-CNN).207

The convolutional neural network that we use for our analysis is similar to the Clebsch-Gordan network (CGNet), described in ref. (14).208

This network is built out of three rotationally equivariant modular units: (i) linear transformation of spherical harmonics, (ii) Clebsch-Gordan209

nonlinearity, and (iii) spherical batch normalization.210

Below we will describe the computations done in each of these modular equivariant units. Without a loss of generality, we denote the211

operations in each unit of the network in terms of a general equivariant signal F̂ klm where k is a catch-all index that represents all non-rotational212

indices (i.e., channel c and index n in eq. S9), and ` and m correspond to the angular indices (eq. S4). The output of each unit will be denoted213

by Ĝklm.214

215
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Linear transformations in CG-nets. Linearities are ubiquitous in neural networks and contribute partially to their powerful expressiveness.216

Our linearity takes the form217

Ĝk`m =
∑
k′

W
(`)
kk′ F̂

k′
`m [S11]218

where W (`)
kk′ denotes two dimensional matrices that mix different input channels k′ (e.g., combinations of radial index n and channel c in the219

input or general learned representations in intermediate layers) producing different output channels k. To preserve rotational symmetry, we220

will impose the restriction of only combining information (i.e., forming linear combinations of inputs) that belongs to the same irreducible221

representations (irreps) of SO(3) in eq. S11. In other words, we mix only inputs associated with the same degree ` and order m of spherical222

harmonics. These inputs are mixed across channels associated with different chemical or radial information in the first layer, or composite223

channels in the following layers. Generally, different weights are learned for each irrep ` but shared across coefficients of different order m.224

225

Clebsch-Gordan nonlinearity. The last equivariant component of the network is a Clebsch-Gordan nonlinearity. Nonlinearities are ubiquitous226

in neural networks. The Clebsch-Gordan nonlinearity is the simplest equivariance-respecting nonlinearity, and it is expressive enough for most227

learning tasks (14, 16). This Clebsch-Gordan nonlinearity is simply a product of spherical tensors that is decomposed back into the spherical228

harmonic basis via the Clebsch-Gordan coefficients,229

ĤK
LM =

`1∑
m1=−`1

`2∑
m2=−`2

〈LM |`1m1; `2m2〉F̂ k1
`1m1

Ĝk2
`2m2

[S12]230

where 〈LM |`1m1; `2m2〉 is a Clebsch-Gordan coefficient and K = (k1, k2) is the new channel index.231

Generally we have a choice for which combinations of values k1, k2, `1, and `2 are used in this product. We focus on two choices for232

these indices. We define fully-connected networks, for which k1, k2, `1, and `2 are allowed to take on all possible values. We also define233

simply-connected networks, for which we impose the condition that k1 = k2 and `1 = `2.234

235

The exact choice made in combining these indices affects the dimensionality of the network. The width of the Clebsch-Gordan nonlinearity236

output in a fully-connected network with a maximum spherical degree Lmax and a width dh (i.e., k ∈ {1, ..., dh}) is given by237

Ωfull
`,Lmax = d2

h

([
1
4(2 + `(5 + `)− 2

⌊1
2(`− 1)

⌋]
+ (`+ 1)(Lmax − `)

)
+ (`+ 1)(Lmax − `) [S13]238

Meanwhile, for a simply-connected network with the same Lmax and dh, the width of the Clebsch-Gordan nonlinearity is239

Ωsimple
`,Lmax

= dh(Lmax + 1− `) [S14]240

Spherical batch normalization. Batch normalization is a common feature in neural networks that allows for smooth training of the network.
Since the output of our nonlinear Clebsch-Gordan product is not bounded, batch normalization becomes extremely important to ensure that
activations remain finite throughout training. We impose a batch normalization layer after each linear operation, producing normalized inputs
to the nonlinear operation (Clebsch-Gordan product). We use the following batch normalization during training,

F̂ k`m = F̂ k`m√
〈|F̂ k` |2〉batch + ε

[S15]

where |F̂ k` |2 =
∑`

m=−` F̂
k
`mF̂

∗k
`m/(2`+ 1), ∗ denotes complex conjugation, 〈·〉batch denotes averaging over a batch, and ε is a small number

used to ensure numerical stability, which we set to ε = 10−3. During training the network stores a moving average of the norm for each ` in
each channel as

Nµ,i
` = ξ〈|F̂ k` |2〉batch + (1− ξ)Nµ,i−1

` [S16]

where ξ serves as the momentum of our moving average, set to ξ = 0.99. This moving average is then used as the norm during testing in the
following way:

F̂µ`m =
F̂µ`m√
Nµ,i
` + ε

[S17]

The different batch normalization used for training and testing prevents the batching of the validation data to affect the evaluation of the241

model accuracy during testing.242
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3. Network and training procedure for H-CNN243

Network architecture. A complete H-CNN features an equivariant unit of Clebsch-Gordan layer followed by an invariant unit of dense layers244

as detailed in Fig. S2. A Clebsch-Gordan layer is comprised of an equivariant linearity, a spherical batch norm, a Clebsch-Gordan product, and a245

concatenation. Invariants from the inputs as well as all outputs of the each CG layer are collected for use in the invariant dense layers (Figs. 1, S2).246

247

Training procedure. Networks were trained with all training data being read at run time using the keras fit function and a data gen-248

erator made from a subclass of the keras.utils.sequeunce class (17). Generally 40 workers were used for reading the data and a249

max_queue_size of 900 was found to be optimal for read/evaluation balance. Approximately one tenth of the validation data (51,200250

neighborhoods) was evaluated after an approximate one tenth of the training data (256,000 neighborhoods) was seen. This was implemented by251

using tf.keras.Model.fit arguments steps_per_epoch=1000 and validation_steps=100. Data was shuffled at the end252

of each evaluation interval. These evaluation intervals also served as checkpoints for both early stopping and weight saving. The best network253

was trained for 8.47 epochs in 4.54 hours on one NVIDIA A40 GPU hosted at the Hyak supercomputer at the University of Washington.254

We used stochastic gradient descent and Adam optimizer (18) for training our networks. Adam generally showed better performance, and255

thus, all networks were trained with Adam during hyperparameter optimization. The main component of the loss was defined as the categorical256

cross entropy between the one-hot amino acid encoding and the softmax output of the network257

L = −
N∑
i=1

log pαi [S18]258

where pαi is the network-assigned probability of the true central amino acid αi in neighborhood i.259

Some hyperparameters were scheduled according to the behavior of the network’s loss. The learning rate was put on a schedule of260

ReduceLROnPLateau to decrease by a factor of 0.1 whenever the validation loss did not improve over 10 epochs, with a minimum learning261

rate of 10−9. Ultimately, the networks were trained with early stopping when the validation loss did not improve by a difference of 0.01 over262

the course of 20 epochs.263

264

Hyperparameter optimization. Hyperparameter optimization was performed in two steps: First, we scanned a larger parameter regime and265

trained 500 networks to identify a reasonable subregion of the parameter space (Fig. S3A). This sampling revealed networks with parameter266

ranges listed in Table S1. These parameters were then sampled more finely to get the best network models. The resulted training curves are267

shown in Fig. S3B,C.268

It should be noted that we optimized over two classes of networks: (i) fully-connected networks, and (ii) the simply-connected networks, as269

defined in Section C. In simply-connected networks, the nonlinear Clebsch-Gordan products are restricted to the square of Fourier coefficients270

with the same ` and channel index, in contrast to the fully-connected networks that use bilinear products between all sets of Fourier coefficients271

(see equation Eq. (S12)). These restricted nonlinearities allowed us to use linear layers that had roughly one order of magnitude larger output272

dimensions in simply vs. fully-connected networks (150 as opposed to 20); see Fig. S3E. We separately optimized the hyperparameters for273

these two network classes.274

275

Model performance. For both the simply-connected and the fully-connected networks, we find the best hyperparameters that minimize the276

validation loss function in equation S18. The best simply-connected model had 62% classification accuracy and a minimal validation loss of277

1.2 while the best fully-connected model had 68% classification accuracy and a minimal validation loss of 0.91. This difference in predictive278

power of the models appeared consistent across all training scenarios. Due to the superior predictive power of the best fully-connected network279

compared to the best simply-connected network, we used the best fully-connected network to evaluate the stability and binding prediction tasks280

in main text.281

We compare the accuracy and the training efficiency of our model to the existing methods that classify amino acids based on all-atom282

representations of their local environments in Table 1. For this comparison, we used the metric of testing accuracy of the amino acid283

class since this was more commonly reported in the literature. Specifically, we compare H-CNN with two 3D CNN methods that used284

conventional convolutional neural networks on voxelized protein structures (19, 20). Notably, these 3D CNN methods require local alignment285

of neighborhoods to the central amino acid. Also, each of these methods uses a cube of side length 20 Å, while spheres of radius 10 Å are used286

as inputs to H-CNN. Our method thus sees approximately half (π/6) of the volume that these other models see. Overall, our model has a287

comparable accuracy to the best 3D CNN method (20), but it is much more efficient in training.288

We also compare our model to other methods that prioritize rotational symmetry, i.e., the Spherical CNN introduced in ref. (21) and the 3D289

Steerable CNN from ref. (22). Spherical CNN (21) is approximately rotationally invariant by performing 3D convolutions on a discretized grid290

over the 3D sphere. 3D Steerable CNN (22) is a rotationally invariant method by applying spherical convolutions in a steerable basis. H-CNN291

performs better than both of these methods in the classification task with an order of magnitude fewer parameters (Table 1).292

293

Ablation study on the importance of charge and SASA. We studied the effect of our post-processing of atomic neighborhoods by performing294

ablation studies on charge and SASA. For each ablation, we retrained networks on inputs that did not include either charge or SASA295

information. During retraining, we reran the second stage of our hyperparameter optimization using the same learned bounds from the original296

hyperparameter optimization and only considered fully-connected networks. The overall accuracy from removing SASA was 57% while the297

overall accuracy from removing charge was 56%, in contrast to the 68% accuracy of the complete model shown in Fig. 2. A similar 10%298

drop in accuracy associated with SASA and charge was previously reported in ref. (20). Fig. S7 shows the confusion matrices for each model299

compared to the best model’s confusion matrix.300
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4. Robustness of H-CNN performance to train/test set splits301

We tested the robustness of H-CNN performance to similarities between proteins in the train and test sets. To quantify similarities between302

proteins, we use TM-score, which is a metric for assessing the topological similarity of protein structures (23). We assign max-TM-score to303

each protein in our test set, which is the TM-score of that protein its closest match in the training set (i.e., the one with the highest TM-score).304

Fig. S4A shows that the accuracy of H-CNN in predicting the amino acid identities in the test set proteins is only weakly dependent on the305

proteins’ max-TM-score. Fig. S4B shows that H-CNN sequence recovery suffers in a small number of proteins with max-TM-score < 0.5306

(i.e., those significantly distinct from the training set (24)). However, for the majority of cases the H-CNN recovery rate is insensitive to the307

TM-score; the average amino acid recovery rate for test proteins with max-TM-score < 0.5 is 66% which is comparable to 69% for those with308

max-TM-score ≥ 0.5.309

To further assess the robustness of H-CNN, we retrained our network using the ProteinMPNN’s CATH-based splitting of the PDB (4),310

which aimed to minimize structural similarity in the training, validation and testing sets. Fig. S4C shows the resulting confusion matrix, which311

yields a 68% accuracy in amino acid recovery, consistent with the H-CNN model trained on the ProteinNet’s splits in Fig. 2.312

These results indicate that H-CNN has learned a generalizable model for protein micro-environments that can be used for proteins far from313

its training set, with possible applications to de novo protein structures.314

5. Comparing H-CNN with evolutionary models for amino acid preferences315

As shown in the main text, the interchangeability of amino acids predicted by H-CNN is consistent with the evolutionary substitution patterns316

reflected by the BLOSUM62 matrix (Fig. 2D). In addition to this coarse-grained measure, we also assessed the consistency of substitutions at317

the single-site level between the H-CNN predictions and evolutionary data. Evolutionary variation at a given site in a protein reflects both the318

substitutability of amino acids at that position (e.g., due to their common physico-chemical properties) and the epistatic interactions with the319

other covarying residues in the protein.320

To isolate the site-specific effects of substitutions, we used the software EV-Couplings (25) to infer a model for amino acid preferences (and321

their couplings), using amino acid covariations in multiple sequence alignments (MSAs) of protein families. Specifically, EV-Couplings infers322

a maximum likelihood Potts model for interactions between residues in a protein sequence (26). From this model, we can evaluate the relative323

preference for occurrence of different amino acids at a given position in a protein sequence.324

We used EV-Couplings to infer models of amino acid preferences for all of the protein domains in our test set. For each protein chain in our325

test data, we used EV-Couplings to compute the MSA for the protein associated with UniProt ID listed under the associated PDB entry. The326

MSA is computed using UniRef90 (27) that clusters homologous proteins such that sequences within each cluster have at least 90% identity to327

and 80% overlap with the longest sequence (seed). For inference of the Potts model, we used the default EV-Couplings settings for the rest of328

the parameters. Ultimately we were able to infer evolutionary models on 67 protein families corresponding to 67 chains in our testing set.329

These protein families amounted to 11,221 unique sites, for which we compare the EV-Couplings predictions on amino acid preferences with330

the H-CNN predictions in Fig. 2F.331

To measure the similarity between the predictions of H-CNN and EV Couplings, we define the profile overlap ρ for amino acid preferences332

at a given position. Specifically, for two sets of amino acid probabilities PA, PB ∈ [R+
≤1]19, the vector overlap is defined as the normalized333

dot-product between the centered probability vectors,334

ρ =
(
PA − 〈PA〉sites

)
·
(
PB − 〈PB〉sites

)√
|PA − 〈PA〉sites|2|PB − 〈PB〉sites|2

[S19]335

where 〈·〉sites denotes the average of probability profile overs all sites in the data. Profile overlap takes values between -1 and 1, with 1 indicating336

a perfect alignment between the two (centered) vectors of amino acid preferences, and -1 indicating complete disagreement.337

6. Effect of shear perturbation on protein micro-environments338

We locally perturbed protein structures around their crystal conformation with the shearing deformation. As demonstrated in Fig. 3, shearing
by an angle δ at a given residue of a protein is a perturbation to the backbone dihedral angles at two neighboring residues given by

(φi, ψi−1) −→ (φi + δ, ψi−1 − δ) [S20]

This perturbation was chosen because it can substantially change the local protein structure near the residue of interest while minimally339

affecting the far-away residues.340

Physical interactions in a protein should be dependent on the pairwise distances between atoms. We define Dab to be the pairwise distance341

in angstroms between a pair of atoms (a, b) in the protein structure. Then ∆Di,δ
ab = Di,δ

ab −D
0
ab measures the deviation of these pairwise342

distances from the pairwise distances in the native (unperturbed) structure D0
ab, when site i is sheared by an angle δ (Fig. 3). We estimate the343

total shear-induced distortion in a protein structure as the root-mean-square of the deviations of pairwise distances RMS∆Dk,δ
ij ; here, the344

average is taken over all pairs of atoms that were at distances smaller than 10 Å in the unperturbed structure, i.e., {(a, b) |D0
ab < 10 Å}.345

We characterize the model’s response to the perturbation by the change in the protein network energy (Fig. 3), defined as the sum of346

pseudo-energies (logits) of amino acids over all sites in the protein,347

E =
∑
i∈sites

Ẽαii [S21]348
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where αi denotes the protein’s amino acid at site i.349

As shown in Fig. 3D, the native protein structure appears to be at the energy minimum of the network and shear perturbations often result in350

less favorable protein micro-environments. To assess the robustness of this result, we evaluated the protein network energy in eq. S21 for351

alternative amino acids, while keeping the surrounding protein structure intact (i.e., using the wild-type neighborhood for model evaluation).352

Fig. S8 shows that if amino acid substitutions preserve the physico-chemical properties of the residue (i.e., substitutions according to the353

BLOSUM62 matrix), the undistorted structure remains close to the energy minimum, yet the landscape becomes shallower. However, for354

random amino acid substitutions, no energy minima is recovered. These results further suggest that H-CNN has learned an effective physical355

potential for protein micro-environments.356

7. Alternative structure-based models357

We compared H-CNN to other equivariant, invariant, and non-symmetry-aware structure-based models that can be used for similar tasks.358

Specifically, H-CNN was compared to 3D CNNs that use grid convolution on voxelized protein structures (one from Torng et al (19) and359

one from Shroff et al (20) which we refer to as 3D CNN in Table 1 and MutCompute in Table 2 in the main text), Spherical CNNs that use360

spherical convolutions on protein structure data (one from Boomsma et al (21) and one from Blaabjerg et al (28) which we refer to as Spherical361

CNN-RaSP in the Table 2, since it is part of a larger model for predicting protein stability), Steerable CNN (22), and the message-passing362

ProteinMPNN (4).363

3D CNNs are extensions of traditional CNNs in three dimensions. They do not respect rotational symmetry and require alignment of atomic364

environments along backbones. Spherical CNNs generalize convolutions to a spherical grid although due to the nature of discretizing the365

sphere, they are only approximately rotationally equivariant. Steerable CNNs utilize fully equivariant steerable kernels and are rotationally366

equivariant. ProteinMPNN is rotationally invariant operating on invariant pairwise distances of backbone atoms.367

In Table 1, we compare H-CNN architecture, training time, and performances to networks for which these metrics were reported. All values368

were taken from the literature when accessible. In Table 2, we compare H-CNN and its ensembled estimates to models that were available for369

predicting the mutational effects on protein stability of binding. MutCompute (i.e., 3D CNN-Shroff) predictions were taken from the webserver370

https://mutcompute.com/. Spherical CNN-RaSP predictions were made using the Google Colab notebook associated with ref. (28). The full371

RaSP model is trained to predict protein stability. To compare zero-shot predictions in Table 2, Spherical CNN-RaSP predictions were obtained372

from only using the cavity model part of the network which was trained on the amino acid prediction task only. ProteinMPNN predictions were373

made using the github repository associated with ref. (4).374
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Fig. S1. Parameterization of rotations and rotational equivariance. We use x-y-z Euler angles to parameterize rotations in 3D. This parametrization (A) can be written in a
matrix form, and (B) it can be visualized on a 3D object. Starting from a given orientation in (B.i), the object’s rotation can be broken down into three steps: First, rotation around
the z-axis of angle α (B.ii). Second, rotation around the new y-axis by angle β (B.iii). And finally, rotation around the new z-axis by angle γ (B.iv). A map from the geometric
descriptions of an object to physical observables can be invariant or equivariant under rotations. (C) A rotationally invariant map, such as fmass which gives the mass of a
molecule, remains unchanged under the molecule’s rotation. (D) A rotationally equivariant map, such as fdipol which gives the dipole moment of a molecule, transforms in a
well-defined way with the molecule’s rotation, denoted by the operator Din(R). Specifically, in this case, the transformation operator for the dipole moment under rotation
Dout(R) acts linearly on the dipole moment in the original frame and is uniquely determined by the parameters of the rotation R.
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Fig. S2. Schematics of rotationally equivariant data encoding and network architecture in H-CNN. (A) Any point cloud (left) can be written in the equivariant spherical
harmonic Fourier basis by integrating the point cloud density against the spherical harmonics along with a choice of a radial function (middle), which depends on the spherical
harmonic degree `. The triangular structure (right) demonstrates the resulting Fourier coefficients f`m, in which the rows reflect the different degrees of spherical harmonics
0 ≤ `, which are non-negative integers. Individual cells within each row correspond to different orders m of the spherical harmonics, which are integers bounded by
−` ≤ m ≤ `. (B) The Fourier transform becomes three dimensional when radial resolution is required thereby increasing the number of discrete n-values used nn. The
multiplicity of coefficients is also determined by the number of point clouds being transformed nρ (e.g., the different atomic channels on the left). Since both the point clouds
and the radial information are invariant under rotations, these two dimensions can be combined in index to give preference in organizing information according to the degree
` and order m of the spherical harmonics. (C) The Clebsch-Gordan block (CG block) is fully equivariant and is comprised of a linear layer, a spherical batch norm (SBN),
Clebsch-Gordan product (CG prod), and a degree-wise concatenation (concat). (D) Throughout all layers of the network, all invariants (` = 0) are collected and fed into a
series of dense layers which are simple linear combinations with training dropout. (E) These two main components in (C,D) comprise the bulk of the entire network. First the
input Fourier coefficients are processed through successive CG layers. Invariants are collected from the original input and from the output of every CG layer. The real and
imaginary components of these invariants are split and concatenated (complex concat) and then fed into a series of dense layers. This schematic reflects the dimensions
of the optimal model discovered in this work. Four CG layers were used. We note that the maximal width of the network as determined by the output of the nonlinearity
depends on ` due to the selection rules of the CG prod. We denote this width d2

hΩ`,L where L is the maximal degree ` used in the network and are given in eqs. (S13)
and (S14). Two dense layers were used in the optimal model. The dimensions of these layers are (4852× 500) and (500× 20). The output of these dense layers are termed
pseudo-energies and act as logits in a softmax to estimate probabilities for each amino acid. We emphasize the only nonlinearities in the network are the Clebsch-Gordan
products and the ultimate softmax.
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Fig. S3. Hyperparameter optimization for H-CNN. Hyperparameter optimization was performed in two steps for both the simply-connected and the fully-connected networks:
First, hyperparameters were scanned across a wide regime of hyperparameters via random sampling. From this scan, a narrow band of hyperparameters were analyzed to
determine the optimal network (A). Off the diagonal, each dot’s color shows the validation loss seen during this first step of hyperparameter tuning for a network with the
combination of hyperparameters shown on the two axes. On the diagonal, the density of networks is shown as a function of loss and the hyperparameter tested. Validation
accuracy (B) and loss (C) are shown as a function of training epochs for all networks trained in the second stage of hyperparameter tuning. Red lines show the network with the
best validation loss that is used throughout this work.
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Fig. S5. Low dimensional mapping of H-CNN likelihood profiles reveals physico-chemical clustering. Low dimensional projections of the predic-
tion outputs (3D UMAPs) are shown. UMAPs are annotated by (A) the amino acid types, and (B) the physico-chemical clusters in (Fig. 2A), with
top/bottom panels showing a different view of the UMAP in each case. Neighborhoods are closely clustered by amino acid types (A), and are spa-
tially arranged based on the physico-chemical properties of the side-chains (B). An interactive version of these plots are provide on the github page:
https://github.com/StatPhysBio/protein_holography/tree/89c11e3160d0053308e8d84263e1c61a6df13807/protein_holography/publication
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Fig. S6. Impact of noise on H-CNN performance. (A-B) H-CNN’s performance on the test set was assessed as a function of Gaussian noise ε ∼ N (0, σ2) added to the
coordinates of atoms in protein neighborhoods of the training data, as well as the noise added to the test data at evaluation time. (A) Violin plots show the distribution of testing
accuracies as a function of the amplitude (standard deviation σ) of the training noise injected. The accuracy is measured based on the amino acid retrieval in an un-noised
test data. White dots show the median testing accuracy, thick black lines show the interquartile range, and thin black lines show the extent of the distribution up to 1.5x the
interquartile range. The limits of each violin show the true limits of the empirical distribution. 10 networks were used to create each distribution. Additionally, the network with
the best validation loss trained on un-noised data (used in the main text) is indicated in red and labeled as “best network”. (B) For the same sets of noised networks in (A), the
accuracy of the model predictions are shown as a function of noise added to the coordinates of atoms in test set (evaluation noise on the horizontal axis). The performance of
the best network with best validation loss is displayed as a line (blue), while the rest of the traces correspond to the mean testing accuracy of a given ensemble, trained with a
specified training noise amplitude (colors) . Errorbars show one standard deviation. (C) H-CNN performance on the test set was assessed as a function of the sequence
similarity of the training and the test sets, using different slicings from ProteinNet. Performance is assessed for networks trained on data with different levels of Gaussian noise
injected to the coordinates of the atoms in protein neighborhoods (colors according to (B)), and tested on un-noised (left) and noised data with amplitude σ = 0.5 Å (right). For
slicing with sequence identity > 10%, H-CNN performance is insensitive to the exact splitting of sequences in training and test sets. We use 30% split for all analyses done in
the manuscript.
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Fig. S7. H-CNN performance after charge and SASA ablation. The difference in the confusion matrix for networks with ablated (A) SASA and (B) charge with respect to
the network with the full information (Fig. 2A) is shown. Negative (red) values demonstrate less probability assigned to the input/predicted pair when the input is ablated,
while positive (blue) values show increased probability mass under ablation. The removal of SASA (A) appears to decrease the network’s ability to predict all amino acids as
seen on the diagonal. The effect is most pronounced for hydrophobic amino acids in the upper left, with some hydrophilic amino acids (R, K, E) also displaying strong effects.
Interestingly, most of the probability mass is on average redistributed to small amino acids A and S. When charge is removed (B), the network demonstrates worse predictions
on charged and polar amino acids most notably R, C, N, and E. The overall network’s accuracy after removing SASA and Charge are 57% and 56%, respectively.
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Fig. S8. Robustness of response to shear perturbation. Similar to Fig. 3, but the change in network energy is evaluated for alternative amino acids at the shear position,
while keeping the surrounding protein structure intact (i.e., using the wild-type neighborhood for model evaluation). The alternative amino acids are drawn according to the
BLOSUM62 matrix in (A), and randomly in (B); the wild-type and the alternative sequence are shown each panel. When amino acids are substituted according to their
BLOSUM62 scores, potential wells are generally recovered (A), while no energy minima is recovered for random substitutions (B). Specific sequences used are given by
seqsub (substitutions according to the BLOSUM62 matrix), and seqrand (random substitutions) in each panel and are shown in comparison to the wildtype sequence seqwt.
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Fig. S9. H-CNN predictions for the stability effect of all available single point mutations in T4 Lysozyme. (A) The true positive vs. false positive rates (ROC curve) is shown for
classification of the 40 amino acid mutations (from Fig. 4A) into deleterious and neutral/beneficial classes based on the H-CNN predicted log-probability ratios ∆ logP , using
the wild-type and the mutant structures (orange), only the wild-type structure (purple), the wild-type structure for the wild-type and an in silico relaxed structure for each mutant
(green), and the AlphaFold predicted structure of the wild-type (blue). The corresponding area under the curves (AUCs) are reported in the figure. (B) H-CNN predictions for the
relative log-probabilities using the AlphaFold predicted structure ∆ logPAF are shown against the experimentally measured ∆∆G values for 310 single point mutation variants
of T4 Lysozyme. Mean ∆∆G was used when multiple experiments reported values for the same variant. The colors show the density of points in each panel as calculated via
Gaussian kernel density estimation. H-CNN predictions correlate well with the experimental values, with the Pearson and Spearman correlations indicated in each panel.
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Fig. S10. Predictions for the stability effect of mutations in T4 Lysozyme with different protein structures. (A-D) The large heatmaps show the H-CNN predicted log-probability
of different amino acids relative to the wild-type at the substituted positions along the T4 Lysozyme, indicated on the left-hand side of panel A (similar to Fig. 4A). In each
heatmap, the dots indicate the identity of the wild-type amino acid, and the dotted squares indicate the amino acid in the specified position for the mutated variant in each row.
The predictions for log-probabilities are evaluated using the wild-type structure (A), the mutant crystal structures (B), the wild-type structure relaxed in-silico via PyRosetta for
the specified substitution (C), and the computationally predicted structure of the wild-type T4 lysozyme using AlphaFold (D). The relative log-probabilities of the mutations
of interest are shown separately in one column next to each heatmap. They are calculated with the structural information that is available in different scenarios. For the
wild-type, mutant, and in silico structures, ∆ logP∗ = logPmut

(∗)/P
wt
(wt), with ∗ indicating the specified protein structure in each case. This definition is akin to ∆∆G. For

the AlphaFold structure, we use ∆ logPAF = logPmut
(AF)/P

wt
(AF)—a quantity which could be evaluated in the absence of any experimental structural knowledge for a protein.

(E-H) The predicted relative log-probabilities shown in panels (A-D) are plotted against the experimentally measured ∆∆G values for each variant. Destabilizing mutations
are shown in orange and neutral/beneficial mutations are shown in blue. Overall, H-CNN predictions correlate well with the mutational effects on protein stability, with the
Pearson and Spearman correlations indicated in each panel and AUC values to discriminate between destabilizing and neutral mutations indicated in Fig. 4D. Accounting for
changes in the local protein structures due to mutations in (B, C) sets the correct reference point in predictions such that the estimated log-probability ratio is overall positive for
neutral/beneficial mutations and negative for destabilizing mutations.
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Fig. S11. Impact of training noise on predicting the stability effect of mutations in T4 Lysozyme. Violin plots show the distributions of Pearson and Spearman correlations
between the experimentally evaluated ∆∆G of T4 Lysozyme mutations and the H-CNN predicted values, using only the wild-type structure ∆ logPwt (left panels), and both
the wild-type and mutant structures ∆ logP of the 40 variants (right panels), for different amplitudes of noise in the training data. White dots show the median, thick black lines
show the interquartile range, and thin black lines show the extent of the distribution up to points outside 1.5x the interquartile range. The prediction from the best un-noised
network (i.e., with minimum validation loss) is shown as a red circle. Predictions from models trained at a specific noise level were averaged to determine an ensemble estimate.
Correlations between these ensemble estimates with experimental data are indicated by cyan stars. Corresponding correlations from other zero-shot methods are shown with
horizontal lines (see Table 2).
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Fig. S12. H-CNN predictions for stability and binding of RBD. The H-CNN predicted mean pseudo-energy per site predicted from the RBD-ACE2 protein complex (measure
of binding) is plotted as a function of the mean pseudo-energy per site, inferred from the isolated RBD structure (measure of stability). Points are colored according to their
experimental values of expression and binding as illustrated in Fig. 5. Most points lie on the diagonal since the RBD pseudo-energy is determined from the RBD-ACE2 crystal
structure with the ACE2 masked. However, sites at the RBD-ACE2 interface show deviations from the diagonal. H-CNN prediction for sites that are tolerant of mutations for
stability but not binding are indicated by crosses (below the diagonal points with large stability values). These sites tend to be at the RBD-ACE2 interface and overlap with the
green category from Fig. 5.
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A B C D

Fig. S13. Experimental RBD expression of SARS-CoV-2 in DMS experiments and the H-CNN predictions. (A) Experimental expression of single-point mutation variants of
SARS-CoV2 RBD relative to the wildtype (dots) as measured using yeast surface display experiments. Expression effect e is calculated as ∆ log10(MFI) where MFI is the
mean fluorescent intensity. Mutations to G or P dominate the negative tail of expression effects. To better show the effect of all mutations, the negative portion of the colorbar is
bounded by the expression of the most detrimental variant that is not a mutation to G or P. (B) The mean expression effect of mutations ē is listed next to each site. (C,D) The
H-CNN predicted stability effect of mutations (D), and the mean predicted stability effect for each site Ē (C), evaluated based on the computationally isolated RBD structure, are
shown. Again the negative portion of the colorbar is bounded from below by the most destabilizing prediction not involving mutations to G or P.
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A B C D

Fig. S14. Experimental RBD-ACE2 binding affinity in DMS experiments and the H-CNN predictions. (A) Experimental binding of single-point mutation variants of
SARS-CoV2 RBD to the human ACE2 receptor relative to the wildtype (dots) as measured using yeast surface display experiments. Binding effect b is reported from ∆ logKD
where negative values represent weaker binding relative to the wildtype. Mutations to G or P dominate the negative tail of expression effects. To better show the effect of all
mutations, the negative portion of the colorbar is bounded by the expression of the most detrimental variant that is not a mutation to G or P. (B) The mean binding effect of
mutations b̄ is listed next to each site. (C,D) The H-CNN predicted effect of mutations (D) and the mean predicted stability effect for each site Ē (C), evaluated based on
the crystal structure of RBD-ACE2 complex, are shown. Again the negative portion of the colorbar is bounded from below by the most destabilizing prediction not involving
mutations to G or P.
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Fig. S15. Impact of training noise on predicting the effect of mutations on SARS-CoV-2 RBD binding to ACE2 receptor. Violin plots show the distribution of AUROCs for
classifying mutations in bound vs. unbound for H-CNN models trained at various noise levels, indicated on the horizontal axis. White dots show the median, thick black lines
show the interquartile range, and thin black lines show the extent of the distribution up to points outside 1.5x the interquartile range. The extent of the violins reflects the
true extent of the data outliers included. The AUROCs associated with the best un-noised network (i.e., with minimum validation loss) is indicated by a red circle; see Fig. 5.
Predictions from models trained at a specific noise level were averaged to determine an ensemble estimate. AUROCs based on these ensemble estimates are indicated by
cyan stars. Corresponding AUROCs from other zero-shot methods are shown with horizontal lines (see Table 2).
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Hyperparameter variable broad sampling space sampling scheme fine sampling space optimal fc
network value

optimal sc
network value

batch size nb [8, 5000] uniform 256 256 256
dropout rate λdr [0,0.6] uniform [0, 10−5] 5.49 × 10−4 1.95 × 10−2

hidden dimension dh fc:[6,20], sc:[50,160] uniform fc:[8,20], sc:[100,500] 14 109
No. CG layers nl [1,5] uniform [4,5] 4 5

No. dense layers nd [1,5] uniform [2,4] 2 2
Max spherical degree Lmax [2,7] uniform [4,5] 5 5

learning rate λl [10−6, 10−1] exponential 10−3 10−3 10−3

regularization strength λr [10−6, 10−1] exponential [10−10, 10−16] 1.2 × 10−16 1.89 × 10−14

Table S1. Hyperparameter bounds and optimal values. Hyperparameters varied during model optimization are listed. The two different bounds used during
the two steps of hyperparameter optimization are shown in the broad and fine sampling spaces. Different bounds for fully-connected (fc) and simply-connected
(sc) networks are shown when appropriate. Finally, the optimal value is listed for both the optimal fully-connected and simply-connected networks.
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variant I3Y I3P V87M D92N R96H R96N R96D R96W R96Y L99G M102K M102L M106K M120K V149M V149S V149C V149G G156D T157I
PDB id 1L18 1L97 1CU3 1L55 1L34 3CDT 3C8Q 3FI5 3C80 1QUD 1L54 1L77 231L 232L 1CV6 1G06 1G07 1G0P 1L16 1L10

∆∆G [kcal/mol] -2.3 -2.3 -1.4 -3.0 -3.5 -4.5 -4.7 -6.3 -6.9 -2.11 -3.4 -1.6 -2.8 -4.4 -2.0 -4.9 -2.3 -1.2
pH 6.5 5.4 5.7 -5.9 5.35 5.35 5.35 5.35 5.4 5.3 5.7 3 3 5.4 5.4 5.4 5.4 6.5 6

source (29) (30) (31) (32) (33) (34) (34) (34) (34) (35) (36) (37) (38) (38) (31) (39) (39) (39) (40) (41)

variant I3V T26S S38N S38D G77A A82P A93T M106I M106L E108V T109N T109D N116D S117F M120Y M120L N144D V149I T151S T152V
PDB id 1L17 131L 1L61 1L19 1L23 1L24 129L 1P46 234L 1QUG 1L59 1L62 1L57 1TLA 1P6Y 233L 1L20 1G0Q 130L 1G0L

∆∆G [kcal/mol] -0.4 0.6 0.4 0.8 0.2 0.5 0.7 0.1 0.6 0.6 1.1 -0.1 0.5 -0.1 0.2
pH 6.5 5.4 5.7 -5.9 5 6.5 6.5 5.4 5 3 5.4 5.7 -5.9 5.7 -5.9 5.7 -5.9 5.4 5 3 5 5.4 5.4 5.4

source (29) (42) (32) (43) (44) (44) (42) (45) (38) (35) (32) (32) (32) (46) (45) (38) (43) (39) (42) (39)

Table S2. T4 Lysozyme variants. Each of the 40 variants, shown in Fig. 4, with the respective protein structure is listed along with the corresponding PDB
entry. When available, the ∆∆G associated with a mutation and the pH of the experimental setup in which protein stability was measured are provided.
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