

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

HDL-C as a potential protective target against anthracycline-induced subclinical cardiotoxicity in DLBCL patients - an observational prospective study

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-074541
Article Type:	Original research
Date Submitted by the Author:	13-Apr-2023
Complete List of Authors:	Ou, Wenxin; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Jiang, Tiantian; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Zhang, Nan; The First Affiliated Hospital of Chongqing Medical University, Department of Cardiology Lu, Kai; The First Affiliated Hospital of Chongqing Medical University, Department of Cardiology Weng, Yue; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Zhou, Xi; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Zhou, Xi; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Wang, Dong; The First Affiliated Hospital of Chongqing Medical University, Department of Ultrasound Dong, Qian; The First Affiliated Hospital of Chongqing Medical University, Department of Cardiology Tang, Xiaoqiong; The First Affiliated Hospital of Chongqing Medical University, Department of Cardiology
Keywords:	Lymphoma < HAEMATOLOGY, CHEMOTHERAPY, CARDIOLOGY, Echocardiography < CARDIOLOGY
	1

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	HDL-C as a potential protective target against
5 6	2	anthracycline-induced subclinical cardiotoxicity in DLBCL
7 8	3	patients - an observational prospective study
9	4	
10	- 5	
11 12	6	Wenxin Ou ¹ Tiantian Jiang ¹ Nan Zhang ² Kai Lu ² Yue Weng ¹ Xi Zhou ¹ Dong Wang ³ Oian
13	7	$Dong^{2*}$ Xiaogiong Tang ^{1*}
14	, 8	Dong , muoqiong rung
15 16	9	¹ Department of Hematology The First Affiliated Hospital of Chongging Medical University
17	10	Chongoing China
18	11	² Department of Cardiology The First Affiliated Hospital of Chongoing Medical University
19 20	12	Chongqing China
20	13	³ Department of Ultrasound The First Affiliated Hospital of Chongging Medical University
22	14	Chongqing China
23 24	15	
24 25	16	*Corresponding Author: Oian Dong and Xiaogiong Tang contributed equally to this work and
26	17	are considered as co-corresponding authors
27 29	18	Oian Dong ²
28 29	19	1 Youvi Road Yuzhong District Chongging 400016 People's Republic of China
30	20	Email address: 203748@hospital.comu edu.cn
31 22	_0 21	Xiaoqiong Tang ¹
32 33	22	1 Youvi Road Yuzhong District Chongging 400016 People's Republic of China
34	23	Email address: txgcamu@hospital.camu.edu.cn
35	24	Email address: <u>infeqina(c)hospital.eqina.edu.en</u>
30 37	25	Keywords: cardiotoxicity: DLBCL: anthracycline: HDL-C: GLS
38	26	
39	27	ABSTRACT
40 41	28	Objectives Anthracycline-induced cardiotoxicity is a debilitating cardiac dysfunction for which
42	29	there are no effective treatments, making early prevention of anthracycline-induced subclinical
43	30	cardiotoxicity (AISC) crucial. High-density lipoprotein (HDL) is a cardio-protective lipoprotein.
44 45	31	but its impact on AISC remains unclear. Our study aims to elucidate the protective capacity of
46	32	HDL in AISC in patients with diffuse large B-cell lymphoma (DLBCL) treated with R-CHOP.
47	33	Design Observational prospective study
48 ⊿0	34	Setting An institution in China from September 2020 to September 2022
50	35	Participant 70 chemotherany-naïve patients newly diagnosed with DLBCL who were scheduled
51	36	to receive the standard dose of R-CHOP chemotherapy regimen
52 52	37	Primary outcome measures Serum biomarkers including HDL-cholesterol (HDL-C) and
55 54	38	apoprotein A1. 2D speckle tracking echocardiography and conventional echocardiography were
55		-poprotein 111, 22 specific auching concentrategruphy, and conventional concentrategruphy word
56 57		
57 58		
59		

Page 3 of 28

60

BMJ Open

1 ว		
2 3	39	measured at baseline, at the end of the 3rd and 6th cycle of R-CHOP, and 6 and 12 months after
4 5	40	the completion of chemotherapy.
6	41	Results During the follow-up period. 24 patients experienced AISC, while 10 did not. 36 patients
7	42	were censored Higher levels of HDL-C were associated with a significantly lower risk of AISC
8	43	(unadjusted HR=0.24 P=0.006 adjusted for age and sex HR=0.28 P=0.018 adjusted for age
9 10	44	sex hypertension BMI and E HR=0.27 P=0.017) Patients without AISC had a more stable and
11	45	higher HDL-C level during the follow-up period HDL-C levels were significantly decreased from
12	46	the end of the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy in all patients
13 14	40	(P=0.034) and particularly in the AISC group $(P=0.003)$ The highest level of HDI-C was
15	18	significantly higher in patients without AISC than in those with AISC (1.52 \pm 0.49 vs. 1.22 \pm 0.29
16	40 70	significantly higher in patients without Albe than in those with Albe (1.52 ± 0.4) vs. $1.22\pm0.2)$, P=0.034)
17	49 50	Conclusions Our study suggests that higher levels of HDL C may be associated with a lower risk
18 19	50	of AISC in DI PCI, notion to tracted with P CHOP, HDL C could be a cordia protocity torget but
20	51	further research is needed to confirm its honofits and limitations
21	52	Trial registration number ChiCTP 2100054721
22	53	I rial registration number CniC I R2100054721
23 24	54	
25	55	Strengths and limitations of this study
26	56	• This study is the first observational prospective study that investigated the association between
27 28	57	HDL-C and AISC, providing an opportunity for investigators to develop a tool for early
29	58	intervention and prevention of AISC
30	59	• The study used advanced imaging techniques (2D-STE) to assess the subclinical cardiac
31	60	dysfunction in the patients, which can provide more sensitive and accurate results compared
32 33	61	to traditional echocardiography.
34	62	• The study only included patients with DLBCL who received R-CHOP, which may limit the
35	63	generalizability of the findings to patients with other types of cancer or chemotherapy
36 37	64	regimens.
38	65	• Additional studies are necessary to fully evaluate the benefits and limitations of HDL-C as a
39	66	cardio-protective strategy in anthracycline-treated cancer patients.
40	67	
41	68	INTRODUCTION
43	69	The improved management of cancer has led to a significant increase in the survival rate of cancer
44	70	survivors(1). However, anthracycline, one of the most effective chemotherapeutic agents used to
45 46	71	treat various cancers, is associated with potentially life-threatening and severe cardiovascular
47	72	diseases(2). Studies have shown a significant increase in mortality in cancer patients with
48	73	cardiovascular disease(3, 4). As advances in cancer treatment and an aging population continue,
49 50	74	the number of patients with both conditions is rising(5). As a result, the field of cardio-oncology
50 51	75	has become increasingly important in recent years.
52	76	Non-Hodgkin's lymphoma (NHL) is the 7th most common cancer in the United States and the
53	77	most frequent hematologic malignancy globally accounting for about 3% of cancer cases and
54 55	78	deaths(6) Among NHL DLBCL is the most prevalent type representing approximately one-third
56	79	of all cases(7) The combination of cyclophosphamide vincristing doxorubicin and prednisone
57		er an enses()). The complementation of cyclophosphannac, theristine, dovorablem, and preamsone
58		
59		

with rituximab (R-CHOP) is a standard first-line therapy that has substantially improved survival
 outcomes in DLBCL patients(8). Nonetheless, anthracycline-containing chemotherapy agents are
 associated with cardiotoxicity, a major long-term adverse effect that significantly affects the
 quality of life and survival of cancer survivors.

Anthracycline-induced cardiotoxicity (AIC) is a devastating consequence of successful cancer treatment, often leading to hypokinetic cardiomyopathy and ultimately heart failure. AIC is an irreversible form of cardiac dysfunction for which no guidelines or accepted therapies for cardioprotection currently exist(9, 10). Therefore, early prevention and detection of AIC are crucial for providing opportunities for early intervention. Anthracycline-induced subclinical cardiotoxicity (AISC) is an early stage of AIC, characterized by abnormal echocardiography index without clinical symptoms(11). Early intervention is recommended by the 2022 International Cardio-Oncology Society (IC-OS) consensus statement once AISC is detected(12). Global longitudinal peak systolic strain (GLS) measured by 2D speckle tracking echocardiography can reliably identify most early myocardial deformation variations. In our study, we used early measurement of GLS to identify AISC(13, 14).

- High-density lipoprotein (HDL) is the sole lipoprotein with protective attributes among the five types of lipoproteins. Its salutary effects include antioxidant, anti-inflammatory, and anti-apoptotic properties. Numerous preclinical investigations have suggested that HDL may have direct and indirect protective effects against AIC(15-17). However, clinical data on the relationship between HDL and anthracycline-related cardiotoxicity are currently limited.
- We undertook an observational prospective study to investigate the potential impact of HDL on AISC. Using 2D speckle tracking echocardiography, we identified AISC and sought to establish any correlation between HDL and AISC. Additionally, we assessed the fluctuations in HDL-cholesterol (HDL-C) levels during R-CHOP chemotherapy in chemotherapy-naïve patients recently diagnosed with DLBCL.

106 METHODS

107 Study population

We recruited chemotherapy-naïve patients newly diagnosed with DLBCL who were scheduled to receive the standard dose of R-CHOP chemotherapy regimen at our institution from September 1st, 2020, to September 1st, 2022. Our inclusion criteria were as follows: newly diagnosed DLBCL, age between 18 and 80 years; both sex (male and female), Eastern Cooperative Oncology Group (ECoG) performance status ≤ 2 , left ventricular ejection fraction (LVEF) $\geq 50\%$, and acceptable bone marrow, renal, and hepatic functions for chemotherapy. Conversely, our exclusion criteria were symptomatic heart failure, a history of myocardial ischemia, myocarditis, myocardial infarction, clinical or subclinical pericardial effusion, arrhythmia requiring medical intervention, a history of other cancers, under lipid-lowing treatment, and severe active infections such as syphilis, hepatitis, or human immunodeficiency virus (HIV) infection.

54 118 Treatment

- Patients received a total of 6 cycles of standard R-CHOP (cyclophosphamide at 750 mg/m² on D1, doxorubicin at 50 mg/m² on D1, vincristine at 1.4 [maximum 2] mg/m² on D1, and 100 mg prednisone on D1-5, with rituximab at 375 mg/m² on D1 in each cycle), with or without 2 cycles of rituximab maintenance (rituximab at 375 mg/m^2 on D1 in each cycle). None of the patients in our study received lipid-lowering treatment during the follow-up period. **Definition of subclinical cardiotoxicity** According to the IC-OS consensus statement, the definition of subclinical cardiotoxicity was a relative GLS decrease from baseline [(baseline – current GLS)/baseline GLS] of >12%, but with a normal left ventricular ejection fraction (LVEF)(12). **Study protocol** This is an observational prospective study. The study was registered in the Chinese Clinical Trial (Approval NO. ChiCTR2100054721). The study was conducted in accordance with the Declaration of Helsinki and approved by the ethics committee of the First Affiliated Hospital of Chongqing Medical University (Approval NO. 2018-016). And all participating patients provided written informed consent. At baseline, the end of the 3rd cycle of R-CHOP, the end of the 6th cycle of R-CHOP, and 6 and 12 months after chemotherapy completion, all enrolled patients underwent conventional echocardiography, 2D speckle tracking echocardiography, and blood sampling. Demographic data and clinical variables, including age, gender, body mass index (BMI), ECoG performance status, diabetes mellitus, hypertension, drinking history, and smoking history were collected at the time of enrollment. Left ventricular systolic dysfunction was measured by LVEF, fractional shortening (FS), left ventricular mass index (LVMI), left ventricular diastolic dimension (LVDd), E, e', E/e', and GLS. HDL-C, ApoA1, low-density lipoprotein cholesterol (LDL-C), cardiac troponin T (cTnT), high sensitivity C-reactive protein (hsCRP), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), total cholesterol (TC) and total triglyceride (TG) were measured. We used the baseline HDL-C level as a surrogate marker for HDL quantity. The patients were categorized into two groups based on the average HDL-C value for males and females in the modified criteria of the National Cholesterol Educated Program Adult Treatment Panel (NCEP ATP III)(18). High HDL-C was defined as a serum HDL-C>1.16mmol/L, while low HDL-C was defined as a serum HDL-C<1.16mmol/L. Statistical analysis The study was conducted with two aims: firstly, to evaluate the relationship between HDL and AISC; and secondly, to conduct a preliminary exploration of the differences in HDL-C and the variability of HDL-C changes between patients with and without AISC during the follow-up
- period. Continuous variables were expressed as mean± standard deviation (SD) and compared using the t-test. Non-normally distributed variables were presented as median (O1- O3) and compared with the Wilcoxon Mann-Whitney test. Categorical variables were expressed as n (%) and compared using the Chi-square or Fisher's exact test, as appropriate. Correlation analysis was conducted to investigate the associations of change in HDL-C with change in GLS. Multiple hypothesis tests were performed using the Bonferroni adjustment. The probabilities of survival

were calculated using Kaplan-Meier methods and compared using Log-rank tests. Cox proportional-hazards regression models were conducted to assess the association between variables and AISC. Covariates for multivariable Cox regression models included age, sex, and variables that had a P-value of less than 0.15 in the univariable Cox regression analysis (GLS was excluded as it is the factor that defines AISC). Two multivariable Cox regression models were constructed: the first model included age and sex; and the second model included age, sex, hypertension, BMI, and E. Statistical analysis and visualization were performed using IBM SPSS V.22.0 and GraphPad Prism 8. X-Tile software was conducted to calculate the cut-off point of ApoA1(19), with the optimal cut-off value (the lowest P-value under the log-rank test) being 1.02g/L. All statistical tests were two-sided, with a P-value less than 0.05 being considered statically significant. Patient and public involvement Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

RESULTS

Assessment of the association between HDL-C and AISC Assessment of the association between HDL-C and AISC

- 26 176 Study population and baseline characteristics
- This investigation enrolled a total of 70 patients with chemotherapy-naïve DLBCL and were planned to be treated with the standard R-CHOP regimen. Based on the baseline HDL-C level, we segregated the patients into two groups: the high-level group (HDL-C \geq 1.16mmol/L, n=28) and the low-level group (HDL-C<1.16mmol/L, n=42). Patients with drinking history had a greater chance of having a high HDL-C level (P=0.034). The patients with high HDL-C showed substantially higher total cholesterol (P=0.011), lower total triglyceride (P=0.002), and higher ApoA1 (P<0.001). The baseline characteristics of the patients in both groups were well balanced (Table S1).
- 38 185

High HDL-C was an independent protective target of anthracycline-induced subclinical

41 187 *cardiotoxicity*

The clinical endpoint was defined as the first detection of AISC, and the median survival time of the whole cohort was 16 months. The median survival time of patients with low HDL-C was 4 months, while that of patients with high HDL-C was not reached. The median follow-up time of the cohort was 10 months. During the follow-up period, 24 patients experienced AISC, while 10 did not. Approximately half of the patients (n=36) were censored. A flowchart detailing the patients enrolled in the study and the reasons for censored patients can be found in Figure S1.

The log-rank test revealed that patients with higher HDL-C were less likely to experience AISC
(P=0.001, HR=0.26, 95%CI: 0.12-0.58) (Figure S2a). However, there were no significant differences in AISC occurrence between different ApoA1 levels (P=0.123, HR=0.54, 95%CI: 0.20-1.45) (Figure S2b).

BMJ Open

According to the results of the univariable Cox regression analysis, variables that had a P-value of less than 0.15 including age, BMI, hypertension, GLS, E, and HDL-C group. Increasing age was significantly associated with a decreased HR of 0.97 (95%CI 0.943-0.998, P=0.034) per 1-year increase. BMI showed a HR of 1.09 (95% CI 0.97-1.22, P=0.139) per 1 kg/m2 increase. Similarly, hypertension had a HR of 0.22 (95% CI 0.03-1.62, P=0.136) for yes versus no. A lower GLS was significantly associated with an increased HR of 1.46 (95% CI 1.20-1.77, P<0.001) per -1% decrease. E velocity showed a HR of 1.03 (95% CI 1.00-1.06, P=0.075) per 1 cm/s increase. The HDL-C group (high versus low) had a significantly lower HR of 0.24 (95% CI 0.09-0.67, P=0.006). Further details about other variables can be found in Table S2.

The results of the multivariable Cox regression analysis showed that high HDL-C was significantly associated with a lower risk of AISC after adjusting for age and sex (model 1) (HR=0.28, 95%CI:0.10=0.84, P=0.018). Similarly, after adjusting for age, sex, and variables that P<0.15 in the univariable Cox regression analysis (excluding GLS as it defines AISC) (model 2), the same association was observed (HR=0.27, 95%CI: 0.09-0.79, P=0.017). In contrast, ApoA1 did not show any influence on AISC in either of the two regression models (P=0.401 and P=0.237). (Table 1)

214 Table 1. Outcomes of study participants.

- 1 -		nes of study pure	ioipuilits.				
		HR (95%CI)	P values	HR (95%CI)	P values	HR (95%CI)	Р
		(unadjusted)		(adjusted*)		(adjusted [#])	values
	Low HDL-C	Ref		Ref		Ref	
	High HDL-C	0.24 (0.09-0.67)	0.006	0.28 (0.10-0.80)	0.018	0.27 (0.09- 0.79)	0.017
	Low ApoA1	Ref		Ref		Ref	
	High ApoA1	0.54 (0.22-1.29)	0.165	0.66 (0.26-1.73)	0.401	0.54 (0.19-1.50)	0.237
215	The endpoint was defined as the first detection of anthracycline-induced subclinical						
216	cardiotoxicity.						
217	Low HDL-C: HDL-C<1.16mmol/L; High HDL-C: HDL-C≥1.16mmol/L. Low ApoA1:						
218	ApoA1<1.02g/I	L; High ApoA1:	ApoA1≥	1.02g/L. *Adju	sted for a	ige and sex. #Ad	justed for a

sex, hypertension, body mass index, E. HR, hazard ratio; HDL-C, high-density lipoproteincholesterol, ApoA1, apolipoprotein A1.

Preliminary exploration of the difference of HDL-C between patients with AISC and without AISC

43 224 *Study population and baseline characteristics*

In this analysis, we selectively included 34 of the enrolled patients who remained uncensored. The patients who exhibited AISC at any time during the follow-up period were segregated into the AISC group (n=24), while those who did not demonstrate AISC were classified into the NO-AISC group (n=10). Patients within the AISC group were comparatively younger (50±12.45 vs. 59.7±9.67, P=0.035) and exhibited a higher baseline GLS [22.0 (21.0, 22.8) vs. 18.0 (17.0, 20.0), P<0.001]. More baseline information can be seen in Table S3.

⁵² 231 *Timeline of HDL-C level in patients with and without AISC*

Figure 1 displays the timeline of HDL-C levels in patients with and without AISC. In Figure 1a, the patient population was categorized into four groups based on the time of AISC detection.

Among the groups, 12 patients were identified with AISC at the end of the 3rd cycle of chemotherapy, 7 patients at the end of the 6th cycle, 3 patients at 6 months after treatment completion, and 2 patients at 12 months after treatment completion. With the exception of the group in which patients detected AISC at the end of the 3rd cycle of chemotherapy, all other groups exhibited a reduction in HDL-C values from the end of the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy. Figure 1b portrays the HDL-C level in patients without AISC, indicating that the HDL-C level was more stable than in patients with AISC. Moreover, the overall HDL-C level was higher in patients without AISC than in patients with AISC throughout the follow-up period (Figure 2a). In Figure 2b, there was a significant decrease in GLS during the chemotherapy period (from 0-4 months), which remained stable after completion of chemotherapy (after 4 months) in patients with AISC.

Based on Figure 2, we observed that the fluctuations in HDL-C and GLS were most pronounced during the chemotherapy period. The fluctuations in HDL-C levels of patients with DLBCL during R-CHOP chemotherapy were presented in Figure 3. The levels of HDL-C significantly increased for all patients from baseline to the end of the 3rd cycle of chemotherapy (P=0.012) and significantly decreased from the end of the 3rd cycle to the end of the 6th cycle of chemotherapy (P=0.034) (Figure 3a). Patients with AISC showed a significant decrease in HDL-C levels during R-CHOP chemotherapy from the end of the 3rd cycle to the end of the 6th cycle (P=0.003) (Figure 3b). However, no significant difference was observed in HDL-C levels for patients without AISC during R-CHOP chemotherapy (Figure 3c). We conducted correlation analysis separately for the change in HDL-C and GLS from baseline to after 3 cycles of chemotherapy, from baseline to after 6 cycles of chemotherapy, and from after 3 cycles to after 6 cycles of chemotherapy. However, we found no statistically significant differences in the associations between changes in HDL-C and GLS (P=0.965, 0.087, 0.449).

35 258 Contrasting values of HDL-C parameters between patients with and without AISC

Figure 4 presents the contrasting values between patients with AISC and those without in terms of four parameters, namely the highest and lowest levels of HDL-C during chemotherapy, the increment and decline in HDL-C values from baseline. Patients without AISC showed significantly higher values in the highest level of HDL-C $(1.52\pm0.49 \text{ vs. } 1.22\pm0.29, \text{ P}=0.034, \text{ Figure 4a})$. However, no significant differences were observed between the two groups in terms of HDL-C increment from baseline to the highest value (0.31±0.31 vs. 0.22±0.23, P=0.386, Figure 4b). While the lowest level of HDL-C was lower in patients with AISC, the difference was not statistically significant (0.84±0.16 vs. 1.03±0.41, P=0.182, Figure 4c). Furthermore, there were no significant differences in HDL-C decline between patients with AISC and those without (0.16±0.20 vs. 0.18±0.26, P=0.777, Figure 4d).

270 DISCUSSION

This prospective observational study investigated the relationship between HDL-C and incidence
 of AISC in 70 patients with DLBCL who were receiving anthracycline-containing chemotherapy.
 The study found that higher levels of HDL-C were associated with a lower incidence of AISC.

Moreover, patients without AISC had more stable and higher levels of HDL-C than those with AISC during the follow-up period. The results also showed that HDL-C levels were significantly decreased from the end of the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy in all patients, especially in the AISC group, indicating that anthracycline-containing chemotherapy has adverse effects on HDL-C levels. Notably, the highest level of HDL-C was significantly higher in patients without AISC compared to those with AISC. These findings suggest that HDL-C may have a protective role against AISC in DLBCL patients undergoing anthracycline-containing chemotherapy and maintaining a relatively high level of HDL-C may be more effective in managing cardio-protection than monitoring changes in HDL-C levels over time. The results of this study highlight the importance of early serum lipid management in these patients.

Lipoproteins are classified into five categories, namely chylomicron, very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), based on their size, density, and lipid composition (cholesterol and triglycerides)(20). Among these, HDL exhibits distinctive cytoprotective actions and triggers anti-oxidative, anti-inflammatory, and anti-apoptotic effects. The protective roles of HDL in cardiovascular disease have been controversial in recent years, and that the quality of HDL (cholesterol efflux capacity, antioxidant activity, anti-inflammatory activity, endothelial function, etc.) rather than the quantity of HDL has been proposed as the true cardioprotective effect. The Framingham Heart Study, as early as 1988, reported a correlation between HDL-C and cardiovascular mortality(21). Recent studies have challenged the HDL-C hypothesis by revealing that HDL-C level is not inversely correlated with cardiovascular diseases(22, 23). In our study, we used the baseline HDL-C level as a surrogate marker for HDL quantity, but we did not directly measure the quality of HDL. Measuring the level of HDL-C in serum is a commonly used method to assess the effect of HDL on cardiovascular health. HDL facilitates the transportation of cholesterol from the body's tissues back to the liver, and higher levels of HDL-C are generally associated with a lower risk of heart disease. Nevertheless, it's crucial to note that HDL-C levels may not accurately reflect the functional properties of HDL. ApoA1, the most abundant protein in HDL, is associated with several beneficial effects of HDL(15, 24). The function and abundance of ApoA1 are reported to play a dominant role in HDL quality(25). In the context of AIC, several studies have indicated that HDL can protect against anthracycline-induced cardiomyocyte apoptosis and atrophy in isolated cardiomyocytes(26, 27) and animal models(16, 27). Based on these earlier trials, HDL-C and ApoA1 could serve as protective factors against anthracycline-related cardiovascular disease. However, our study results indicate that there was no significant association observed between ApoA1 and AISC in patients with DLBCL who were treated with R-CHOP. It's possible that factors other than HDL function, such as genetics or inflammation, may affect ApoA1 levels. Furthermore, we must acknowledge that our study was observational in nature and, therefore, cannot establish causality. Additionally, other unmeasured factors may have contributed to the observed relationship between HDL-C levels and AISC risk.

As far as we know, few clinical studies have investigated the association between HDL-C and AISC. This study is the first clinical trial that utilizes the IC-OS consensus statement(12) to define subclinical cardiotoxicity, with univariate and multivariable analyses being used to identify the influential factors of AISC in DLBCL patients in this cohort. Kaplan-Meier methods and Log-rank tests reveal that patients with high HDL-C levels were less likely to develop AISC. After subjecting it to univariate and multivariable Cox regression methods, high HDL-C levels still showed statistically significant differences. These results suggest that high HDL-C could be a potentially independent protective factor for AISC in DLBCL patients and provide an opportunity for investigators to develop a tool for early intervention and prevention of AISC. Further research is necessary to confirm our findings.

Several studies have demonstrated that serum lipid levels are altered during anthracycline-containing chemotherapy in cancer patients(28, 29). Huxley et al and Averina et al have shown that imbalanced serum lipid distribution is a risk factor for cardiovascular disease(30, 31). As a result, anthracycline-containing treatment can induce dyslipidemia and facilitate the occurrence and development of cardiovascular diseases in cancer patients. In a study of 394 breast cancer patients, Xin et al found that HDL-C levels after chemotherapy were significantly lower than those before chemotherapy(32). Similarly, Lu et al and Hana et al found that HDL-C levels were significantly decreased during anthracycline-containing chemotherapy in patients with breast cancer(33, 34). In our study, we specifically assessed the changes in HDL-C levels over time during follow-up. Except for the group of patients who experienced AISC at 12 months after treatment completion, HDL-C levels in all other groups increased from baseline to the 3rd cycle of chemotherapy. This phenomenon may be due to the fact that anti-tumor drugs require cholesterol to cross cell membranes(35). However, HDL-C levels were significantly decreased from the end of the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy in all patients, especially in the AISC group, which is consistent with previous research results(32-34), and further confirmed that anthracycline-contained chemotherapy has adverse effects on HDL-C levels in DLBCL patients. The HDL-C level in patients without AISC was more stable than that in patients with AISC. Therefore, anthracycline-containing chemotherapy may promote the occurrence and development of cardiotoxicity in DLBCL patients by inducing HDL-C turbulence. Besides, the findings of our study indicate a significant decrease in GLS during the chemotherapy period in patients with AISC. This result is consistent with previous research, which has reported that doxorubicin dose at the range of 100-150mg/m² can cause cardiotoxicity(36). Notably, we also observed that GLS remained stable after completion of chemotherapy, suggesting that the cardiac effects of anthracycline-based chemotherapy may be dose-related. These findings have important implications for the monitoring and management of cardiotoxicity in patients undergoing anthracycline-based chemotherapy, as early detection of cardiac dysfunction during treatment may improve patient outcomes. We investigated the associations of change in HDL-C with change in GLS, no statistically significant differences were found.

The analysis of HDL-C levels should not only consider the changes over time, but also the absolute
 values. In our study, patients without AISC had significantly higher absolute highest HDL-C levels

BMJ Open

than those with AISC, while the absolute lowest HDL-C levels did not differ significantly between the two groups. The alterations from HDL-C extremes to baseline did not exhibit any variation between the groups either. This suggests that the highest absolute HDL-C value was a preferable indicator of AISC protection than the change in HDL-C from baseline to the extremum value. Maintaining a relatively high level of HDL-C may be more effective in managing the cardio-protection of anthracycline-treated cancer patients than monitoring changes in HDL-C levels over time.

In our investigation, we observed that among the four patients with pre-existing hypertension, only one patient experienced AISC during the follow-up (Table S3). Although there was no statistically significant difference, it appears that patients with pre-existing hypertension were less likely to experience AISC. Hypertension, a common risk factor for both cancer and cardiovascular diseases, was also recognized as a risk factor for cardiotoxicity. Studies have reported that pre-existing hypertension was associated with anthracycline-and trastuzumab induced left ventricular ejection fraction (LVEF) decline in a retrospective study(37), and early left ventricular systolic dysfunction in patients with lymphoma receiving (R)-CHOP in a prospective study(38). However, in our study, multivariable Cox regression analysis showed that hypertension had no influence on AISC (P>0.05). However, in our investigation, multivariable Cox regression analysis showed that hypertension did not have a significant impact on AISC (P>0.05). We noted that all patients with hypertension were under a single antihypertensive drug regimen (beta-blockers or ACEI/ARB) to manage their blood pressure. Two meta-analyses have demonstrated that beta-blockers and ACEI can prevent cardiotoxicity caused by chemotherapy (39, 40). We speculate that the protective effects of beta-blockers and ACEI/ARB may have contributed to the result observed in our study regarding the relationship between hypertension and AISC.

There are several limitations to our study that must be acknowledged. Firstly, while our study highlights the potential importance of HDL-C in managing AISC, additional studies are necessary to fully evaluate the benefits and limitations of HDL-C as a cardio-protective strategy in anthracycline-treated cancer patients. Secondly, this is a single-center observational prospective study with a medium sample size. To confirm our findings, a larger sample size study conducted at multiple centers is needed. Thirdly, previous studies have suggested that there may be a reversed U-shaped relationship between HDL-C levels and cardiovascular diseases(41). Due to the small sample size of this study, we didn't further investigate the influence of extremely high levels of HDL-C on cardiotoxicity, and further clinical studies should be done to verify it. However, due to the small sample size of our study, we did not investigate the potential impact of extremely high HDL-C levels on cardiotoxicity. Further clinical studies are required to explore this issue. Besides, the measurement of GLS was only taken at baseline and at several points throughout the chemotherapy treatment and follow-up period. It is crucial to extend the duration of follow-up in future research to obtain a more comprehensive understanding of the long-term effects of anthracycline treatment on cardiovascular health.

 CONCLUSIONS

In conclusion, our observational prospective study suggests that higher levels of HDL-C may be associated with a lower risk of AISC in patients with DLBCL treated with R-CHOP chemotherapy. HDL-C levels remained stable and consistently higher in patients without AISC compared to those with AISC. Additionally, the highest absolute HDL-C value was found to be a preferable indicator of AISC protection. These findings suggest that HDL-C may be a potential cardio-protective target for managing AISC in this patient population. However, further research is needed to confirm and expand on these findings, including determining the optimal HDL-C level for cardio-protection and the potential benefits of early serum lipid management.

402 ACKNOWLEDGMENTS

The authors would like to thank all the nurses, other medical workers and patients' families who assisted in this study.

COMPETING INTERESTS

407 The authors declare no conflict of interest.

409 FUNDING

This research was funded by the Science-Health Joint Medical Scientific Research Project of Chongqing "Study of antineoplastic drugs induced early cardiotoxicity in patients with Lymphoma " (Grant No. 2021MSXM276), the Natural Science Foundation of Chongging "The mechanism of doxorubicin promoting atherosclerosis in lymphoma patients through NF-kB/miR-33 signaling pathway" (Grant No. cstc2019jcyj-msxmX0043), the Science-Health Joint Medical Scientific Research Project of Chongqing "Evaluation of cardiac function in patients with anthracycline chemotherapy by a new strain imaging technique" (Gant No. 2019ZDXM033), and the Chongqing Postgraduate Scientific Research and Innovation Project "Study on the role of high-density lipoprotein in anthracycline-induced subclinical cardiotoxicity in patients with lymphoma" (Grant No. CYS22340).

40 421 AUTHOR CONTRIBUTIONS

Conceptualization, Wenxin Ou, Tiantian Jiang, Nan Zhang, Kai Lu, Yue Weng, Xi Zhou, Dong Wang, Qian Dong and Xiaoqiong Tang; Data curation, Wenxin Ou, Tiantian Jiang, Yue Weng and Xi Zhou; Formal analysis, Wenxin Ou and Tiantian Jiang; Funding acquisi-tion, Wenxin Ou, Nan Zhang, Dong Wang and Xiaoqiong Tang; Investigation, Dong Wang, Qian Dong and Xiaoqiong Tang; Methodology, Wenxin Ou, Tiantian Jiang, Nan Zhang, Kai Lu, Yue Weng, Xi Zhou, Dong Wang, Qian Dong and Xiaoqiong Tang; Resources, Dong Wang, Qian Dong and Xiaoqiong Tang; Supervision, Qian Dong and Xiaoqiong Tang; Validation, Nan Zhang and Kai Lu; Visualization, Wenxin Ou and Tiantian Jiang; Writing - original draft, Wenxin Ou; Writing - review & editing, Wenxin Ou, Tiantian Jiang, Nan Zhang, Kai Lu, Yue Weng, Xi Zhou, Dong Wang, Qian Dong and Xiaoqiong Tang. Qian Dong and Xiaoqiong Tang contributed equally to this work and are considered as co-corresponding authors.

1		
2		
3	433	
4 5	434	DATA AVAILABILITY STATEMENT
6	435	Data are available upon reasonable request.
7	436	
8	437	REFERENCE
9 10	438	1 Rosen MR Myerburg R.L Francis DP Cole GD Marbán E Translating stem cell
10	439	research to cardiac disease therapies: pitfalls and prospects for improvement. J Am Coll
12	440	Cardiol. 2014;64(9):922-37.
13	441	2. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular
14	442	advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol
15	443	Rev. 2004;56(2):185-229.
16	444	3. Hasin T, Gerber Y, McNallan SM, Weston SA, Kushwaha SS, Nelson TJ, et al. Patients
17	445	with heart failure have an increased risk of incident cancer. J Am Coll Cardiol. 2013;62(10):881-
18	446	6.
19	447	4. Abdel-Qadir H, Austin PC, Lee DS, Amir E, Tu JV, Thavendiranathan P, et al. A
20	448	Population-Based Study of Cardiovascular Mortality Following Early-Stage Breast Cancer.
21	449	JAMA Cardiol. 2017;2(1):88-93.
22	450	5. Stoltzfus KC, Zhang Y, Sturgeon K, Sinoway LI, Trifiletti DM, Chinchilli VM, et al. Fatal
23	451	heart disease among cancer patients. Nat Commun. 2020;11(1):2011.
25	452	6. Thandra KC, Barsouk A, Saginala K, Padala SA, Barsouk A, Rawla P. Epidemiology of
26	453	Non-Hodgkin's Lymphoma. Med Sci (Basel). 2021;9(1).
27	454	7. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US
28	455	lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin.
29	456	2016;66(6):443-59.
30	457	8. Salles G, Barrett M, Foà R, Maurer J, O'Brien S, Valente N, et al. Rituximab in B-Cell
31	458	Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv Ther.
32	459	2017;34(10):2232-73.
33	460	9. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline
34	461	Chemotherapy and Cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63-75.
35	462	10. Russell RR, Alexander J, Jain D, Poornima IG, Srivastava AV, Storozynsky E, et al. The
30	463	role and clinical effectiveness of multimodality imaging in the management of cardiac
38	464	complications of cancer and cancer therapy. J Nucl Cardiol. 2016;23(4):856-84.
39	465	11. Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, et al. Management of
40	466	cardiac disease in cancer patients throughout oncological treatment: ESMO consensus
41	467	recommendations. Ann Oncol. 2020;31(2):171-90.
42	468	12. Herrmann J, Leninan D, Armenian S, Barac A, Blaes A, Cardinale D, et al. Defining
43	469	cardiovascular toxicities of cancer inerapies: an international Cardio-Oncology Society (IC-OS)
44	470	CONSENSUS Statement. Eur Heart J. 2022,43(4).200-99.
45	471	railan-Rau N, Walker JR, Wasser A, Lytwyll W, Dononis S, Fang T, et al. The utility of
46	472	in prodicting early left ventricular dysfunction in patients with human endermal growth factor
4/	473	receptor II-positive breast cancer treated with adjuvant trasturuman therapy. I Am Coll Cardiol
48	474	
49 50	475	14 Negishi K. Negishi T. Haluska BA. Hare, II. Plana, IC. Marwick TH. Use of speckle strain
51	477	to assess left ventricular responses to cardiotoxic chemotherany and cardioprotection. Fur
52	478	Heart J Cardiovasc Imaging, 2014;15(3):324-31
53	479	15. Kluck GEG, Durham KK, Yoo JA, Trigatti BI High Density Lipoprotein and Its Precursor
54	480	Protein Apolipoprotein A1 as Potential Therapeutics to Prevent Anthracycline Associated
55	481	Cardiotoxicity. Front Cardiovasc Med. 2020:7:65.
56		
57		
58		
59		For neer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml
60		for peer review only intep.//onljopen.onlj.com/site/about/guidemes.xhtml

16. Durham KK. Chathelv KM. Mak KC. Momen A. Thomas CT. Zhao YY. et al. HDL protects against doxorubicin-induced cardiotoxicity in a scavenger receptor class B type 1-, PI3K-, and Akt-dependent manner. Am J Physiol Heart Circ Physiol. 2018;314(1):H31-h44. Van Linthout S, Frias M, Singh N, De Geest B. Therapeutic potential of HDL in 17. cardioprotection and tissue repair. Handb Exp Pharmacol. 2015;224:527-65. Executive Summary of The Third Report of The National Cholesterol Education Program 18. (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama. 2001;285(19):2486-97. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker 19. assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004;10(21):7252-9. Mahley RW, Innerarity TL, Rall SC, Jr., Weisgraber KH. Plasma lipoproteins: 20. apolipoprotein structure and function. J Lipid Res. 1984;25(12):1277-94. Wilson PW, Abbott RD, Castelli WP. High density lipoprotein cholesterol and mortality. 21. The Framingham Heart Study. Arteriosclerosis. 1988;8(6):737-41. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of 22. dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089-99. Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, et al. 23. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. N Engl J Med. 2017;376(20):1933-42. Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel 24. therapies. J Clin Invest. 2006;116(12):3090-100. Smith JD. Dysfunctional HDL as a diagnostic and therapeutic target. Arterioscler Thromb 25. Vasc Biol. 2010;30(2):151-5. 26. Brinck JW, Thomas A, Brulhart-Meynet MC, Lauer E, Frei C, Dahlbäck B, et al. High-density lipoprotein from end-stage renal disease patients exhibits superior cardioprotection and increase in sphingosine-1-phosphate. Eur J Clin Invest. 2018;48(2). Durham KK, Kluck G, Mak KC, Deng YD, Trigatti BL. Treatment with apolipoprotein A1 27. protects mice against doxorubicin-induced cardiotoxicity in a scavenger receptor class B, type I-dependent manner. Am J Physiol Heart Circ Physiol. 2019;316(6):H1447-h57. Bicakli DH, Varol U, Degirmenci M, Tunali D, Cakar B, Durusov R, et al. Adjuvant 28. chemotherapy may contribute to an increased risk for metabolic syndrome in patients with breast cancer. J Oncol Pharm Pract. 2016;22(1):46-53. Rzymowska J. Effect of cytotoxic chemotherapy on serum lipid levels in breast cancer 29. patients. Pathobiology. 1999;67(3):129-32. 30. Huxley R, Lewington S, Clarke R. Cholesterol, coronary heart disease and stroke: a review of published evidence from observational studies and randomized controlled trials. Semin Vasc Med. 2002;2(3):315-23. Averina M, Nilssen O, Brenn T, Brox J, Arkhipovsky VL, Kalinin AG. Factors behind the 31. increase in cardiovascular mortality in Russia: apolipoprotein AI and B distribution in the Arkhangelsk study 2000. Clin Chem. 2004;50(2):346-54. Li X, Liu ZL, Wu YT, Wu H, Dai W, Arshad B, et al. Status of lipid and lipoprotein in 32. female breast cancer patients at initial diagnosis and during chemotherapy. Lipids Health Dis. 2018;17(1):91. Kalábová H, Melichar B, Ungermann L, Doležal J, Krčmová L, Kašparová M, et al. 33. Intima-media thickness, myocardial perfusion and laboratory risk factors of atherosclerosis in patients with breast cancer treated with anthracycline-based chemotherapy. Med Oncol. 2011;28(4):1281-7. 34. Lu Q, Wu X, Zhu Y, Yang J, Wang X, Ye C, et al. Effects of Chemotherapy on Serum Lipids in Chinese Postoperative Breast Cancer Patients. Cancer Manag Res. 2020;12:8397-408.

1 ว		
2 3	533	35 Zhang L Bennett WE Zheng T Ouvang PK Ouvang X Qiu X et al. Effect of
4	534	Cholesterol on Cellular Uptake of Cancer Drugs Pirarubicin and Ellipticine. J Phys Chem B.
5	535	2016;120(12):3148-56.
7	536	36. Blanco JG, Sun CL, Landier W, Chen L, Esparza-Duran D, Leisenring W, et al.
8	537	Anthracycline-related cardiomyopathy after childron's Opeology Croup, J Clip Opeol, 2012;20(12):1415
9	530 530	21
10	535 540	37. Hamirani Y. Fanous I. Kramer CM. Wong A. Salerno M. Dillon P. Anthracycline- and
12	541	trastuzumab-induced cardiotoxicity: a retrospective study. Med Oncol. 2016;33(7):82.
13	542	38. Szmit S, Jurczak W, Zaucha JM, Drozd-Sokołowska J, Spychałowicz W, Joks M, et al.
14	543	Pre-existing arterial hypertension as a risk factor for early left ventricular systolic dysfunction
15	544 545	tollowing (R)-CHOP chemotherapy in patients with lymphoma. J Am Soc Hypertens.
10	546	39 Shah P. Garris R. Abboud R. Vasudev R. Patel H. Doshi R. et al. Meta-Analysis
18	547	Comparing Usefulness of Beta Blockers to Preserve Left Ventricular Function During
19	548	Anthracycline Therapy. Am J Cardiol. 2019;124(5):789-94.
20	549	40. Dong H, Yao L, Wang M, Wang M, Li X, Sun X, et al. Can ACEI/ARB prevent the
21	550	cardiotoxicity caused by chemotherapy in early-stage breast cancer?-a meta-analysis of
22	551 552	randomized controlled trials. I ransi Cancer Res. 2020;9(11):7034-43.
24	553	transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis underlies the U-shape
25	554	relationship between HDL-cholesterol and cardiovascular disease. Eur J Prev Cardiol.
26 27	555	2020;27(15):1606-16.
27	556	
29	557	
30	558	FIGURE LEGENS
31 32	559	Figure 1. (a) Timeline of high-density lipoprotein cholesterol (HDL-C) levels in patients
33	560	detected anthracycline-induced subclinical cardiotoxicity (AISC) at four time points. 12 patients
34	561	were detected AISC at the end of the 3rd cycle of chemotherapy. 7 patients were detected AISC
35	562	at the end of the 6th cycle of chemotherapy. 3 patients were detected AISC at 6 months after
36 37	563	treatment completion 2 patients were detected AISC at 12 months after treatment completion
38	564	(b) Timeline of HDL-C levels of patients without AISC
39	565	Figure 2 Timeline of high-density linonrotein cholesterol (HDL-C) levels (a) and global
40	566	longitudinal strain (GLS) (b) in patients with and without anthracycline-induced subclinical
41 42	567	cardiotoxicity (AISC) during the whole follow up period
43	507	Figure 2 (a) Changes of high density linearetain shelestered (UDL C) in all nationts from
44	508	Figure 5. (a) Changes of high-density hopfotein cholesterol (HDL-C) in an patients from
45	569	baseline to the end of the oth cycle of chemotherapy. (b) Changes of HDL-C in patients with
46 47	570	anthracycline-induced subclinical cardiotoxicity (AISC). (c) Changes of HDL-C in patients
48	571	without AISC.
49	572	Figure 4. High-density lipoprotein cholesterol (HDL-C) differences between anthracycline-
50	573	induced subclinical cardiotoxicity (AISC) and No-AISC. (a) Highest level of HDL-C during
51	574	chemotherapy. (b)The HDL-C value increment from baseline to the highest value. (c) The lowest
53	575	level of HDL-C during chemotherapy. (d) The HDL-C value declined from baseline to the
54	576	lowest.
55		
56 57		
58		
59		

1 2		
3 ⊿	577	Figure S1. Flow diagram of patients enrolled in our observational research and reasons for
5	578	censored patients.
6 7	579	Figure S2. Kaplan-Meier curves of the percentage of patients without AISC in patients stratified
8	580	by HDL-C level (a) and ApoA1 level (b). High HDL-C: HDL-C \geq 1.16mmol/L. Low HDL-C:
9 10	581	HDL-C<1.10mmol/L. High ApoA1. ApoA1 \geq 1.02g/L. Low ApoA1. ApoA1<1.02g/L. AISC,
11 12	583	lipoprotein cholesterol: HR, hazard ratio.
12	584	F · · F
14 15	585	
16		
17 18		
19 20		
20		
22 23		
24		
25 26		
27 28		
29		
30 31		
32 33		
34		
35 36		
37 38		
39		
40 41		
42 43		
44		
45 46		
47		
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 28

BMJ Open

Figure 2. Timeline of high-density lipoprotein cholesterol (HDL-C) levels (a) and global longitudinal strain (GLS) (b) in patients with and without anthracycline-induced subclinical cardiotoxicity (AISC) during the whole follow-up period.

325x117mm (300 x 300 DPI)

Page 19 of 28

BMJ Open

Figure 3. (a) Changes of high-density lipoprotein cholesterol (HDL-C) in all patients from baseline to the end of the 6th cycle of chemotherapy. (b) Changes of HDL-C in patients with anthracycline-induced subclinical cardiotoxicity (AISC). (c) Changes of HDL-C in patients without AISC.

365x166mm (300 x 300 DPI)

214x78mm (300 x 300 DPI)

	Total cohort	Low HDL-C*	High HDL-C*	P-value
	n=70	n=42	n=28	
Age (year)	55.03±14.79	52.48±16.11	58.86±11.83	0.077
Male/Female (n)	34/36	22/20	12/16	0.435
BMI (kg/m ²)	23.08±3.33	23.51±3.29	22.43±3.33	0.183
ECoG performance status				0.465
0 (%)	37 (52.86)	22 (52.38)	15 (53.57)	
1 (%)	24 (34.29%)	13 (30.95)	11 (39.28)	
2 (%)	9 (12.85)	7 (16.67)	2 (7.14)	
Hypertension (%)	9 (12.86)	5 (11.90)	4 (14.28)	1.000
Antihypertensive treatment	9 (12.86)	5 (11.90)	4 (14.28)	1.000
ACEI/ARB	5	2	3	
Beta-blockers	4	3	1	
Diabetes mellitus (%)	5 (7.14)	3 (7.14)	2 (7.14)	1.000
Smoking (%)	21 (30.00)	10 (23.81)	11 (39.28)	0.166
Drinking (%)	18 (25.71)	7 (16.67)	11 (39.28)	0.034
Heart rate	80.67±10.61	81.50±11.04	79.43±10.02	0.428
LVEF (%)	65.5 (63.0, 67.0)	65.0 (63.0, 67.0)	66.0 (63.2, 67.8)	0.522
FS (%)	35.67±2.10	35.60±2.14	35.79+2.08	0.713
GLS (-%)	20.0 (19.0, 22.0)	21.0 (19.0, 22.0)	20.0 (18.2, 21.0)	0.167
LVDd (mm)	46.30±3.50	46.93±3.44	45.36±3.43	0.065
LVMi (g/m²)	94.72±17.55	96.79±18.54	91.62±15.76	0.230
E (cm/s)	69.12±13.12	69.71±12.79	68.23±13.80	0.647
e'(cm/s)	7.60±2.15	7.60±2.07	7.59±2.30	0.987
E/e'	9.61±2.41	9.66±2.30	9.53±2.59	0.832
NT-proBNP (ng/L)	62.50 (31.25, 132.25)	51.00 (29.00, 128.75)	79.00 (41.75, 168.50)	0.171
cTnT (ng/mL)	0.004 (0.000, 0.006)	0.004 (0.002, 0.007)	0.004 (0.000, 0.005)	0.509
HsCRP	2.61 (1.00, 15.64)	4.04 (1.17, 20.00)	1.95 (0.76, 14.51)	0.161
TC (mmol/L)	4.09±0.93	3.86±0.97	4.44±0.76	0.011
TG (mmol/L)	1.40 (0.97, 1.68)	1.51 (1.19, 1.93)	1.10 (0.82, 1.50)	0.002
LDL (mmol/L)	2.55±0.77	2.42±0.80	2.75±0.69	0.084
HDL-C (mmol/L)	1.08±0.38	0.84±0.21	1.44±0.28	<0.001
ApoA1 (g/L)	1.17±0.34	1.01±0.25	1.40±0.32	<0.001

Table S1. Baseline clinical characteristics of patients enrolled

Values are expressed as mean±standard deviation, n (%), or median (Q1-Q3). Bold values indicate statistical significance.

* Low HDL-C: HDL-C<1.16mmol/L; High HDL-C: HDL-C≥1.16mmol/L. ApoA1 values were available in 63 patients. ApoA1: apolipoprotein A1; BMI: body mass index; cTnT: cardiac troponin T; ECoG: Eastern Cooperative Oncology Group; FS: fractional shortening; GLS: global longitudinal peak systolic strain; HDL-C: high-density lipoprotein cholesterol; HsCRP: high sensitivity C-reactive protein; LVEF: left ventricular ejection fraction; LVDd: left ventricular diastolic dimension; LVMi: left ventricular mass index; LDL-C: low-density

lipoprotein cholesterol; NT-proBNP: N terminal-pro brain natriuretic peptide; TC: total cholesterol; TG: total triglyceride.

tor peer teriew only

For peer review only - http

Variables	Univariate analysis		P values
	HR	95%CI	
Age, per 1 year	0.97	0.943-0.998	0.034
Female vs Male	1.41	0.63-3.19	0.404
BMI, per 1 kg/m ²	1.09	0.97-1.22	0.139
ECoG, 0 or 1 vs status 2	0.63	0.30-1.32	0.220
Hypertension, yes vs no	0.22	0.03-1.62	0.136
Diabetes mellitus, yes vs no	0.35	0.05-2.61	0.307
Smoking, yes vs no	0.77	0.31-1.96	0.589
Drinking, yes vs no	0.84	0.31-2.26	0.728
Heart rate, per 1 bp	0.99	0.96-1.03	0.645
LVEF, per 1%	1.09	0.94-1.25	0.250
FS, per 1%	1.13	0.93-1.37	0.219
GLS, per -1%	1.46	1.20-1.77	<0.001
LVDd, per 1 mm	1.05	0.93-1.19	0.425
LVMi, per 1 g/m ²	1.00	0.97-1.02	0.762
E, per 1 cm/s	1.03	1.00-1.06	0.075
e', per 1 cm/s	1.14	0.94-1.40	0.189
E/e', per 1	0.97	0.81-1.16	0.752
NT-proBNP, per 1 ng/L	1.00	0.99-1.00	0.153
cTnT, per lg1 ng/mL	1.19	0.83-1.72	0.340
HsCRP, per 1	1.02	0.97-1.07	0.453
TC, per 1 mmol/L	0.78	0.51-1.20	0.259
TG, per 1 mmol/L	0.93	0.55-1.58	0.796
LDL-C, per 1 mmol/L	0.94	0.56-1.55	0.795
HDL-C group (high vs low)	0.24	0.09-0.67	0.006
ApoA1 group (high vs low)	0.54	0.22-1.29	0.165

Table S2. Univariable Cox regression analysis of enrolled patients.

High HDL-C group: HDL-C≥1.16mmol/L. Low HDL-C group: HDL-C<1.16mmol/L. High ApoA1 group: ApoA1≥1.02g/L. ApoA1: apolipoprotein A1; BMI: body mass index; cTnT: cardiac troponin T; ECoG: Eastern Cooperative Oncology Group; FS: fractional shortening; GLS: global longitudinal peak systolic strain; HDL-C: high-density lipoprotein cholesterol; HsCRP: high sensitivity C-reactive protein; LVEF: left ventricular ejection fraction; LVDd: left ventricular diastolic dimension; LVMi: left ventricular mass index; LDL-C: low-density lipoprotein cholesterol; NT-proBNP: N terminal-pro brain natriuretic peptide; TC: total cholesterol; TG: total triglyceride.

		1		
	Total cohort	NO-AISC	AISC	P-value
	n=34	n=10	n=24	
Age (year)	52.85±12.37	59.7±9.67	50.0±12.45	0.035
Male/Female (n)	19/15	5/5	14/10	0.947
BMI (kg/m ²)	24.01±3.21	23.67±3.83	24.15±3.00	0.698
ECoG performance status				1.000
0 (%)	23 (67.65)	7 (70.00)	16 (66.67)	
1 (%)	7 (20.59)	2 (20.00)	5 (20.83)	
2 (%)	4 (11.76)	1 (10.00)	3 (12.50)	
Hypertension (%)	4 (11.76)	3 (30.00)	1 (4.17)	0.122
Antihypertensive treatment	4 (11.76)	3 (30.00)	1 (4.17)	0.122
ACEI/ARB	3	2	1	
Beta-blockers	1	1	0	
Diabetes mellitus (%)	3 (8.82)	2 (20.00)	1 (4.17)	0.412
Smoking (%)	11 (32.35)	5 (50.00)	6 (25.00)	0.309
Drinking (%)	7 (20.59)	2 (20.00)	5 (20.83)	1.000
Heart rate	81.03±11.08	84.60±13.53	79.54±9.83	0.231
LVEF (%)	65.0 (63.0, 67.0)	64.0 (62.0, 67.3)	66.0 (64.0, 67.0)	0.270
FS (%)	35.74±2.12	35.10±2.28	36.0±2.04	0.266
GLS (-%)	21.0 (19.0, 22.0)	18.0 (17.0, 20.0)	22.0 (21.0, 22.8)	<0.001
LVDd (mm)	46.62±3.08	45.61±3.41	47.04±2.90	0.218
LVMi (g/m ²)	94.04±16.26	93.27±18.87	94.36±15.78	0.862
E (cm/s)	70.87±12.84	66.43±11.78	72.73±13.04	0.197
e'(cm/s)	7.59±1.77	6.90±1.88	7.88±1.68	0.144
E/e'	9.66±2.17	9.95±1.79	9.54±2.34	0.626
NT-proBNP (ng/L)	46.00 (28.50, 109.00)	78.50 (31.50, 133.25)	41.00 (28.00, 122.00)	0.308
cTnT (ng/mL)	0.004 (0.000, 0.007)	0.004 (0.000, 0.008)	0.004 (0.000, 0.007)	0.816
HsCRP	2.28 (0.95, 17.18)	1.62 (0.54, 13.79)	3.84 (1.21, 20.00)	0.216
TC (mmol/L)	4.07±0.95	4.38±1.31	3.95±0.75	0.219
TG (mmol/L)	1.40 (1.12, 1.63)	1.54 (1.67, 1.85)	1.38 (1.10, 1.56)	0.344
LDL-C (mmol/L)	2.59±0.83	2.73±1.15	2.53±0.68	0.530
HDL-C (mmol/L)	1.06±0.38	1.21±0.56	1.00±0.26	0.128
HDL-C group*				0.019
High (%)	12 (35.29)	7 (70.00)	5 (20.83)	
Low (%)	22 (64.71)	3 (30.00)	19 (79.17)	
ApoA1 (g/L)	1.19±0.34	1.35±0.44	1.12±0.26	0.068
ApoA1 group#				0.266
High (%)	23 (71.88)	9 (90.0)	14 (63.64)	
Low (%)	9 (28.12)	1 (10.0)	8 (36.36)	

Table S3. Baseline clinical characteristics of un-censored patients with or without AISC.

*High HDL-C: HDL-C≥1.16mmol/L. Low HDL-C: HDL-C<1.16mmol/L. # High ApoA1: ApoA1≥1.02g/L. Low ApoA1: ApoA1<1.02g/L. ApoA1 values were available in 32 patients. AISC: anthracycline-induced subclinical cardiotoxicity; ApoA1: apolipoprotein A1; AST: aspartate

BMJ Open

transaminase; ALT: alanine aminotransferase; BMI: body mass index; cTnT: cardiac troponin T; ECoG:
Eastern Cooperative Oncology Group; FS: fractional shortening; GLS: global longitudinal peak systolic
strain; HDL-C: high-density lipoprotein cholesterol; HsCRP: high sensitivity C-reactive protein; LVEF:
left ventricular ejection fraction; LVDd: left ventricular diastolic dimension; LVMi: left ventricular mass
index; LDL-C: low-density lipoprotein cholesterol; NT-proBNP: N terminal-pro brain natriuretic peptide;
TC: total cholesterol; TG: total triglyceride.

tor peer terien ont

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the	
		(b) Provide in the abstract an informative and balanced summary of what was	1
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	2
	-	reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	2
Methods			
Study design	4	Present key elements of study design early in the paper	3
Setting	5	Describe the setting, locations, and relevant dates, including periods of	3
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	3
-		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	4
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	4
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	3
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	3
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	4
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	4
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	.
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	4
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	6

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	6,7
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	7,8
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	10
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	8,9,10
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	11
		applicable, for the original study on which the present article is based	
· · · · · · · · · · · · · · · · · · ·			

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

Role of HDL-C in anthracycline-induced subclinical cardiotoxicity: an observational prospective study in DLBCL patients

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-074541.R1
Article Type:	Original research
Date Submitted by the Author:	30-Oct-2023
Complete List of Authors:	Ou, Wenxin; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Jiang, Tiantian; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Zhang, Nan; The First Affiliated Hospital of Chongqing Medical University, Department of Cardiology Lu, Kai; The First Affiliated Hospital of Chongqing Medical University, Department of Cardiology Weng, Yue; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Zhou, Xi; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Wang, Dong; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Wang, Dong; The First Affiliated Hospital of Chongqing Medical University, Department of Ultrasound Dong, Qian; The First Affiliated Hospital of Chongqing Medical University, Department of Cardiology Tang, Xiaoqiong; The First Affiliated Hospital of Chongqing Medical University,
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Cardiovascular medicine, Medical management
Keywords:	Lymphoma < HAEMATOLOGY, CHEMOTHERAPY, CARDIOLOGY, Echocardiography < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
4	1	Role of HDL-C in anthracycline-induced subclinical
5 6	2	cardiotoxicity: an observational prospective study in
7 8	3	DLBCL patients
9	4	
10 11	5	Wenxin Ou ¹ , Tiantian Jiang ¹ , Nan Zhang ² , Kai Lu ² , Yue Weng ¹ , Xi Zhou ¹ , Dong Wang ³ , Qian
12	6	Dong ^{2*} , Xiaoqiong Tang ^{1*}
13 14	7	
14	8	¹ Department of Hematology, The First Affiliated Hospital of Chongqing Medical University,
16	9	Chongqing, China
17 19	10	² Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University,
10	11	Chongqing, China
20	12	³ Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University,
21 22	13	Chongqing, China
22	14	
24	15	*Corresponding Author: Qian Dong and Xiaoqiong Tang contributed equally to this work and
25 26	16	are considered as co-corresponding authors.
20	17	Qian Dong ²
28	18	1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
29 30	19	Email address: 203748@hospital.cqmu.edu.cn
31	20	Xiaoqiong Tang ¹
32	21	1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China
33 34	22	Email address: <u>tlscqmu@126.com</u>
35	23	
36	24	Keywords: cardiotoxicity; DLBCL; anthracycline; HDL-C; GLS
37 38	25	
39	20	ABSTRACT Objectives Anthropycling induced condictovisity is a dobilitating condice dysfunction for which
40	21	there are no affective treatments, making early prevention of anthracycline induced subalinical
41	20	cardiotoxicity (AISC) crucial. High density linoprotein cholesterol (HDL C) plays role in cardio
43	29	protection but its impact on AISC remains unclear. Our study aims to elucidate the protective
44 45	31	capacity of HDL-C in AISC in patients with diffuse large B-cell lymphoma (DI BCL) treated with
45 46	32	R-CHOP
47	33	Design Observational prospective study
48 40	34	Setting An institution in China from September 2020 to September 2022
49 50	35	Participant 70 chemotherany-naïve natients newly diagnosed with DLBCL who were scheduled
51	36	to receive the standard dose of R-CHOP (cyclophosphamide vincristine doxorubicin prednisone
52 53	37	and rituximab).
55	•	
55		
56 57		
58		
59		

BMJ Open

1 ว		
2 3	20	Drimany autaama maagunas Samun biomarkars including UDI C 2D speekle treaking
4	38	exposerdiagraphy and conventional cohoserdiagraphy were measured at baseline, at the and of
5	39	the 2nd and (the scale of D. CHOD, and C and 12 months often the second string of shows the second string of
6 7	40	the 3rd and 6th cycle of R-CHOP, and 6 and 12 months after the completion of chemotherapy.
8	41	Results 24 patients experienced AISC, while 10 did not. 36 patients were lost to follow-up. Cox
9	42	regression analysis showed that higher levels of HDL-C were associated with a significantly lower
10	43	risk of AISC (unadjusted, hazard ratio [HR]=0.24, 95%CI: 0.09-0.67, P=0.006; adjusted,
12	44	HR=0.27, 95%CI: 0.09-0.79, P=0.017). Patients without AISC had a more stable and higher HDL-
13	45	C level during the follow-up period. HDL-C levels were significantly decreased from the end of
14	46	the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy in all patients (P=0.034),
15 16	47	and particularly in the AISC group (P=0.003). The highest level of HDL-C was significantly higher
17	48	in patients without AISC than in those with AISC (1.52±0.49 vs. 1.22±0.29, P=0.034).
18	49	Conclusions Our study suggests that higher levels of HDL-C may be associated with a lower risk
19	50	of AISC in DLBCL patients treated with R-CHOP. HDL-C could be a cardio-protective target, but
20 21	51	further research is needed to confirm its benefits and limitations.
22	52	Study registration number ChiCTR2100054721
23	53	
24	54	Strengths and limitations of this study
25 26	55	• This observational prospective study contributes to our understanding of the association
27	56	between HDL-C and AISC offering a foundation for the development of early intervention
28	57	and prevention strategies
29	58	• The study used advanced imaging techniques (2D-STE) to assess the subclinical cardiac
31	59	dysfunction in the nations, which can provide more sensitive and accurate results compared
32	60	to traditional echocardiography
33	61	• The study only included nations with DI BCL who received R-CHOP which may limit the
34 35	62	generalizability of the findings to patients with other types of cancer or chemotherapy
36	62	regimens
37	64	• The relatively small sample size in this study may notentially impact the robustness and
38 20	65	• The relatively small sample size in this study may potentiarly impact the robustices and generalizability of our findings. Additional comprehensive studies, including both alinical
40	00	and hasis response, are necessary to fully evolve to the here fits and limitations of UDL C as a
41	00	and basic research, are necessary to fully evaluate the benefits and limitations of HDL-C as a
42	67	cardio-protective strategy in anthracycline-treated cancer patients.
43 44	60	INTRADUCTION
45	69 70	The improved memory of conversion has helded a significant insure of the survival sets of convers
46	70	The improved management of cancer has led to a significant increase in the survival rate of cancer
47	71	survivors(1). However, anthracycline, one of the most effective chemotherapeutic agents used to
48 49	72	treat various cancers, is associated with potentially life-threatening and severe cardiovascular
50	73	diseases(2). Studies have shown a significant increase in mortality in cancer patients with
51	74	cardiovascular disease(3, 4). As advances in cancer treatment and an aging population continue,
52	75	the number of patients with both conditions is rising(5). As a result, the field of cardio-oncology
53 54	76	has become increasingly important in recent years.
55	77	Non-Hodgkin's lymphoma (NHL) is the 7th most common cancer in the United States and the
56	78	most frequent hematologic malignancy globally, accounting for about 3% of cancer cases and
57 58		
59		

deaths(6). Among NHL, DLBCL is the most prevalent type, representing approximately one-third
of all cases(7). The combination of cyclophosphamide, vincristine, doxorubicin, and prednisone
with rituximab (R-CHOP) is a standard first-line therapy that has substantially improved survival

- outcomes in DLBCL patients(8). Nonetheless, anthracycline-containing chemotherapy agents are
 associated with cardiotoxicity, a major long-term adverse effect that significantly affects the
 quality of life and survival of cancer survivors.
- Anthracycline-induced cardiotoxicity (AIC) is a devastating consequence of successful cancer treatment, often leading to hypokinetic cardiomyopathy and ultimately heart failure. AIC is an irreversible form of cardiac dysfunction for which no guidelines or accepted therapies for cardioprotection currently exist(9, 10). Therefore, early prevention and detection of AIC are crucial for providing opportunities for early intervention. Anthracycline-induced subclinical cardiotoxicity (AISC) is an early stage of AIC, characterized by abnormal echocardiography index without clinical symptoms(11). Early intervention is recommended by the 2022 International Cardio-Oncology Society (IC-OS) consensus statement once AISC is detected(12). Global longitudinal peak systolic strain (GLS) measured by 2D speckle tracking echocardiography can reliably identify most early myocardial deformation variations. In our study, we used early measurement of GLS to identify AISC(13, 14).
- High-density lipoprotein (HDL) is the sole lipoprotein with protective attributes among the five types of lipoproteins. Its salutary effects include antioxidant, anti-inflammatory, and anti-apoptotic properties. Numerous preclinical investigations have suggested that HDL may have direct and indirect protective effects against AIC(15-17). The roles of HDL-cholesterol (HDL-C) and apolipoprotein A1 (ApoA1) in providing cardiovascular protection of HDL have been the subject of recent debate. Our team recently conducted a case-control study, revealing that both HDL-C and ApoA1 serve as predictive factors in patients with DLBCL treated with 3 cycles of (R)-CHOP(18). Nonetheless, further investigation is warranted to explore the clinical data pertaining to the association between HDL and anthracycline-related cardiotoxicity.
- We undertook an observational prospective study to investigate the potential impact of HDL-C on AISC. Using 2D speckle tracking echocardiography, we identified AISC and sought to establish any correlation between HDL-C and AISC. Additionally, we assessed the fluctuations in HDL-C levels during R-CHOP chemotherapy in chemotherapy-naïve patients recently diagnosed with DLBCL.
- 45 110

46 111 METHODS

47 112 Study population

We recruited chemotherapy-naïve patients newly diagnosed with DLBCL who were scheduled to receive the standard dose of R-CHOP chemotherapy regimen at our institution from September 1st, 2020, to September 1st, 2022. Our inclusion criteria were as follows: newly diagnosed DLBCL, age between 18 and 80 years, Eastern Cooperative Oncology Group (ECoG) performance status ≤ 2 , left ventricular ejection fraction (LVEF) $\geq 50\%$, and acceptable bone marrow, renal, and hepatic functions for chemotherapy. Conversely, our exclusion criteria were symptomatic heart
BMJ Open

- 119 failure, a history of myocardial ischemia, myocarditis, myocardial infarction, clinical or subclinical
- ⁴ 120 pericardial effusion, arrhythmia requiring medical intervention, a history of other cancers, under
- 6 121 lipid-lowing treatment, and severe active infections such as syphilis, hepatitis, or human 7 122 immunodeficiency virus (HIV) infection
- ⁷ 122 immunodeficiency virus (HIV) infection.

9 123 **Treatment**

- 10 124 Patients received a total of 6 cycles of standard R-CHOP (cyclophosphamide at 750 mg/m² on D1,
- 12 doxorubicin at 50 mg/m² on D1, vincristine at 1.4 [maximum 2] mg/m² on D1, and 100 mg
 126 prednisone on D1-5, with rituximab at 375 mg/m² on D1 in each cycle), with or without 2 cycles
 14 127 of rituximab maintenance (rituximab at 375 mg/m² on D1 in each cycle).
- ¹⁵ 128 **Definition of subclinical cardiotoxicity**
- According to the IC-OS consensus statement, the definition of subclinical cardiotoxicity was a relative GLS decrease from baseline [(baseline – current GLS)/baseline GLS] of >12%, but with
- ¹⁹ 131 a normal left ventricular ejection fraction (LVEF)(12).

²⁰ 132 **Study protocol**

We defined 'baseline' as the initial assessment conducted before the initiation of the first cycle of 133 22 chemotherapy. At baseline, the end of the 3rd cycle of R-CHOP, the end of the 6th cycle of R-23 134 24 CHOP, and 6 and 12 months after chemotherapy completion, all enrolled patients underwent 135 25 conventional echocardiography, 2D speckle tracking echocardiography, and blood sampling. 136 26 27 Every patient received electrocardiography (ECG) examination before every cycle of 137 28 chemotherapy to ensure the safety of the treatment. Demographic data and clinical variables, 138 29 including age, gender, body mass index (BMI), ECoG performance status, diabetes mellitus, 139 30 hypertension, drinking history (an adult who has consumed more than 20 drinks in lifetime, with 31 140 32 141 each drink is considered to have an average alcohol content of 12 g), and smoking history (an adult 33 who has smoked at least 100 cigarettes in their lifetime) were collected at the time of enrollment. 142 34 Left ventricular systolic dysfunction was measured by LVEF, fractional shortening (FS), left 35 143 36 ventricular mass index (LVMI), left ventricular diastolic dimension (LVDd), E, e', E/e', and GLS. 144 37 HDL-C, low-density lipoprotein cholesterol (LDL-C), cardiac troponin T (cTnT), high sensitivity 145 38 C-reactive protein (hsCRP), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), 39 146 40 total cholesterol (TC) and total triglyceride (TG) were measured. We used the baseline HDL-C 147 41 level as a surrogate marker for HDL quantity. The patients were categorized into two groups based 148 42 43 149 on the average HDL-C value for males and females in the modified criteria of the National 44 Cholesterol Educated Program Adult Treatment Panel (NCEP ATP III)(19). High HDL-C was 150 45 defined as a serum HDL-C≥1.16mmol/L, while low HDL-C was defined as a serum HDL-151 46 C<1.16mmol/L. We determined the sample size using an online sample size calculator, which 47 152 48 153 indicated a total requirement of 23 events(20). 49

50 154 Statistical analysis

The study was conducted with two aims: firstly, to evaluate the relationship between HDL and AISC; and secondly, to conduct a preliminary exploration of the differences in HDL-C and the variability of HDL-C changes between patients with and without AISC during the follow-up period. Continuous variables were expressed as mean± standard deviation (SD) and compared

using the t-test. Non-normally distributed variables were presented as median (Q1- Q3) and compared with the Wilcoxon Mann-Whitney test. Categorical variables were expressed as n (%) and compared using the Chi-square or Fisher's exact test, as appropriate. Correlation analysis was conducted to investigate the associations of change in HDL-C with change in GLS. The probabilities of survival were calculated using Kaplan-Meier methods and compared using Log-rank tests. Cox proportional-hazards regression models were conducted to assess the association between variables and AISC. Covariates for multivariable Cox regression models included age, sex, and variables that had a P-value of less than 0.15 in the univariable Cox regression analysis (GLS was excluded as it is the factor that defines AISC). Two multivariable Cox regression models were constructed: the first model included age and sex; and the second model included age, sex, hypertension, BMI, and E. Statistical analysis and visualization were performed using IBM SPSS V.22.0 and GraphPad Prism 8. Statistical tests were two-sided, with a P-value less than 0.05 being considered statically significant. Patient and public involvement Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research. RESULTS Assessment of the association between HDL-C and AISC *Study population and baseline characteristics* This investigation enrolled a total of 70 patients with chemotherapy-naïve DLBCL and were planned to be treated with the standard R-CHOP regimen. Based on the baseline HDL-C level, we segregated the patients into two groups: the high-level group (HDL-C \geq 1.16mmol/L, n=28) and the low-level group (HDL-C<1.16mmol/L, n=42). Patients with drinking history had a greater chance of having a high HDL-C level (P=0.034). The patients with high HDL-C showed substantially higher total cholesterol (P=0.011), and lower total triglyceride (P=0.002). The baseline characteristics of the patients in both groups were well balanced (Table S1). *High HDL-C was an independent protective target of anthracycline-induced subclinical* cardiotoxicity The clinical endpoint was defined as the first detection of AISC, and the median survival time of the whole cohort was 16 months. The median survival time of patients with low HDL-C was 4 months, while that of patients with high HDL-C was not reached. The median follow-up time of the cohort was 10 months. During the follow-up period, 24 patients experienced AISC, while 10 did not. Approximately half of the patients (n=36) were lost to follow-up. A flowchart detailing the patients enrolled in the study and the reasons for lost to follow-up patients can be found in Figure S1. The log-rank test revealed that patients with higher HDL-C were less likely to experience AISC (P=0.001, HR=0.26, 95%CI: 0.12-0.58) (Figure S2).

1 2						
3	108	According to the results of the univariable Cov regression analysis variables that had a P_{-} value of				
4	100	less than 0.15 including ago PMI hypertension GLS E and HDL C group Increasing ago was				
5	200	significantly associated with a decreased HP of 0.07 (05% CI 0.042, 0.008, P=0.024) per 1 year				
7	200	significantly associated with a decreased TIK of 0.97 (95/001 0.945-0.996, F=0.054) per 1-year increase. DML showed a UD of 1.00 (059/ CL0.07.1.22, D=0.120) nor 1 kg/m2 increase. Similarly				
8	201	increase. Bivit showed a HR of 1.09 (95% CI 0.97-1.22, P=0.139) per 1 kg/m2 increase. Similarly, hypertension had a LID of 0.22 (05% CI 0.02, 1.62, $D=0.126$) for your your gradient of a law of CI S was				
9	202	nypertension had a HK of 0.22 (95% CI 0.03-1.02, P=0.130) for yes versus no. A lower GLS was				
10 11	203	significantly associated with an increased HK of 1.46 (95% CI 1.20-1.//, $P<0.001$) per -1%				
12	204	decrease. E velocity showed a HR of 1.03 (95% CI 1.00-1.06, P=0.0/5) per 1 cm/s increase. The				
13	205	HDL-C group (high versus low) had a significantly lower HR of 0.24 (95% CI 0.09-0.67,				
14	206	P=0.006). Further details about other variables can be found in Table S2.				
15 16	207	The results of the multivariable Cox regression analysis showed that high HDL-C was significantly				
17	208	associated with a lower risk of AISC after adjusting for age and sex (model 1) (HR=0.28,				
18	209	95%CI:0.10=0.84, P=0.018). Similarly, after adjusting for age, sex, and variables that P<0.15 in				
19 20	210	the univariable Cox regression analysis (excluding GLS as it defines AISC) (model 2), the same				
20 21	211	association was observed (HR=0.27, 95%CI: 0.09-0.79, P=0.017). (Table 1)				
22	212	Table 1. Outcomes of study participants.				
23		HR (95%CI)P valuesHR (95%CI)P valuesHR (95%CI)P values				
24 25		(unadjusted) (adjusted [*]) (adjusted [#]) Low HDL-C Ref Ref				
25 26		High HDL-C 0.24 (0.09-0.67) 0.006 0.28 (0.10-0.80) 0.018 0.27 (0.09- 0.79) 0.017				
27	213	The endpoint was defined as the first detection of anthracycline-induced subclinical				
28	214	cardiotoxicity.				
29	215	Low HDL-C: HDL-C<1.16mmol/L; High HDL-C: HDL-C≥1.16mmol/L. *Adjusted for age and				
31	216	sex. #Adjusted for age, sex, hypertension, body mass index, E. HR, hazard ratio; HDL-C, high-				
32	217	density lipoprotein-cholesterol.				
33	218					
34 35	219	Preliminary exploration of the difference of HDL-C between patients with AISC and				
36	220	without AISC				
37	221	Study population and baseline characteristics				
38	222	In this analysis, we selectively included 34 of the enrolled patients who were not lost to follow-				
39 40	223	up The patients who exhibited AISC at any time during the follow-up period were segregated into				
41	224	the AISC group ($n=24$) while those who did not demonstrate AISC were classified into the NO-				
42	225	AISC group ($n = 10$) Patients within the AISC group were comparatively younger (50+12.45 vs				
43 11	226	59.7+9.67 P=0.035) and exhibited a higher baseline GLS [22.0.(21.0.22.8) vs. 18.0.(17.0.20.0)				
45	220	P<0.0011 More baseline information can be seen in Table S3				
46	221	Timeline of HDL C level in patients with and without AISC				
47	220	Figure 1 displays the timeline of UDL C levels in national with and without AISC. In Figure 1a				
48 49	229	Figure 1 displays the umenine of HDL-C levels in patients with and without AISC. In Figure 1a,				
50	230	the patient population was categorized into four groups based on the time of AISC detection.				
51	231	Among the groups, 12 patients were identified with AISC at the end of the 3rd cycle of				
52	232	chemotherapy, 7 patients at the end of the 6th cycle, 3 patients at 6 months after treatment				
53 54	233	completion, and 2 patients at 12 months after treatment completion. With the exception of the				
55	234	group in which patients detected AISC at the end of the 3rd cycle of chemotherapy, all other groups				
56	235	exhibited a reduction in HDL-C values from the end of the 3rd cycle of chemotherapy to the end				
57 59						
58 59						
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

³ of the 6th cycle of chemotherapy. Figure 1b portrays the HDL-C level in patients without AISC,

 $\frac{1}{5}$ 237 indicating that the HDL-C level was more stable than in patients with AISC. Moreover, the overall

- HDL-C level was higher in patients without AISC than in patients with AISC throughout the
 follow-up period (Figure 2a). In Figure 2b, there was a significant decrease in GLS during the
- $\frac{8}{9}$ 240 chemotherapy period (from 0-4 months), which remained stable after completion of chemotherapy
- 10 241 (after 4 months) in patients with AISC.
- Based on Figure 2, we observed that the fluctuations in HDL-C and GLS were most pronounced during the chemotherapy period. The fluctuations in HDL-C levels of patients with DLBCL during R-CHOP chemotherapy were presented in Figure 3. The levels of HDL-C significantly increased for all patients from baseline to the end of the 3rd cycle of chemotherapy (P=0.012) and significantly decreased from the end of the 3rd cycle to the end of the 6th cycle of chemotherapy (P=0.034) (Figure 3a). Patients with AISC showed a significant decrease in HDL-C levels during R-CHOP chemotherapy from the end of the 3rd cycle to the end of the 6th cycle (P=0.003) (Figure 3b). However, no significant difference was observed in HDL-C levels for patients without AISC during R-CHOP chemotherapy (Figure 3c). We conducted correlation analysis separately for the change in HDL-C and GLS from baseline to after 3 cycles of chemotherapy, from baseline to after 6 cycles of chemotherapy, and from after 3 cycles to after 6 cycles of chemotherapy. However, we found no statistically significant differences in the associations between changes in HDL-C and GLS (P=0.965, 0.087, 0.449).
- ²⁸ 255 *Contrasting values of HDL-C parameters between patients with and without AISC*
- Figure 4 presents the contrasting values between patients with AISC and those without in terms of four parameters, namely the highest and lowest levels of HDL-C during chemotherapy, the increment and decline in HDL-C values from baseline. Patients without AISC showed significantly higher values in the highest level of HDL-C (1.52±0.49 vs. 1.22±0.29, P=0.034, Figure 4a). However, no significant differences were observed between the two groups in terms of HDL-C increment from baseline to the highest value (0.31±0.31 vs. 0.22±0.23, P=0.386, Figure 4b). While the lowest level of HDL-C was lower in patients with AISC, the difference was not statistically significant (0.84±0.16 vs. 1.03±0.41, P=0.182, Figure 4c). Furthermore, there were no significant differences in HDL-C decline between patients with AISC and those without (0.16±0.20 vs. 0.18±0.26, P=0.777, Figure 4d).

44 267 DISCUSSION

This prospective observational study investigated the relationship between HDL-C and incidence of AISC in 70 patients with DLBCL who were receiving anthracycline-containing chemotherapy. The study found that higher levels of HDL-C were associated with a lower incidence of AISC. Moreover, patients without AISC had more stable and higher levels of HDL-C than those with AISC during the follow-up period. The results also showed that HDL-C levels were significantly decreased from the end of the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy in all patients, especially in the AISC group, indicating that anthracycline-containing chemotherapy has adverse effects on HDL-C levels. Notably, the highest level of HDL-

C was significantly higher in patients without AISC compared to those with AISC. These findings suggest that HDL-C may have a protective role against AISC in DLBCL patients undergoing anthracycline-containing chemotherapy and maintaining a relatively high level of HDL-C may be more effective in managing cardio-protection than monitoring changes in HDL-C levels over time. The results of this study highlight the importance of early serum lipid management in these patients.

Lipoproteins are classified into five categories, namely chylomicron, very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), based on their size, density, and lipid composition (cholesterol and triglycerides)(21). Among these, HDL exhibits distinctive cytoprotective actions and triggers anti-oxidative, anti-inflammatory, and anti-apoptotic effects. The protective roles of HDL in cardiovascular disease have been controversial in recent years, and that the quality of HDL (cholesterol efflux capacity, antioxidant activity, anti-inflammatory activity, endothelial function, etc.) rather than the quantity of HDL has been proposed as the true cardioprotective effect. The Framingham Heart Study, as early as 1988, reported a correlation between HDL-C and cardiovascular mortality(22). Recent studies have challenged the HDL-C hypothesis by revealing that HDL-C level is not inversely correlated with cardiovascular diseases(23, 24). In our study, we used the baseline HDL-C level as a surrogate marker for HDL quantity, but we did not directly measure the quality of HDL. Measuring the level of HDL-C in serum is a commonly used method to assess the effect of HDL on cardiovascular health. HDL facilitates the transportation of cholesterol from the body's tissues back to the liver, and higher levels of HDL-C are generally associated with a lower risk of heart disease. Nevertheless, it's crucial to note that HDL-C levels may not accurately reflect the functional properties of HDL. ApoA1, the most abundant protein in HDL, is associated with several beneficial effects of HDL(15, 25). The function and abundance of ApoA1 are reported to play a dominant role in HDL quality(26). In the context of AIC, several studies have indicated that HDL can protect against anthracycline-induced cardiomyocyte apoptosis and atrophy in isolated cardiomyocytes(27, 28) and animal models(16, 28). Our recent case-control study, revealing that both HDL-C and ApoA1 serve as predictive factors in patients treated with 3 cycles of anthracycline-contained chemotherapy(18). Based on these earlier trials, HDL-C and ApoA1 could serve as protective factors against anthracycline-related cardiovascular disease. However, our study didn't focus on the investigation of the impact of ApoA1 on AISC. Even when ApoA1 was included in the Cox regression model, no significant association with AISC in patients with DLBCL treated with R-CHOP was observed (P>0.05, data not shown), probably due to the number of events in our study was insufficient to support a robust ApoA1 analysis. Therefore, the role of ApoA1, the most abundant protein in HDL, in the context of AISC, warrants further investigation in future research.

As far as we know, few clinical studies have investigated the association between HDL-C and AISC. This study is the first clinical research that utilizes the IC-OS consensus statement(12) to define subclinical cardiotoxicity, with univariate and multivariable analyses being used to identify the influential factors of AISC in DLBCL patients in this cohort. Kaplan-Meier methods and Log-

rank tests reveal that patients with high HDL-C levels were less likely to develop AISC. After
subjecting it to univariate and multivariable Cox regression methods, high HDL-C levels still
showed statistically significant differences. These results suggest that high HDL-C could be a
potentially independent protective factor for AISC in DLBCL patients and provide an opportunity
for investigators to develop a tool for early intervention and prevention of AISC. Further research
is necessary to confirm our findings.

Several studies have demonstrated that serum lipid levels are altered during anthracycline-containing chemotherapy in cancer patients(29, 30). Huxley et al and Averina et al have shown that imbalanced serum lipid distribution is a risk factor for cardiovascular disease(31, 32). As a result, anthracycline-containing treatment can induce dyslipidemia and facilitate the occurrence and development of cardiovascular diseases in cancer patients. In a study of 394 breast cancer patients. Xin et al found that HDL-C levels after chemotherapy were significantly lower than those before chemotherapy(33). Similarly, Lu et al and Hana et al found that HDL-C levels were significantly decreased during anthracycline-containing chemotherapy in patients with breast cancer(34, 35). In our study, we specifically assessed the changes in HDL-C levels over time during follow-up. Except for the group of patients who experienced AISC at 12 months after treatment completion, HDL-C levels in all other groups increased from baseline to the 3rd cycle of chemotherapy. This phenomenon may be due to the fact that anti-tumor drugs require cholesterol to cross cell membranes(36). However, HDL-C levels were significantly decreased from the end of the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy in all patients, especially in the AISC group, which is consistent with previous research results(33-35), and further confirmed that anthracycline-contained chemotherapy has adverse effects on HDL-C levels in DLBCL patients. The HDL-C level in patients without AISC was more stable than that in patients with AISC. Therefore, anthracycline-containing chemotherapy may promote the occurrence and development of cardiotoxicity in DLBCL patients by inducing HDL-C turbulence. Besides, the findings of our study indicate a significant decrease in GLS during the chemotherapy period in patients with AISC. This result is consistent with previous research, which has reported that doxorubicin dose at the range of $100-150 \text{ mg/m}^2$ can cause cardiotoxicity(37). Notably, we also observed that GLS remained stable after completion of chemotherapy, suggesting that the cardiac effects of anthracycline-based chemotherapy may be dose-related. These findings have important implications for the monitoring and management of cardiotoxicity in patients undergoing anthracycline-based chemotherapy, as early detection of cardiac dysfunction during treatment may improve patient outcomes. We investigated the associations of change in HDL-C with change in GLS, no statistically significant differences were found.

The analysis of HDL-C levels should not only consider the changes over time, but also the absolute values. In our study, patients without AISC had significantly higher absolute highest HDL-C levels than those with AISC, while the absolute lowest HDL-C levels did not differ significantly between the two groups. The alterations from HDL-C extremes to baseline did not exhibit any variation between the groups either. This suggests that the highest absolute HDL-C value was a preferable indicator of AISC protection than the change in HDL-C from baseline to the extremum value.

Maintaining a relatively high level of HDL-C may be more effective in managing the cardio-protection of anthracycline-treated cancer patients than monitoring changes in HDL-C levels over time.

In our investigation, we observed that among the four patients with pre-existing hypertension, one patient experienced AISC during the follow-up (Table S3). Multivariable Cox regression analysis showed that hypertension did not have a significant impact on AISC (P>0.05). Hypertension, a common risk factor for both cancer and cardiovascular diseases, was also recognized as a risk factor for cardiotoxicity. Studies have reported that pre-existing hypertension was associated with anthracycline-and trastuzumab induced left ventricular ejection fraction (LVEF) decline in a retrospective study(38), and early left ventricular systolic dysfunction in patients with lymphoma receiving (R)-CHOP in a prospective study(39). We noted that all patients with hypertension in our study were under a single antihypertensive drug regimen (beta-blockers or ACEI/ARB) to manage their blood pressure. Two meta-analyses have demonstrated that beta-blockers and ACEI can prevent cardiotoxicity caused by chemotherapy (40, 41). We speculate that the protective effects of beta-blockers and ACEI/ARB may have contributed to the result observed in our study regarding the relationship between hypertension and AISC.

There are several limitations to our study that must be acknowledged. Firstly, while our study highlights the potential importance of HDL-C in managing AISC, additional studies are necessary to fully evaluate the benefits and limitations of HDL-C as a cardio-protective strategy in anthracycline-treated cancer patients. Secondly, this is a single-center observational prospective study with a medium sample size. To confirm our findings, a larger sample size study conducted at multiple centers is needed. Thirdly, previous studies have suggested that there may be a reversed U-shaped relationship between HDL-C levels and cardiovascular diseases(42). Due to the small sample size of this study, we didn't further investigate the influence of extremely high levels of HDL-C on cardiotoxicity, and further clinical studies should be done to verify it. Besides, the measurement of GLS was only taken at baseline and at several points throughout the chemotherapy treatment and follow-up period. It is crucial to extend the duration of follow-up in future research to obtain a more comprehensive understanding of the long-term effects of anthracycline treatment on cardiovascular health.

CONCLUSIONS

In conclusion, our observational prospective study suggests that higher levels of HDL-C may be associated with a lower risk of AISC in patients with DLBCL treated with R-CHOP chemotherapy. HDL-C levels remained stable and consistently higher in patients without AISC compared to those with AISC. Additionally, the highest absolute HDL-C value was found to be a preferable indicator of AISC protection. These findings suggest that HDL-C may be a potential cardio-protective target for managing AISC in this patient population. However, further research is needed to confirm and expand on these findings, including determining the optimal HDL-C level for cardio-protection and the potential benefits of early serum lipid management.

ACKNOWLEDGMENTS

The authors would like to thank all the nurses, other medical workers and patients' families who assisted in this study.

COMPETING INTERESTS

The authors declare no conflict of interest.

FUNDING

This research was funded by the Science-Health Joint Medical Scientific Research Project of Chongqing "Study of antineoplastic drugs induced early cardiotoxicity in patients with Lymphoma " (Grant No. 2021MSXM276), the Natural Science Foundation of Chongging "The mechanism of doxorubicin promoting atherosclerosis in lymphoma patients through NF-kB/miR-33 signaling pathway" (Grant No. cstc2019jcyj-msxmX0043), the Science-Health Joint Medical Scientific Research Project of Chongqing "Evaluation of cardiac function in patients with anthracycline chemotherapy by a new strain imaging technique" (Gant No. 2019ZDXM033), and the Chongqing Postgraduate Scientific Research and Innovation Project "Study on the role of high-density lipoprotein in anthracycline-induced subclinical cardiotoxicity in patients with lymphoma" (Grant No. CYS22340).

AUTHOR CONTRIBUTIONS

Conceptualization, Wenxin Ou, Tiantian Jiang, Nan Zhang, Kai Lu, Yue Weng, Xi Zhou, Dong Wang, Qian Dong and Xiaoqiong Tang; Data curation, Wenxin Ou, Tiantian Jiang, Yue Weng and Xi Zhou; Formal analysis, Wenxin Ou and Tiantian Jiang; Funding acquisi-tion, Wenxin Ou, Nan Zhang, Dong Wang and Xiaoqiong Tang; Investigation, Dong Wang, Qian Dong and Xiaoqiong Tang; Methodology, Wenxin Ou, Tiantian Jiang, Nan Zhang, Kai Lu, Yue Weng, Xi Zhou, Dong Wang, Qian Dong and Xiaoqiong Tang; Resources, Dong Wang, Qian Dong and Xiaoqiong Tang; Supervision, Qian Dong and Xiaoqiong Tang; Validation, Nan Zhang and Kai Lu; Visualization, Wenxin Ou and Tiantian Jiang; Writing – original draft, Wenxin Ou; Writing – review & editing, Wenxin Ou, Tiantian Jiang, Nan Zhang, Kai Lu, Yue Weng, Xi Zhou, Dong Wang, Oian Dong and Xiaoqiong Tang. Qian Dong and Xiaoqiong Tang contributed equally to this work and are considered as co-corresponding authors.

DATA AVAILABILITY STATEMENT

Data are available upon reasonable request.

ETHICS APPROVAL

The study was conducted in accordance with the Declaration of Helsinki and approved by the ethics committee of the First Affiliated Hospital of Chongqing Medical University (Approval NO. 2018-016). And all participating patients provided written informed consent.

3	436	REFERENCE
4	437	1. Rosen MR, Myerburg RJ, Francis DP, Cole GD, Marbán E, Translating stem cell
5	438	research to cardiac disease therapies: pitfalls and prospects for improvement J Am Coll
0	439	Cardiol. 2014:64(9):922-37.
/ Q	440	2. Minotti G. Menna P. Salvatorelli E. Cairo G. Gianni L. Anthracyclines: molecular
9	441	advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol
10	442	Rev. 2004:56(2):185-229.
11	443	3. Hasin T. Gerber Y. McNallan SM. Weston SA. Kushwaha SS. Nelson TJ. et al. Patients
12	444	with heart failure have an increased risk of incident cancer. J Am Coll Cardiol. 2013;62(10):881-
13	445	6.
14	446	4. Abdel-Qadir H. Austin PC. Lee DS. Amir E. Tu JV. Thavendiranathan P. et al. A
15	447	Population-Based Study of Cardiovascular Mortality Following Early-Stage Breast Cancer.
16	448	JAMA Cardiol. 2017;2(1):88-93.
17	449	5. Stoltzfus KC, Zhang Y, Sturgeon K, Sinoway LI, Trifiletti DM, Chinchilli VM, et al. Fatal
18	450	heart disease among cancer patients. Nat Commun. 2020:11(1):2011.
19	451	6. Thandra KC, Barsouk A, Saginala K, Padala SA, Barsouk A, Rawla P, Epidemiology of
20	452	Non-Hodgkin's Lymphoma, Med Sci (Basel), 2021;9(1),
21	453	7. Teras LR. DeSantis CE. Cerhan JR. Morton LM. Jemal A. Flowers CR. 2016 US
22	454	lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin.
23	455	2016;66(6):443-59.
24	456	8. Salles G, Barrett M, Foà R, Maurer J, O'Brien S, Valente N, et al. Rituximab in B-Cell
25	457	Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv Ther.
20	458	2017;34(10):2232-73.
27	459	9. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline
29	460	Chemotherapy and Cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63-75.
30	461	10. Russell RR, Alexander J, Jain D, Poornima IG, Srivastava AV, Storozynsky E, et al. The
31	462	role and clinical effectiveness of multimodality imaging in the management of cardiac
32	463	complications of cancer and cancer therapy. J Nucl Cardiol. 2016;23(4):856-84.
33	464	11. Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, et al. Management of
34	465	cardiac disease in cancer patients throughout oncological treatment: ESMO consensus
35	466	recommendations. Ann Oncol. 2020;31(2):171-90.
36	467	12. Herrmann J, Lenihan D, Armenian S, Barac A, Blaes A, Cardinale D, et al. Defining
37	468	cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS)
38	469	consensus statement. Eur Heart J. 2022;43(4):280-99.
39	470	13. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of
40 41	471	cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging
41	472	in predicting early left ventricular dysfunction in patients with human epidermal growth factor
43	473	receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol.
44	474	2011;57(22):2263-70.
45	475	14. Negishi K, Negishi T, Haluska BA, Hare JL, Plana JC, Marwick TH. Use of speckle strain
46	476	to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur
47	477	Heart J Cardiovasc Imaging. 2014;15(3):324-31.
48	478	15. Kluck GEG, Durham KK, Yoo JA, Trigatti BL. High Density Lipoprotein and Its Precursor
49	479	Protein Apolipoprotein A1 as Potential Therapeutics to Prevent Anthracycline Associated
50	480	Cardiotoxicity. Front Cardiovasc Med. 2020;7:65.
51	481	16. Durham KK, Chathely KM, Mak KC, Momen A, Thomas CT, Zhao YY, et al. HDL
52	482	protects against doxorubicin-induced cardiotoxicity in a scavenger receptor class B type 1-,
53	483	PI3K-, and Akt-dependent manner. Am J Physiol Heart Circ Physiol. 2018;314(1):H31-h44.
54	484	17. Van Linthout S, Frias M, Singh N, De Geest B. Therapeutic potential of HDL in
55	485	cardioprotection and tissue repair. Handb Exp Pharmacol. 2015;224:527-65.
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

18. Dong Q, Ou W, Wang M, Jiang T, Weng Y, Zhou X, et al. Study on influencing factors of anthracycline-induced subclinical cardiotoxicity in DLBCL patients administered (R)-CHOP. BMC Cancer. 2022;22(1):988. Executive Summary of The Third Report of The National Cholesterol Education Program 19. (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama. 2001;285(19):2486-97. MA K, J S. Sample Size Calculators [website]: UCSF CTSI; 20 December 2021 20. [Available from: https://www.sample-size.net/. Mahley RW, Innerarity TL, Rall SC, Jr., Weisgraber KH. Plasma lipoproteins: 21. apolipoprotein structure and function. J Lipid Res. 1984;25(12):1277-94. Wilson PW, Abbott RD, Castelli WP. High density lipoprotein cholesterol and mortality. 22. The Framingham Heart Study. Arteriosclerosis. 1988;8(6):737-41. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of 23. dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012:367(22):2089-99. Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, et al. 24. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. N Engl J Med. 2017;376(20):1933-42. Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel 25. therapies. J Clin Invest. 2006;116(12):3090-100. Smith JD. Dysfunctional HDL as a diagnostic and therapeutic target. Arterioscler Thromb 26. Vasc Biol. 2010;30(2):151-5. Brinck JW, Thomas A, Brulhart-Meynet MC, Lauer E, Frej C, Dahlbäck B, et al. High-27. density lipoprotein from end-stage renal disease patients exhibits superior cardioprotection and increase in sphingosine-1-phosphate. Eur J Clin Invest. 2018;48(2). Durham KK, Kluck G, Mak KC, Deng YD, Trigatti BL. Treatment with apolipoprotein A1 28. protects mice against doxorubicin-induced cardiotoxicity in a scavenger receptor class B, type I-dependent manner. Am J Physiol Heart Circ Physiol. 2019;316(6):H1447-h57. Bicakli DH, Varol U, Degirmenci M, Tunali D, Cakar B, Durusoy R, et al. Adjuvant 29. chemotherapy may contribute to an increased risk for metabolic syndrome in patients with breast cancer. J Oncol Pharm Pract. 2016;22(1):46-53. Rzymowska J. Effect of cytotoxic chemotherapy on serum lipid levels in breast cancer 30. patients. Pathobiology. 1999;67(3):129-32. Huxley R. Lewington S. Clarke R. Cholesterol, coronary heart disease and stroke: a 31. review of published evidence from observational studies and randomized controlled trials. Semin Vasc Med. 2002;2(3):315-23. Averina M, Nilssen O, Brenn T, Brox J, Arkhipovsky VL, Kalinin AG. Factors behind the 32. increase in cardiovascular mortality in Russia: apolipoprotein AI and B distribution in the Arkhangelsk study 2000. Clin Chem. 2004;50(2):346-54. Li X, Liu ZL, Wu YT, Wu H, Dai W, Arshad B, et al. Status of lipid and lipoprotein in 33. female breast cancer patients at initial diagnosis and during chemotherapy. Lipids Health Dis. 2018;17(1):91. Kalábová H, Melichar B, Ungermann L, Doležal J, Krčmová L, Kašparová M, et al. 34. Intima-media thickness, myocardial perfusion and laboratory risk factors of atherosclerosis in patients with breast cancer treated with anthracycline-based chemotherapy. Med Oncol. 2011;28(4):1281-7. Lu Q, Wu X, Zhu Y, Yang J, Wang X, Ye C, et al. Effects of Chemotherapy on Serum 35. Lipids in Chinese Postoperative Breast Cancer Patients. Cancer Manag Res. 2020;12:8397-408.

1 2		
3	535	36. Zhang L, Bennett WF, Zheng T, Ouyang PK, Ouyang X, Qiu X, et al. Effect of
4	536	Cholesterol on Cellular Uptake of Cancer Drugs Pirarubicin and Ellipticine. J Phys Chem B.
5 6	537	2016;120(12):3148-56.
7	538	37. Blanco JG, Sun CL, Landier W, Chen L, Esparza-Duran D, Leisenring W, et al.
8	539 540	reductase genesa report from the Children's Opcology Group, J Clip Opcol, 2012;30(13):1415-
9	540 541	
10 11	542	38. Hamirani Y, Fanous I, Kramer CM, Wong A, Salerno M, Dillon P. Anthracycline- and
12	543	trastuzumab-induced cardiotoxicity: a retrospective study. Med Oncol. 2016;33(7):82.
13	544	39. Szmit S, Jurczak W, Zaucha JM, Drozd-Sokołowska J, Spychałowicz W, Joks M, et al.
14	545 546	Pre-existing afterial hypertension as a risk factor for early left ventricular systolic dystunction following (P) CHOP abametherapy in patients with lymphome. I Am See Hypertens
15 16	540 547	2014·8(11)·791-9
17	548	40. Shah P, Garris R, Abboud R, Vasudev R, Patel H, Doshi R, et al. Meta-Analysis
18	549	Comparing Usefulness of Beta Blockers to Preserve Left Ventricular Function During
19	550	Anthracycline Therapy. Am J Cardiol. 2019;124(5):789-94.
20 21	551	41. Dong H, Yao L, Wang M, Wang M, Li X, Sun X, et al. Can ACEI/ARB prevent the
22	552 552	cardiotoxicity caused by chemotherapy in early-stage breast cancer?-a meta-analysis of randomized controlled trials. Transl Cancer Res. 2020;0(11):7034.43
23	553 554	42 Feng M Darabi M Tubeuf F Canicio A I homme M Frisdal F et al Free cholesterol
24	555	transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis underlies the U-shape
25	556	relationship between HDL-cholesterol and cardiovascular disease. Eur J Prev Cardiol.
20	557	2020;27(15):1606-16.
28	558	
29	559	
30 21	560	FIGURE LEGENS
32	561	Figure 1. (a) Timeline of high-density lipoprotein cholesterol (HDL-C) levels in patients
33	562	detected anthracycline-induced subclinical cardiotoxicity (AISC) at four time points. 12 patients
34	563	were detected AISC at the end of the 3rd cycle of chemotherapy. 7 patients were detected AISC
35	564	at the end of the 6th cycle of chemotherapy. 3 patients were detected AISC at 6 months after
37	565	treatment completion. 2 patients were detected AISC at 12 months after treatment completion.
38	566	(b) Timeline of HDL-C levels of patients without AISC.
39	567	Figure 2. Timeline of high-density lipoprotein cholesterol (HDL-C) levels (a) and global
40 41	568	longitudinal strain (GLS) (b) in patients with and without anthracycline-induced subclinical
42	569	cardiotoxicity (AISC) during the whole follow-up period
43	570	Figure 3 (a) Changes of high-density linoprotein cholesterol (HDL-C) in all natients from
44	571	baseline to the end of the 6th cycle of chemotherapy (b) Changes of HDL-C in patients with
45 46	572	anthracycline induced subclinical cardiotoxicity (AISC) (a) Changes of HDL C in patients
47	572	without AISC
48	573	without AISC.
49	574	Figure 4. High-density inpoprotein cholesterol (HDL-C) differences between anthracycline-
50 51	575	induced subclinical cardiotoxicity (AISC) and No-AISC. (a) Highest level of HDL-C during
52	576	chemotherapy. (b) The HDL-C value increment from baseline to the highest value. (c) The lowest
53	577	level of HDL-C during chemotherapy. (d) The HDL-C value declined from baseline to the
54	578	lowest.
55 56		
57		
58		
59		

3 4	579	Figure S1. Flow diagram of patients enrolled in our observational research and reasons for lost to follow up
5	580	to follow-up. $\mathbf{F}_{i}^{*} = \mathbf{S}_{i}^{*} \mathbf{K}_{i}^{*} + \mathbf{M}_{i}^{*} \mathbf{K}_{i}^{*} \mathbf{K}_{i}^{*$
6 7	581	Figure S2. Kapian-Meler curves of the percentage of patients without AISC in patients stratified
8	582	by HDL-C level. High HDL-C: HDL-C \geq 1.16mmol/L. Low HDL-C: HDL-C \leq 1.16mmol/L.
9	583	AISC, anthracycline-induced cardiotoxicity; HDL-C, high-density lipoprotein cholesterol; HR,
10	584	hazard ratio.
12	585	
13	586	
14		
15 16		
17		
18		
19 20		
20 21		
22		
23		
24 25		
26		
27		
28 29		
30		
31		
32 33		
34		
35		
30 37		
38		
39 40		
40 41		
42		
43 44		
45		
46		
47 ⊿o		
49		
50		
51 52		
52 53		
54		
55 56		
57		
58		
59 60		For peer review only - http://bmiopen.hmi.com/site/about/quidelines.yhtml
00		

Page 17 of 27

BMJ Open

325x117mm (300 x 300 DPI)

Page 19 of 27

BMJ Open

Figure 3. (a) Changes of high-density lipoprotein cholesterol (HDL-C) in all patients from baseline to the end of the 6th cycle of chemotherapy. (b) Changes of HDL-C in patients with anthracycline-induced subclinical cardiotoxicity (AISC). (c) Changes of HDL-C in patients without AISC.

365x166mm (300 x 300 DPI)

100x78mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		-		
	Total cohort	Low HDL-C*	High HDL- C^*	P-value
	n=70	n=42	n=28	
Age (year)	55.03±14.79	52.48±16.11	58.86±11.83	0.077
Male/Female (n)	34/36	22/20	12/16	0.435
BMI (kg/m ²)	23.08±3.33	23.51±3.29	22.43±3.33	0.183
ECoG performance status				0.465
0 (%)	37 (52.86)	22 (52.38)	15 (53.57)	
1 (%)	24 (34.29%)	13 (30.95)	11 (39.28)	
2 (%)	9 (12.85)	7 (16.67)	2 (7.14)	
Hypertension (%)	9 (12.86)	5 (11.90)	4 (14.28)	1.000
Antihypertensive treatment	9 (12.86)	5 (11.90)	4 (14.28)	1.000
ACEI/ARB	5	2	3	
Beta-blockers	4	3	1	
Diabetes mellitus (%)	5 (7.14)	3 (7.14)	2 (7.14)	1.000
Smoking (%)	21 (30.00)	10 (23.81)	11 (39.28)	0.166
Drinking (%)	18 (25.71)	7 (16.67)	11 (39.28)	0.034
Heart rate	80.67±10.61	81.50±11.04	79.43±10.02	0.428
LVEF (%)	65.5 (63.0, 67.0)	65.0 (63.0, 67.0)	66.0 (63.2, 67.8)	0.522
FS (%)	35.67±2.10	35.60±2.14	35.79+2.08	0.713
GLS (-%)	20.0 (19.0, 22.0)	21.0 (19.0, 22.0)	20.0 (18.2, 21.0)	0.167
LVDd (mm)	46.30±3.50	46.93±3.44	45.36±3.43	0.065
LVMi (g/m ²)	94.72±17.55	96.79±18.54	91.62±15.76	0.230
E (cm/s)	69.12±13.12	69.71±12.79	68.23±13.80	0.647
e'(cm/s)	7.60±2.15	7.60±2.07	7.59±2.30	0.987
E/e'	9.61±2.41	9.66±2.30	9.53±2.59	0.832
NT-proBNP (ng/L)	62.50 (31.25, 132.25)	51.00 (29.00, 128.75)	79.00 (41.75, 168.50)	0.171
cTnT (ng/mL)	0.004 (0.000, 0.006)	0.004 (0.002, 0.007)	0.004 (0.000, 0.005)	0.509
HsCRP	2.61 (1.00, 15.64)	4.04 (1.17, 20.00)	1.95 (0.76, 14.51)	0.161
TC (mmol/L)	4.09±0.93	3.86±0.97	4.44±0.76	0.011
TG (mmol/L)	1.40 (0.97, 1.68)	1.51 (1.19, 1.93)	1.10 (0.82, 1.50)	0.002
LDL (mmol/L)	2.55±0.77	2.42±0.80	2.75±0.69	0.084
HDL-C (mmol/L)	1.08 ± 0.38	0.84±0.21	1.44 ± 0.28	< 0.001

Table S1. Baseline clinical characteristics of patients enrolled

Values are expressed as mean±standard deviation, n (%), or median (Q1-Q3). Bold values indicate statistical significance.

*Low HDL-C: HDL-C<1.16mmol/L; High HDL-C: HDL-C≥1.16mmol/L. BMI: body mass index; cTnT: cardiac troponin T; ECoG: Eastern Cooperative Oncology Group; FS: fractional shortening; GLS: global longitudinal peak systolic strain; HDL-C: high-density lipoprotein cholesterol; HsCRP: high sensitivity C-reactive protein; LVEF: left ventricular ejection fraction; LVDd: left ventricular diastolic dimension; LVMi: left ventricular mass index; LDL-C: low-density lipoprotein cholesterol; NT-proBNP: N terminal-pro brain natriuretic peptide; TC: total cholesterol; TG: total triglyceride.

Variables	Univariate	P values		
	HR	95%CI		
Age, per 1 year	0.97	0.943-0.998	0.034	
Female vs Male	1.41	0.63-3.19	0.404	
BMI, per 1 kg/m ²	1.09	0.97-1.22	0.139	
ECoG, 0 or 1 vs status 2	0.63	0.30-1.32	0.220	
Hypertension, yes vs no	0.22	0.03-1.62	0.136	
Diabetes mellitus, yes vs no	0.35	0.05-2.61	0.307	
Smoking, yes vs no	0.77	0.31-1.96	0.589	
Drinking, yes vs no	0.84	0.31-2.26	0.728	
Heart rate, per 1 bp	0.99	0.96-1.03	0.645	
LVEF, per 1%	1.09	0.94-1.25	0.250	
FS, per 1%	1.13	0.93-1.37	0.219	
GLS, per -1%	1.46	1.20-1.77	<0.001	
LVDd, per 1 mm	1.05	0.93-1.19	0.425	
LVMi, per 1 g/m ²	1.00	0.97-1.02	0.762	
E, per 1 cm/s	1.03	1.00-1.06	0.075	
e', per 1 cm/s	1.14	0.94-1.40	0.189	
E/e', per 1	0.97	0.81-1.16	0.752	
NT-proBNP, per 1 ng/L	1.00	0.99-1.00	0.153	
cTnT, per lg1 ng/mL	1.19	0.83-1.72	0.340	
HsCRP, per 1	1.02	0.97-1.07	0.453	
TC, per 1 mmol/L	0.78	0.51-1.20	0.259	
TG, per 1 mmol/L	0.93	0.55-1.58	0.796	
LDL-C, per 1 mmol/L	0.94	0.56-1.55	0.795	
HDL-C group (high vs low)	0.24	0.09-0.67	0.006	

Table S2. Univariable Cox regression analysis of enrolled patients.

High HDL-C group: HDL-C≥1.16mmol/L. Low HDL-C group: HDL-C<1.16mmol/L. BMI: body mass index; cTnT: cardiac troponin T; ECoG: Eastern Cooperative Oncology Group; FS: fractional shortening; GLS: global longitudinal peak systolic strain; HDL-C: high-density lipoprotein cholesterol; HsCRP: high sensitivity C-reactive protein; LVEF: left ventricular ejection fraction; LVDd: left ventricular diastolic dimension; LVMi: left ventricular mass index; LDL-C: low-density lipoprotein cholesterol; NT-proBNP: N terminal-pro brain natriuretic peptide; TC: total cholesterol; TG: total triglyceride.

BMJ Open

2	
3	
Δ	
- -	
2	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
51	
32	
33	
34	
25	
55	
36	
37	
38	
30	
10	
40	
41	
42	
43	
11	
44	
45	
46	
47	
18	
40	
49	
50	
51	
52	
52 52	
53	
54	
55	
56	
57	
57	
58	
59	

60

Table S3. Baseline	clinical chara	cteristics of un-	-censored patients	with or without AISC.
I wore out Dubernite	•••••••••••••••••••••••••••••••••••••••		••••••••••••••••••••••••••••••••••••••	

		1		
	Total cohort	NO-AISC	AISC	P-value
	n=34	n=10	n=24	
Age (year)	52.85±12.37	59.7±9.67	50.0±12.45	0.035
Male/Female (n)	19/15	5/5	14/10	0.947
BMI (kg/m ²)	24.01±3.21	23.67±3.83	24.15±3.00	0.698
ECoG performance status				1.000
0 (%)	23 (67.65)	7 (70.00)	16 (66.67)	
1 (%)	7 (20.59)	2 (20.00)	5 (20.83)	
2 (%)	4 (11.76)	1 (10.00)	3 (12.50)	
Hypertension (%)	4 (11.76)	3 (30.00)	1 (4.17)	0.122
Antihypertensive treatment	4 (11.76)	3 (30.00)	1 (4.17)	0.122
ACEI/ARB	3	2	1	
Beta-blockers	1	1	0	
Diabetes mellitus (%)	3 (8.82)	2 (20.00)	1 (4.17)	0.412
Smoking (%)	11 (32.35)	5 (50.00)	6 (25.00)	0.309
Drinking (%)	7 (20.59)	2 (20.00)	5 (20.83)	1.000
Heart rate	81.03±11.08	84.60±13.53	79.54±9.83	0.231
LVEF (%)	65.0 (63.0, 67.0)	64.0 (62.0, 67.3)	66.0 (64.0, 67.0)	0.270
FS (%)	35.74±2.12	35.10±2.28	36.0±2.04	0.266
GLS (-%)	21.0 (19.0, 22.0)	18.0 (17.0, 20.0)	22.0 (21.0, 22.8)	<0.001
LVDd (mm)	46.62±3.08	45.61±3.41	47.04±2.90	0.218
LVMi (g/m ²)	94.04±16.26	93.27±18.87	94.36±15.78	0.862
E (cm/s)	70.87±12.84	66.43±11.78	72.73±13.04	0.197
e'(cm/s)	7.59±1.77	6.90±1.88	7.88±1.68	0.144
E/e'	9.66±2.17	9.95±1.79	9.54±2.34	0.626
NT-proBNP (ng/L)	46.00 (28.50, 109.00)	78.50 (31.50, 133.25)	41.00 (28.00, 122.00)	0.308
cTnT (ng/mL)	0.004 (0.000, 0.007)	0.004 (0.000, 0.008)	0.004 (0.000, 0.007)	0.816
HsCRP	2.28 (0.95, 17.18)	1.62 (0.54, 13.79)	3.84 (1.21, 20.00)	0.216
TC (mmol/L)	4.07±0.95	4.38±1.31	3.95±0.75	0.219
TG (mmol/L)	1.40 (1.12, 1.63)	1.54 (1.67, 1.85)	1.38 (1.10, 1.56)	0.344
LDL-C (mmol/L)	2.59±0.83	2.73±1.15	2.53±0.68	0.530
HDL-C (mmol/L)	1.06±0.38	1.21±0.56	1.00±0.26	0.128
HDL-C group*				0.019
High (%)	12 (35.29)	7 (70.00)	5 (20.83)	
Low (%)	22 (64.71)	3 (30.00)	19 (79.17)	

*High HDL-C: HDL-C≥1.16mmol/L. Low HDL-C: HDL-C<1.16mmol/L.

AISC: anthracycline-induced subclinical cardiotoxicity; AST: aspartate transaminase; ALT: alanine aminotransferase; BMI: body mass index; cTnT: cardiac troponin T; ECoG: Eastern Cooperative Oncology Group; FS: fractional shortening; GLS: global longitudinal peak systolic strain; HDL-C: high-density lipoprotein cholesterol; HsCRP: high sensitivity C-reactive protein; LVEF: left ventricular ejection fraction; LVDd: left ventricular diastolic dimension; LVMi: left ventricular mass index; LDL-C: low-density lipoprotein cholesterol; NT-proBNP: N terminal-pro brain natriuretic peptide; TC: total

cholesterol; TG: total triglyceride.

tor occurrent on the terms on the one of the terms on the one of the terms on the one of the one of

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	2
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	3
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	3-4
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	4
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	4
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	3
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	3
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	5
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6
-		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	5-6
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Papart numbers of outcome events or summary measures over time	5-6

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	6-7
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	6-7
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	7-8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	10
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	8-10
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	11
		applicable, for the original study on which the present article is based	
			•

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Role of HDL cholesterol in anthracycline-induced subclinical cardiotoxicity: a prospective observational study in patients with diffuse large B-cell lymphoma treated with R-CHOP

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-074541.R2
Article Type:	Original research
Date Submitted by the Author:	14-Dec-2023
Complete List of Authors:	Ou, Wenxin; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Jiang, Tiantian; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Zhang, Nan; The First Affiliated Hospital of Chongqing Medical University, Department of Cardiology Lu, Kai; The First Affiliated Hospital of Chongqing Medical University, Department of Cardiology Weng, Yue; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Zhou, Xi; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Wang, Dong; The First Affiliated Hospital of Chongqing Medical University, Department of Hematology Wang, Dong; The First Affiliated Hospital of Chongqing Medical University, Department of Ultrasound Dong, Qian; The First Affiliated Hospital of Chongqing Medical University, Department of Cardiology Tang, Xiaoqiong; The First Affiliated Hospital of Chongqing Medical University,
Primary Subject Heading :	Oncology
Secondary Subject Heading:	Cardiovascular medicine, Medical management
Keywords:	Lymphoma < HAEMATOLOGY, CHEMOTHERAPY, CARDIOLOGY, Echocardiography < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Role of HDL cholesterol in anthracycline-induced subclinical								
5 6	2	cardiotoxicity: a prospective observational study in patients								
7 8	3	with diffuse large B-cell lymphoma treated with R-CHOP								
9	4									
10	5	Wenxin Ou ¹ , Tiantian Jiang ¹ , Nan Zhang ² , Kai Lu ² , Yue Weng ¹ , Xi Zhou ¹ , Dong Wang ³ , Oian								
12	6	$Dong^{2*}$. Xiaogiong Tang ^{1*}								
13	7									
14	8	¹ Department of Hematology. The First Affiliated Hospital of Chongging Medical University								
15 16	g	Chongaing China								
17	10	² Department of Cardiology. The First Affiliated Hospital of Chongging Medical University								
18	10	Changeing Ching								
19	10	3 Department of Lilteracound The First Affiliated Hespitel of Changeing Medical University								
20 21	12	Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University,								
22	13	Chongqing, China								
23	14									
24	15	*Corresponding Author: Qian Dong and Xiaoqiong Tang contributed equally to this work and								
25 26	16	are considered as co-corresponding authors.								
27	17	Qian Dong ²								
28	18	1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China								
29	19	Email address: 203748@hospital.cqmu.edu.cn								
30 31	20	Xiaoqiong Tang ¹								
32	21	1 Youyi Road, Yuzhong District, Chongqing, 400016, People's Republic of China								
33	22	Email address: <u>tlscqmu@126.com</u>								
34 25	23									
35 36	24	Keywords: cardiotoxicity; DLBCL; anthracycline; HDL-C; GLS								
37	25									
38	26	ABSTRACT								
39 40	27	Objectives: Anthracycline-induced cardiotoxicity is a debilitating cardiac dysfunction for which								
41	28	there are no effective treatments, making early prevention of anthracycline-induced subclinical								
42	29	cardiotoxicity (AISC) crucial. High-density lipoprotein cholesterol (HDL-C) plays role in cardio-								
43	30	protection, but its impact on AISC remains unclear. Our study aims to elucidate the protective								
44 45	31	capacity of HDL-C in AISC in patients with diffuse large B-cell lymphoma (DLBCL) treated with								
46	32	R-CHOP (cyclophosphamide vincristine doxorubicin prednisone and rituximab)								
47	33	Design: Prospective observational study								
48	34	Setting: Conducted in China from Sentember 2020 to Sentember 2022								
49 50	25	Participant: 70 chemotherany païve patients newly diagnosed with DI BCI, who were scheduled								
51	20	to reactive the standard does of P CHOP: 60 participants included in a case control study (DOI:								
52	30	10 1196/s12885 022 10085 6)								
53 54	37	10.1180/\$12885-022-10085-0).								
55										
56										
57										
50 59										

BMJ Open

2								
3	38	Primary outcome measures: Serum biomarkers, 2D speckle tracking echocardiography, and						
4 5	39	conventional echocardiography were measured at baseline, at the end of the 3rd and 6th cycle of						
6	40	R-CHOP, and 6 and 12 months post-chemotherapy.						
7	41	Results: 24 patients experienced AISC, while 10 did not. 36 patients were lost to follow-up and						
8 0	42	death. Cox regression analysis showed that higher levels of HDL-C were associated with a						
9 10	43	significantly lower risk of AISC (unadjusted, hazard ratio [HR]=0.24, 95%CI: 0.09-0.67, P=0.006;						
11	44	adjusted, HR=0.27, 95%CI: 0.09-0.79, P=0.017). Patients without AISC had a more stable and						
12	45	higher HDL-C level during the follow-up period. HDL-C levels were significantly decreased from						
13 14	46	the end of the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy in all patients						
15	47	(P=0.034), and particularly in the AISC group (P=0.003). The highest level of HDL-C was						
16	48	significantly higher in patients without AISC than in those with AISC $(1.52\pm0.49 \text{ vs}, 1.22\pm0.29)$.						
17 18	49	P=0.034)						
19	50	Conclusions: Our study suggests that higher HDL-C levels may associate with lower AISC risk						
20	51	in patients with DLBCL treated with R-CHOP HDL-C could be a cardio-protective target, but						
21 22	52	further research is needed to confirm its benefits and limitations						
22 23	53	Study registration number: ChiCTR2100054721						
24	54	Study registration number. Chie 112100054721						
25	55	Strongths and limitations of this study						
26 27	56	• This prospective observational study contributes to our understanding of the association						
28	57	between HDL C and AISC, offering a foundation for the development of early intervention						
29	57	and provention strategies						
30 31	50	• The study used advanced imaging techniques (2D STE) to assess the subalinical cardian						
32	59	• The study used advanced imaging techniques (2D-STE) to assess the subclinical cardiac dusfunction in the national which can provide more constitute and ecourate results compared						
33	60	to traditional ashagardiagraphy.						
34 25	60	The study only included notion with DLDCL who manipud B CHOB which may limit the						
35 36	02	• The study only included patients with DLBCL who received R-CHOF, which may find the						
37	63	generalizability of the findings to patients with other types of cancer of chemotherapy						
38	64 05	The relatively and the state of						
39 40	65	• The relatively small sample size in this study may potentially impact the robustness and						
41	66	generalizability of our findings. Additional comprehensive studies, including both clinical						
42	67	and basic research, are necessary to fully evaluate the benefits and limitations of HDL-C as a						
43 44	68	cardio-protective strategy in anthracycline-treated cancer patients.						
45	69 70	ΙΝΤΡΟΟΓΙΟΝΙ						
46	70							
47 40	/1	The improved management of cancer has led to a significant increase in the survival rate of cancer						
40 49	72	survivors(1). However, anthracycline, one of the most effective chemotherapeutic agents used to						
50	73	treat various cancers, is associated with potentially life-threatening and severe cardiovascular						
51	74	diseases(2). Studies have shown a significant increase in mortality in cancer patients with						
52 53	75	cardiovascular disease(3, 4). As advances in cancer treatment and an aging population continue,						
54	76	the number of patients with both conditions is rising(5). As a result, the field of cardio-oncology						
55	77	has become increasingly important in recent years.						
56 57								
58								

Non-Hodgkin's lymphoma (NHL) is the 7th most common cancer in the United States and the
most frequent hematologic malignancy globally, accounting for about 3% of cancer cases and
deaths(6). Among NHL, DLBCL is the most prevalent type, representing approximately one-third
of all cases(7). The combination of cyclophosphamide, vincristine, doxorubicin, and prednisone

- with rituximab (R-CHOP) is a standard first-line therapy that has substantially improved survival
 outcomes in patients with DLBCL(8). Nonetheless, anthracycline-containing chemotherapy agents
 are associated with cardiotoxicity, a major long-term adverse effect that significantly affects the
 quality of life and survival of cancer survivors.
- Anthracycline-induced cardiotoxicity (AIC) is a devastating consequence of successful cancer treatment, often leading to hypokinetic cardiomyopathy and ultimately heart failure. AIC is an irreversible form of cardiac dysfunction for which no guidelines or accepted therapies for cardioprotection currently exist(9, 10). Therefore, early prevention and detection of AIC are crucial for providing opportunities for early intervention. Anthracycline-induced subclinical cardiotoxicity (AISC) is an early stage of AIC, characterized by abnormal echocardiography index without clinical symptoms(11). Early intervention is recommended by the 2022 International Cardio-Oncology Society (IC-OS) consensus statement once AISC is detected(12). Global longitudinal peak systolic strain (GLS) measured by 2D speckle tracking echocardiography can reliably identify most early myocardial deformation variations. In our study, we used early measurement of GLS to identify AISC(13, 14).
- High-density lipoprotein (HDL) is the sole lipoprotein with protective attributes among the five types of lipoproteins. Its salutary effects include antioxidant, anti-inflammatory, and anti-apoptotic properties. Numerous preclinical investigations have suggested that HDL may have direct and indirect protective effects against AIC(15-17). The roles of HDL-cholesterol (HDL-C) and apolipoprotein A1 (ApoA1) in providing cardiovascular protection of HDL have been the subject of recent debate. Therefore, further investigation is warranted to explore the clinical data pertaining to the association between HDL and anthracycline-related cardiotoxicity.
- We undertook an prospective observational study to investigate the potential impact of HDL-C on AISC. Using 2D speckle tracking echocardiography, we identified AISC and sought to establish any correlation between HDL-C and AISC. Additionally, we assessed the fluctuations in HDL-C levels during R-CHOP chemotherapy in chemotherapy-naïve patients recently diagnosed with DLBCL. Subsequently, our team conducted a case-control study, revealing that HDL-C serves as a predictive factor for AISC in patients with DLBCL treated with 3 cycles of (R)-CHOP(18). Both the case-control study and present study are from the same database of the registered study 'Study Antineoplastic Drugs Induced Cardiotoxicity of Early in Patients with Lymphoma'(ChiCTR2100054721). Even though this case-control study was analyzed with data from different parts of the same database for different objectives, the result underscores the significance of further investigating the relationship between HDL-C and AISC.
- ⁵² 115
- 53 116 METHODS
- 55 117 Study population

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

We recruited chemotherapy-naïve patients newly diagnosed with DLBCL who were scheduled to receive the standard dose of R-CHOP chemotherapy regimen at our institution from September 1st, 2020, to September 1st, 2022. Our inclusion criteria were as follows: newly diagnosed DLBCL. age between 18 and 80 years, Eastern Cooperative Oncology Group (ECoG) performance status ≤ 2 , left ventricular ejection fraction (LVEF) $\geq 50\%$, and acceptable bone marrow, renal, and hepatic functions for chemotherapy. Conversely, our exclusion criteria were symptomatic heart failure, a history of myocardial ischemia, myocarditis, myocardial infarction, clinical or subclinical pericardial effusion, arrhythmia requiring medical intervention, a history of other cancers, under lipid-lowing treatment, and severe active infections such as syphilis, hepatitis, or human immunodeficiency virus (HIV) infection. This study shares its database with a case-control study previously conducted by our group, as referenced earlier(18). The patients enrolled in the two study were not identical because of a few differences in specific objectives, inclusion criteria, and exclusion criteria. In brief, the case-control study specifically included patients with DLBCL who received the standard dose of (R)-CHOP chemotherapy regimen (CHOP with or without rituximab combination), and patients undergoing lipid-lowering therapy were not excluded. In the current study, 10 of the 70 enrolled participants were not enrolled in the case-control study. More details can be seen in this case-control study(18).

Treatment

Patients received a total of 6 cycles of standard R-CHOP (cyclophosphamide at 750 mg/m² on D1, doxorubicin at 50 mg/m² on D1, vincristine at 1.4 [maximum 2] mg/m² on D1, and 100 mg prednisone on D1-5, with rituximab at 375 mg/m² on D1 in each cycle), with or without 2 cycles of rituximab maintenance (rituximab at 375 mg/m² on D1 in each cycle).

Definition of subclinical cardiotoxicity

According to the IC-OS consensus statement, the definition of subclinical cardiotoxicity was a relative GLS decrease from baseline [(baseline – current GLS)/baseline GLS] of >12%, but with a normal left ventricular ejection fraction (LVEF)(12).

Study protocol

We defined 'baseline' as the initial assessment conducted before the initiation of the first cycle of chemotherapy. At baseline, the end of the 3rd cycle of R-CHOP, the end of the 6th cycle of R-CHOP, and 6 and 12 months after chemotherapy completion, all enrolled patients underwent conventional echocardiography, 2D speckle tracking echocardiography, and blood sampling. Every patient received electrocardiography (ECG) examination before every cycle of chemotherapy to ensure the safety of the treatment. Demographic data and clinical variables, including age, gender, body mass index (BMI), ECoG performance status, diabetes mellitus, hypertension, drinking history (an adult who has consumed more than 20 drinks in lifetime, with each drink is considered to have an average alcohol content of 12 g), and smoking history (an adult who has smoked at least 100 cigarettes in their lifetime) were collected at the time of enrollment. Left ventricular systolic dysfunction was measured by LVEF, fractional shortening (FS), left ventricular mass index (LVMI), left ventricular diastolic dimension (LVDd), E, e', E/e', and GLS. HDL-C, low-density lipoprotein cholesterol (LDL-C), cardiac troponin T (cTnT), high sensitivity

158 C-reactive protein (hsCRP), N-terminal prohormone of brain natriuretic peptide (NT-proBNP),
159 total cholesterol (TC) and total triglyceride (TG) were measured. We used the baseline HDL-C
160 level as a surrogate marker for HDL quantity. The patients were categorized into two groups based
161 on the average HDL-C value for males and females in the modified criteria of the National
162 Cholesterol Educated Program Adult Treatment Panel (NCEP ATP III)(19). High HDL-C was
163 defined as a serum HDL-C≥1.16mmol/L, while low HDL-C was defined as a serum HDL-

- 10 163 defined as a serum HDL-C \geq 1.16mmol/L, while low HDL-C was defined as a serum HDL-11 164 C<1.16mmol/L. We determined the sample size using an online sample size calculator, which 12 165 indicated a total requirement of 23 events(20).
- 13 166 Statistical analysis

The study was conducted with two aims: firstly, to evaluate the relationship between HDL-C and AISC; and secondly, to conduct a preliminary exploration of the differences in HDL-C and the variability of HDL-C changes between patients with and without AISC during the follow-up period. Continuous variables were expressed as mean± standard deviation (SD) and compared using the t-test. Non-normally distributed variables were presented as median (Q1- Q3) and compared with the Wilcoxon Mann-Whitney test. Categorical variables were expressed as n (%) and compared using the Chi-square or Fisher's exact test, as appropriate. Correlation analysis was conducted to investigate the associations of change in HDL-C with change in GLS. The probabilities of survival were calculated using Kaplan-Meier methods and compared using Log-rank tests. Cox proportional-hazards regression models were conducted to assess the association between variables and AISC. Covariates for multivariable Cox regression models included age, sex, and variables that had a P-value of less than 0.15 in the univariable Cox regression analysis (GLS was excluded as it is the factor that defines AISC). Two multivariable Cox regression models were constructed: the first model included age and sex; and the second model included age, sex, hypertension, BMI, and E. Statistical analysis and visualization were performed using IBM SPSS V.22.0 and GraphPad Prism 8. Statistical tests were two-sided, with a P-value less than 0.05 being considered statically significant.

Patient and public involvement

39 185 None.

RESULTS

⁴³ 188 Assessment of the association between HDL-C and AISC

45 189 Study population and baseline characteristics

This investigation enrolled a total of 70 patients with chemotherapy-naïve DLBCL and were planned to be treated with the standard R-CHOP regimen. Based on the baseline HDL-C level, we segregated the patients into two groups: the high-level group (HDL-C \geq 1.16mmol/L, n=28) and the low-level group (HDL-C<1.16mmol/L, n=42). Patients with drinking history had a greater chance of having a high HDL-C level (P=0.034). The patients with high HDL-C showed substantially higher total cholesterol (P=0.011), and lower total triglyceride (P=0.002). The baseline characteristics of the patients in both groups were well balanced (Table S1).

BMJ Open

2												
3	198	High HDL-C was an independent protective target of anthracycline-induced subclinical										
4 5	199	cardiotoxicity										
6	200	The clinical endpoint was defined as the first detection of AISC, and the median survival time of										
7	patients with low	ow HDL-C was 4										
8	202	2 months, while that of patients with high HDL-C was not reached. The median follow-up the										
9 10	203	the cohort was 10 months. During the follow-up period, 24 patients experienced AISC, while 10										
11	204	did not. Approximately half of the patients (n=36) were lost to follow-up and death A flowchart										
12	205	detailing the patients enrolled in the study can be found in Figure S1										
13 14	206	The log-rank test revealed that patients with higher HDL-C were less likely to experience AISC										
15	207	(P=0.001 HR=0.26.95% CI: 0.12-0.58) (Figure S2)										
16	208	According to the results of the univariable Cox regression analysis variables that had a P-value of										
17	200	less than 0.15 including age BMI hypertension GIS E and HDI C group Increasing age was										
19	210	943_0 998 P=0	R = 0.034 per 1-vear									
20	210	increase BMI showed a HR of 1.09 (05% CI.0.07 1.22 $D=0.120$) nor 1 kg/m ² increase. Similarly										
21	211	increase. Divit showed a first of $1.07 (95\% \text{ CI} 0.97 - 1.22, r = 0.159)$ per 1 kg/iii ⁻ increase. Similarly,										
22 23	$\frac{12}{22}$ 212 hypertension had a Fix of 0.22 (95% CI 0.05-1.02, P=0.150) for yes versus no. A lower (
24	213	dooroogo E volooit	the showed a H	I = IIICICase	2(059/CI100)	106 D	-0.075) por 1 or	.0.001) p	$c_1 - 1/0$			
25	214	UDL C group (hi	ch vorava lov	$(\mathbf{K} \ 0 1 1, 0, \mathbf{v})$ had	o (9576 CI 1.00	100, F	-0.073 per 1 cm		Se. The 0.067			
26 27	215	HDL-C group (III	gir versus iov	w) nau a			1110.24 (93)	% CI 0.0	9-0.07,			
27	216	P=0.006). Further details about other variables can be found in Table S2.										
29	217	The results of the multivariable Cox regression analysis showed that high HDL-C was significantly										
30	218	associated with a	lower risk o	f AISC	after adjusting	for age	and sex (mode	31 1) (HF	<=0.28,			
31 32	219	95%CI:0.10=0.84,	P=0.018). Sin	milarly, a	ifter adjusting	for age, s	sex, and variable	s that P<	0.15 in			
33	220	the univariable Cox regression analysis (excluding GLS as it defines AISC) (model 2), the same										
34	221	association was ob	served (HR=().27, 95% · ·	oCI: 0.09-0.79,	P=0.017). (Table 1)					
35	222	Table 1. Outcomes	s of study part	icipants.								
37			HR (95%CI) (unadjusted)	P values	HR (95%CI) (adjusted [*])	P values	HR (95%CI) (adjusted#)	P values				
38		Low HDL-C	Ref		Ref		Ref					
39		High HDL-C	0.24 (0.09 - 0.67)	0.006	0.28 (0.10-0.80)	0.018	0.27 (0.09- 0.79)	0.017				
40 41	223	The endpoint was	defined as the	first dete	ection of anthra	cycline-i	induced subclinit	cal				
42	224	cardiotoxicity.		1/2 22: 1		0.110	1/7 * 4 1	1.0				
43	225	Low HDL-C: HDI	2-C<1.16mmc	ol/L; Higi	1 HDL-C: HDL	L-C≥1.16	mmol/L. Adjus	ted for ag	e and			
44	226	sex. #Adjusted for	age, sex, hype	ertension,	body mass inc	lex, E. H	R, hazard ratio;	HDL-C, ł	11gh-			
45 46	227	density lipoprotein	-cholesterol.									
47	228											
48 49 50 51 52	229	Preliminary explo	oration of the	differen	ce of HDL-C	between	patients with A	ISC and				
	230	without AISC										
	231	Study population and baseline characteristics										
	232	In this analysis, we selectively included 34 of the enrolled patients who were not lost to follow-up										
53	233	and death. The patients who exhibited AISC at any time during the follow-up period were										
54 55	234	emonstrate AIS	C were cla	assified								
56	235	into the NO-AISC group (n=10). Patients within the AISC group were comparatively young										

236 (50±12.45 vs. 59.7±9.67, P=0.035) and exhibited a higher baseline GLS [22.0 (21.0, 22.8) vs. 18.0

- (17.0, 20.0), P<0.001]. More baseline information can be seen in Table S3.
- 6 238 *Timeline of HDL-C level in patients with and without AISC*

Figure 1 displays the timeline of HDL-C levels in patients with and without AISC. In Figure 1a, the patient population was categorized into four groups based on the time of AISC detection. Among the groups, 12 patients were identified with AISC at the end of the 3rd cycle of chemotherapy, 7 patients at the end of the 6th cycle, 3 patients at 6 months after treatment completion, and 2 patients at 12 months after treatment completion. With the exception of the group in which patients detected AISC at the end of the 3rd cycle of chemotherapy, all other groups exhibited a reduction in HDL-C values from the end of the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy. Figure 1b portrays the HDL-C level in patients without AISC, indicating that the HDL-C level was more stable than in patients with AISC. Moreover, the overall HDL-C level was higher in patients without AISC than in patients with AISC throughout the follow-up period (Figure 2a). In Figure 2b, there was a significant decrease in GLS during the chemotherapy period (from 0-4 months), which remained stable after completion of chemotherapy (after 4 months) in patients with AISC.

Based on Figure 2, we observed that the fluctuations in HDL-C and GLS were most pronounced during the chemotherapy period. The fluctuations in HDL-C levels of patients with DLBCL during R-CHOP chemotherapy were presented in Figure 3. The levels of HDL-C significantly increased for all patients from baseline to the end of the 3rd cycle of chemotherapy (P=0.012) and significantly decreased from the end of the 3rd cycle to the end of the 6th cycle of chemotherapy (P=0.034) (Figure 3a). Patients with AISC showed a significant decrease in HDL-C levels during R-CHOP chemotherapy from the end of the 3rd cycle to the end of the 6th cycle (P=0.003) (Figure 3b). However, no significant difference was observed in HDL-C levels for patients without AISC during R-CHOP chemotherapy (Figure 3c). We conducted correlation analysis separately for the change in HDL-C and GLS from baseline to after 3 cycles of chemotherapy, from baseline to after 6 cycles of chemotherapy, and from after 3 cycles to after 6 cycles of chemotherapy. However, we found no statistically significant differences in the associations between changes in HDL-C and GLS (P=0.965, 0.087, 0.449).

42 265 *Contrasting values of HDL-C parameters between patients with and without AISC*

Figure 4 presents the contrasting values between patients with AISC and those without in terms of four parameters, namely the highest and lowest levels of HDL-C during chemotherapy, the increment and decline in HDL-C values from baseline. Patients without AISC showed significantly higher values in the highest level of HDL-C (1.52±0.49 vs. 1.22±0.29, P=0.034, Figure 4a). However, no significant differences were observed between the two groups in terms of HDL-C increment from baseline to the highest value (0.31±0.31 vs. 0.22±0.23, P=0.386, Figure 4b). While the lowest level of HDL-C was lower in patients with AISC, the difference was not statistically significant (0.84±0.16 vs. 1.03±0.41, P=0.182, Figure 4c). Furthermore, there were no significant differences in HDL-C decline between patients with AISC and those without (0.16±0.20 vs. 0.18±0.26, P=0.777, Figure 4d).

⁴ 277 **DISCUSSION**

This prospective observational study investigated the relationship between HDL-C and incidence of AISC in 70 patients with DLBCL who were receiving anthracycline-containing chemotherapy. The study found that higher levels of HDL-C were associated with a lower incidence of AISC. Moreover, patients without AISC had more stable and higher levels of HDL-C than those with AISC during the follow-up period. The results also showed that HDL-C levels were significantly decreased from the end of the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy in all patients, especially in the AISC group, indicating that anthracycline-containing chemotherapy has adverse effects on HDL-C levels. Notably, the highest level of HDL-C was significantly higher in patients without AISC compared to those with AISC. These findings suggest that HDL-C may have a protective role against AISC in patients with DLBCL undergoing anthracycline-containing chemotherapy and maintaining a relatively high level of HDL-C may be more effective in managing cardio-protection than monitoring changes in HDL-C levels over time. The results of this study highlight the importance of early serum lipid management in these patients.

Lipoproteins are classified into five categories, namely chylomicron, very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), based on their size, density, and lipid composition (cholesterol and triglycerides)(21). Among these, HDL exhibits distinctive cytoprotective actions and triggers anti-oxidative, anti-inflammatory, and anti-apoptotic effects. The protective roles of HDL in cardiovascular disease have been controversial in recent years, and that the quality of HDL (cholesterol efflux capacity, antioxidant activity, anti-inflammatory activity, endothelial function, etc.) rather than the quantity of HDL has been proposed as the true cardioprotective effect. The Framingham Heart Study, as early as 1988, reported a correlation between HDL-C and cardiovascular mortality(22). Recent studies have challenged the HDL-C hypothesis by revealing that HDL-C level is not inversely correlated with cardiovascular diseases(23, 24). In our study, we used the baseline HDL-C level as a surrogate marker for HDL quantity, but we did not directly measure the quality of HDL. Measuring the level of HDL-C in serum is a commonly used method to assess the effect of HDL on cardiovascular health. HDL facilitates the transportation of cholesterol from the body's tissues back to the liver, and higher levels of HDL-C are generally associated with a lower risk of heart disease. Nevertheless, it's crucial to note that HDL-C levels may not accurately reflect the functional properties of HDL. ApoA1, the most abundant protein in HDL, is associated with several beneficial effects of HDL(15, 25). The function and abundance of ApoA1 are reported to play a dominant role in HDL quality(26). In the context of AIC, several studies have indicated that HDL can protect against anthracycline-induced cardiomyocyte apoptosis and atrophy in isolated cardiomyocytes(27, 28) and animal models(16, 28). Based on these earlier trials, HDL-C and ApoA1 could serve as protective factors against anthracycline-related cardiovascular disease. The case-control study conducted by our team, utilizing the same database, demonstrated that both HDL-C and ApoA1 act as predictive factors in patients

undergoing three cycles of anthracycline-containing chemotherapy(18). Both the present study and the case-control study are derived from a registered research (ChiCTR2100054721) as mentioned before. The objective of this registered study was to explore the correlation between cardiotoxicity occurrence and lymphoma, antitumor drugs, and cardiovascular risk factors. This registered study included patients with clinically diagnosed lymphoma who were evaluated by a hematologist as requiring chemotherapy. The study collected the demographic data and clinical variables of enrolled patients. Enrolled patients underwent conventional echocardiography, 2D speckle tracking echocardiography, and blood sampling at baseline, the end of the 3rd cycle of chemotherapy, the end of the 6th cycle of chemotherapy, and 6 and 12 months after completing chemotherapy. In our case-control study, according to the changes of GLS at baseline and after the 3rd cycle of chemotherapy, patients were divided into the AISC and No-AISC groups. Then demographic data, clinical variables, and biochemical variables were compared between the two groups. In contrast to the current study, this case-control study specifically included patients with DLBCL who received the standard dose of (R)-CHOP chemotherapy regimen (CHOP with or without rituximab combination), and patients undergoing lipid-lowering therapy were not excluded. The aim of this case-control study was to analyze the influencing factors of AISC in patients with DLBCL treated with 3 cycles of (R)-CHOP chemotherapy regimen, and results indicated that both HDL-C and ApoA1 act as predictive factors against AISC. However, our present study didn't focus on the investigation of the impact of ApoA1 on AISC. Even when ApoA1 was included in the Cox regression model, no significant association with AISC in patients with DLBCL treated with R-CHOP was observed (P>0.05, data not shown), probably due to the number of events in our study was insufficient to support a robust ApoA1 analysis. Therefore, the role of ApoA1, the most abundant protein in HDL, in the context of AISC, warrants further investigation in future research.

- As far as we know, few clinical studies have investigated the association between HDL-C and AISC. This study is the first clinical research that utilizes the IC-OS consensus statement(12) to define subclinical cardiotoxicity, with univariate and multivariable analyses being used to identify the influential factors of AISC in patients with DLBCL in this cohort. Kaplan-Meier methods and Log-rank tests reveal that patients with high HDL-C levels were less likely to develop AISC. After subjecting it to univariate and multivariable Cox regression methods, high HDL-C levels still showed statistically significant differences. These results suggest that high HDL-C could be a potentially independent protective factor for AISC in patients with DLBCL and provide an opportunity for investigators to develop a tool for early intervention and prevention of AISC. Further research is necessary to confirm our findings.
- Several studies have demonstrated that serum lipid levels are altered during anthracycline-containing chemotherapy in cancer patients(29, 30). Huxley et al and Averina et al have shown that imbalanced serum lipid distribution is a risk factor for cardiovascular disease(31, 32). As a result, anthracycline-containing treatment can induce dyslipidemia and facilitate the occurrence and development of cardiovascular diseases in cancer patients. In a study of 394 breast cancer patients, Xin et al found that HDL-C levels after chemotherapy were significantly lower than those

BMJ Open

before chemotherapy(33). Similarly, Lu et al and Hana et al found that HDL-C levels were significantly decreased during anthracycline-containing chemotherapy in patients with breast cancer(34, 35). In our study, we specifically assessed the changes in HDL-C levels over time during follow-up. Except for the group of patients who experienced AISC at 12 months after treatment completion, HDL-C levels in all other groups increased from baseline to the 3rd cycle of chemotherapy. This phenomenon may be due to the fact that anti-tumor drugs require cholesterol to cross cell membranes(36). However, HDL-C levels were significantly decreased from the end of the 3rd cycle of chemotherapy to the end of the 6th cycle of chemotherapy in all patients, especially in the AISC group, which is consistent with previous research results(33-35), and further confirmed that anthracycline-contained chemotherapy has adverse effects on HDL-C levels in patients with DLBCL. The HDL-C level in patients without AISC was more stable than that in patients with AISC. Therefore, anthracycline-containing chemotherapy may promote the occurrence and development of cardiotoxicity in patients with DLBCL by inducing HDL-C turbulence.

Besides, the findings of our study indicate a significant decrease in GLS during the chemotherapy period in patients with AISC. This result is consistent with previous research, which has reported that doxorubicin dose at the range of $100-150 \text{ mg/m}^2$ can cause cardiotoxicity(37). Notably, we also observed that GLS remained stable after completion of chemotherapy, suggesting that the cardiac effects of anthracycline-based chemotherapy may be dose-related. These findings have important implications for the monitoring and management of cardiotoxicity in patients undergoing anthracycline-based chemotherapy, as early detection of cardiac dysfunction during treatment may improve patient outcomes. We investigated the associations of change in HDL-C with change in GLS, no statistically significant differences were found.

- The analysis of HDL-C levels should not only consider the changes over time, but also the absolute values. In our study, patients without AISC had significantly higher absolute highest HDL-C levels than those with AISC, while the absolute lowest HDL-C levels did not differ significantly between the two groups. The alterations from HDL-C extremes to baseline did not exhibit any variation between the groups either. This suggests that the highest absolute HDL-C value was a preferable indicator of AISC protection than the change in HDL-C from baseline to the extremum value. Maintaining a relatively high level of HDL-C may be more effective in managing the cardio-protection of anthracycline-treated cancer patients than monitoring changes in HDL-C levels over time.
- In our investigation, we observed that among the four patients with pre-existing hypertension, one patient experienced AISC during the follow-up (Table S3). Multivariable Cox regression analysis showed that hypertension did not have a significant impact on AISC (P>0.05). Hypertension, a common risk factor for both cancer and cardiovascular diseases, was also recognized as a risk factor for cardiotoxicity. Studies have reported that pre-existing hypertension was associated with anthracycline-and trastuzumab induced left ventricular ejection fraction (LVEF) decline in a retrospective study(38), and early left ventricular systolic dysfunction in patients with lymphoma receiving (R)-CHOP in a prospective study(39). We noted that all patients with hypertension in
our study were under a single antihypertensive drug regimen (beta-blockers or ACEI/ARB) to manage their blood pressure. Two meta-analyses have demonstrated that beta-blockers and ACEI can prevent cardiotoxicity caused by chemotherapy (40, 41). We speculate that the protective effects of beta-blockers and ACEI/ARB may have contributed to the result observed in our study regarding the relationship between hypertension and AISC.

There are several limitations to our study that must be acknowledged. Firstly, while our study highlights the potential importance of HDL-C in managing AISC, additional studies are necessary to fully evaluate the benefits and limitations of HDL-C as a cardio-protective strategy in anthracycline-treated cancer patients. Secondly, this is a single-center prospective observational study with a medium sample size. To confirm our findings, a larger sample size study conducted at multiple centers is needed. Thirdly, previous studies have suggested that there may be a reversed U-shaped relationship between HDL-C levels and cardiovascular diseases(42). Due to the small sample size of this study, we didn't further investigate the influence of extremely high levels of HDL-C on cardiotoxicity, and further clinical studies should be done to verify it. Besides, the measurement of GLS was only taken at baseline and at several points throughout the chemotherapy treatment and follow-up period. It is crucial to extend the duration of follow-up in future research to obtain a more comprehensive understanding of the long-term effects of anthracycline treatment on cardiovascular health.

CONCLUSIONS

In conclusion, our prospective observational study suggests that higher levels of HDL-C may be associated with a lower risk of AISC in patients with DLBCL treated with R-CHOP chemotherapy. HDL-C levels remained stable and consistently higher in patients without AISC compared to those with AISC. Additionally, the highest absolute HDL-C value was found to be a preferable indicator of AISC protection. These findings suggest that HDL-C may be a potential cardio-protective target for managing AISC in this patient population. However, further research is needed to confirm and expand on these findings, including determining the optimal HDL-C level for cardio-protection and the potential benefits of early serum lipid management.

ACKNOWLEDGMENTS

The authors would like to thank all the nurses, other medical workers and patients' families who assisted in this study.

COMPETING INTERESTS

The authors declare no conflict of interest.

FUNDING

This research was funded by the Science-Health Joint Medical Scientific Research Project of Chongqing "Study of antineoplastic drugs induced early cardiotoxicity in patients with Lymphoma " (Grant No. 2021MSXM276), the Natural Science Foundation of Chongqing "The mechanism of

BMJ Open

doxorubicin promoting atherosclerosis in lymphoma patients through NF-κB/miR-33 signaling

pathway" (Grant No. cstc2019jcyj-msxmX0043), the Science-Health Joint Medical Scientific

Research Project of Chongqing "Evaluation of cardiac function in patients with anthracycline

chemotherapy by a new strain imaging technique" (Gant No. 2019ZDXM033), and the Chongqing

Postgraduate Scientific Research and Innovation Project "Study on the role of high-density

lipoprotein in anthracycline-induced subclinical cardiotoxicity in patients with lymphoma" (Grant

444 CONTRIBUTORS

No. CYS22340).

Conceptualization, Wenxin Ou, Tiantian Jiang, Nan Zhang, Kai Lu, Yue Weng, Xi Zhou, Dong Wang, Qian Dong and Xiaoqiong Tang; Data curation, Wenxin Qu, Tiantian Jiang, Yue Weng and Xi Zhou; Formal analysis, Wenxin Ou and Tiantian Jiang; Funding acquisi-tion, Wenxin Ou, Nan Zhang, Dong Wang and Xiaoqiong Tang; Investigation, Dong Wang, Qian Dong and Xiaoqiong Tang; Methodology, Wenxin Ou, Tiantian Jiang, Nan Zhang, Kai Lu, Yue Weng, Xi Zhou, Dong Wang, Qian Dong and Xiaoqiong Tang; Resources, Dong Wang, Qian Dong and Xiaoqiong Tang; Supervision, Qian Dong and Xiaoqiong Tang; Validation, Nan Zhang and Kai Lu; Visualization, Wenxin Ou and Tiantian Jiang; Writing – original draft, Wenxin Ou; Writing – review & editing, Wenxin Ou, Tiantian Jiang, Nan Zhang, Kai Lu, Yue Weng, Xi Zhou, Dong Wang, Qian Dong and Xiaoqiong Tang. Qian Dong and Xiaoqiong Tang contributed equally to this work and are considered as co-corresponding authors.

30 456

457 DATA AVAILABILITY STATEMENT

458 Data are available upon reasonable request.

460 ETHICS APPROVAL

461 The study was conducted in accordance with the Declaration of Helsinki and approved by the
462 ethics committee of the First Affiliated Hospital of Chongqing Medical University (Approval NO.
463 2018-016). And all participating patients provided written informed consent.

REFERENCES

Rosen MR, Myerburg RJ, Francis DP, Cole GD, Marbán E. Translating stem cell
research to cardiac disease therapies: pitfalls and prospects for improvement. J Am Coll
Cardiol. 2014;64(9):922-37.

46 469 2. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular
 47 470 advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol
 48 471 Rev. 2004;56(2):185-229.
 49 472 3. Hasin T, Gerber Y, McNallan SM, Weston SA, Kushwaha SS, Nelson T L et al. Patients

472 3. Hasin T, Gerber Y, McNallan SM, Weston SA, Kushwaha SS, Nelson TJ, et al. Patients
473 with heart failure have an increased risk of incident cancer. J Am Coll Cardiol. 2013;62(10):881474 6.

Abdel-Qadir H, Austin PC, Lee DS, Amir E, Tu JV, Thavendiranathan P, et al. A
 Ar6 Population-Based Study of Cardiovascular Mortality Following Early-Stage Breast Cancer.
 JAMA Cardiol. 2017;2(1):88-93.

BMJ Open

5. Stoltzfus KC, Zhang Y, Sturgeon K, Sinoway LI, Trifiletti DM, Chinchilli VM, et al. Fatal heart disease among cancer patients. Nat Commun. 2020;11(1):2011. Thandra KC, Barsouk A, Saginala K, Padala SA, Barsouk A, Rawla P. Epidemiology of 6. Non-Hodgkin's Lymphoma. Med Sci (Basel). 2021;9(1). Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US 7. lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66(6):443-59. Salles G, Barrett M, Foà R, Maurer J, O'Brien S, Valente N, et al. Rituximab in B-Cell 8. Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv Ther. 2017;34(10):2232-73. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline 9. Chemotherapy and Cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63-75. Russell RR, Alexander J, Jain D, Poornima IG, Srivastava AV, Storozynsky E, et al. The 10. role and clinical effectiveness of multimodality imaging in the management of cardiac complications of cancer and cancer therapy, J Nucl Cardiol, 2016;23(4):856-84. Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, et al. Management of 11. cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31(2):171-90. Herrmann J, Lenihan D, Armenian S, Barac A, Blaes A, Cardinale D, et al. Defining 12. cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur Heart J. 2022;43(4):280-99. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of 13. cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57(22):2263-70. Negishi K, Negishi T, Haluska BA, Hare JL, Plana JC, Marwick TH. Use of speckle strain 14. to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur Heart J Cardiovasc Imaging. 2014;15(3):324-31. Kluck GEG, Durham KK, Yoo JA, Trigatti BL. High Density Lipoprotein and Its Precursor 15. Protein Apolipoprotein A1 as Potential Therapeutics to Prevent Anthracycline Associated Cardiotoxicity. Front Cardiovasc Med. 2020;7:65. 16. Durham KK, Chathely KM, Mak KC, Momen A, Thomas CT, Zhao YY, et al. HDL protects against doxorubicin-induced cardiotoxicity in a scavenger receptor class B type 1-. PI3K-, and Akt-dependent manner. Am J Physiol Heart Circ Physiol. 2018;314(1):H31-h44. 17. Van Linthout S, Frias M, Singh N, De Geest B. Therapeutic potential of HDL in cardioprotection and tissue repair. Handb Exp Pharmacol. 2015;224:527-65. Dong Q, Ou W, Wang M, Jiang T, Weng Y, Zhou X, et al. Study on influencing factors of 18. anthracycline-induced subclinical cardiotoxicity in DLBCL patients administered (R)-CHOP. BMC Cancer. 2022;22(1):988. Executive Summary of The Third Report of The National Cholesterol Education Program 19. (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). Jama. 2001;285(19):2486-97. 20. MA K, J S. Sample Size Calculators [website]: UCSF CTSI; 20 December 2021 [Available from: https://www.sample-size.net/. Mahley RW, Innerarity TL, Rall SC, Jr., Weisgraber KH. Plasma lipoproteins: 21. apolipoprotein structure and function. J Lipid Res. 1984;25(12):1277-94. Wilson PW, Abbott RD, Castelli WP. High density lipoprotein cholesterol and mortality. 22. The Framingham Heart Study. Arteriosclerosis. 1988;8(6):737-41.

2		
3	527	23. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of
4	528	dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med.
5	529	2012:367(22):2089-99.
6	530	24 Lincoff AM Nicholls SJ Riesmever JS Barter PJ Brewer HB Fox KAA et al
7	531	Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease N Engl J Med
8	532	2017·376(20)·1033_42
9	522	25 Pader D L Malacular regulation of HDL motobalism and function; implications for noval
10	555	therenice. I Clin Invest 2006:116(12):2000 100
11	534	Inerapies. J Clin Invest. 2006, 116(12).3090-100.
12	535	26. Smith JD. Dystunctional HDL as a diagnostic and therapeutic target. Arterioscier Thromb
13	536	Vasc Biol. 2010;30(2):151-5.
14	537	27. Brinck JW, Thomas A, Brulhart-Meynet MC, Lauer E, Frej C, Dahlbäck B, et al. High-
15	538	density lipoprotein from end-stage renal disease patients exhibits superior cardioprotection and
16	539	increase in sphingosine-1-phosphate. Eur J Clin Invest. 2018;48(2).
17	540	28. Durham KK, Kluck G, Mak KC, Deng YD, Trigatti BL. Treatment with apolipoprotein A1
18	541	protects mice against doxorubicin-induced cardiotoxicity in a scavenger receptor class B, type I-
19	542	dependent manner. Am J Physiol Heart Circ Physiol. 2019;316(6):H1447-h57.
20	543	29. Bicakli DH, Varol U, Degirmenci M, Tunali D, Cakar B, Durusov R, et al. Adjuvant
21	544	chemotherapy may contribute to an increased risk for metabolic syndrome in patients with
22	545	breast cancer J Oncol Pharm Pract 2016:22(1):46-53
23	546	30 Rzymowska J. Effect of cytotoxic chemotherapy on serum lipid levels in breast cancer
24	547	natients Pathobiology 1999:67(3):129-32
25	5/8	31 Huvley R. Lewington S. Clarke R. Cholesterol, coronary heart disease and stroke: a
26	540	review of publiched evidence from observational studies and randomized controlled trials
27	549 550	Somin Visco Mod. 2002;2(2):215-22
28	550	Selfilli Vasc Med. 2002,2(3).313-23.
29	551	32. Averina M, Nilssen O, Brenn T, Brox J, Arknipovsky VL, Kalinin AG. Factors bening the
30	552	increase in cardiovascular mortality in Russia: apolipoprotein AI and B distribution in the
31	553	Arkhangelsk study 2000. Clin Chem. 2004;50(2):346-54.
32	554	33. Li X, Liu ZL, Wu YT, Wu H, Dai W, Arshad B, et al. Status of lipid and lipoprotein in
33	555	female breast cancer patients at initial diagnosis and during chemotherapy. Lipids Health Dis.
34	556	2018;17(1):91.
35	557	34. Kalábová H, Melichar B, Ungermann L, Doležal J, Krčmová L, Kašparová M, et al.
36	558	Intima-media thickness, myocardial perfusion and laboratory risk factors of atherosclerosis in
37	559	patients with breast cancer treated with anthracycline-based chemotherapy. Med Oncol.
38	560	2011:28(4):1281-7.
39	561	35. Lu Q, Wu X, Zhu Y, Yang J, Wang X, Ye C, et al. Effects of Chemotherapy on Serum
40	562	Lipids in Chinese Postoperative Breast Cancer Patients, Cancer Manag Res. 2020;12:8397-
41	563	408
42	564	36 Zhang L Bennett WE Zheng T Ouvang PK Ouvang X Oiu X et al. Effect of
43	565	Cholesterol on Cellular Untake of Cancer Drugs Pirarubicin and Ellipticine J Phys Chem B
44	566	
45	500	2010, 120(12).0140-00. 27 Plance IC Sup CL Landier W/ Chen L Echarza Duran D Leisenring W/ et al.
46	507	Anthropyeline related cordiamyenethy after childhood concert rele of polymorphisms in corbonyl
47	500	Antificacycline-related cardiomyopathy after childron's Oncelegy Creup, J. Clip Oncel, 2012;20(12):1415
48	509	reductase genesa report from the Children's Oncology Group. J Clin Oncol. 2012,30(13). 1415-
49	570	
50	571	38. Hamirani Y, Fanous I, Kramer CM, Wong A, Salerno M, Dillon P. Anthracycline- and
51	572	trastuzumab-induced cardiotoxicity: a retrospective study. Med Oncol. 2016;33(7):82.
52	573	39. Szmit S, Jurczak W, Zaucha JM, Drozd-Sokołowska J, Spychałowicz W, Joks M, et al.
53	574	Pre-existing arterial hypertension as a risk factor for early left ventricular systolic dysfunction
54	575	following (R)-CHOP chemotherapy in patients with lymphoma. J Am Soc Hypertens.
55	576	2014;8(11):791-9.
56		
57		
58		
59		

BMJ Open

3 4	577 578	40. Shah P, Garris R, Abboud R, Vasudev R, Patel H, Doshi R, et al. Meta-Analysis Comparing Usefulness of Beta Blockers to Preserve Left Ventricular Function During
5	579	Anthracycline Therapy. Am J Cardiol. 2019;124(5):789-94.
7	580	41. Dong H, Yao L, Wang M, Wang M, Li X, Sun X, et al. Can ACEI/ARB prevent the
, 8	581	cardiotoxicity caused by chemotherapy in early-stage breast cancer?-a meta-analysis of
9	582	randomized controlled trials. Transl Cancer Res. 2020;9(11):7034-43.
10	583	42. Feng M, Darabi M, Tubeut E, Canicio A, Lhomme M, Frisdal E, et al. Free cholesterol
11	584	transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis underlies the U-shape
12	585	relationship between HDL-cholesterol and cardiovascular disease. Eur J Prev Cardiol.
13	586	2020,27(15).1606-16.
14	587	
15	588	
17	589	FIGURE LEGENDS
18	590	Figure 1. (a) Timeline of high-density lipoprotein cholesterol (HDL-C) levels in patients
19 20	591	detected anthracycline-induced subclinical cardiotoxicity (AISC) at four time points. 12 patients
21	592	were detected AISC at the end of the 3rd cycle of chemotherapy. 7 patients were detected AISC
22	593	at the end of the 6th cycle of chemotherapy. 3 patients were detected AISC at 6 months after
23	594	treatment completion. 2 patients were detected AISC at 12 months after treatment completion.
24	595	(b) Timeline of HDL-C levels of patients without AISC.
25 26	596	Figure 2. Timeline of high-density lipoprotein cholesterol (HDL-C) levels (a) and global
27	597	longitudinal strain (GLS) (b) in patients with and without anthracycline-induced subclinical
28	598	cardiotoxicity (AISC) during the whole follow-up period
29	599	Figure 3 (a) Changes of high-density linoprotein cholesterol (HDL-C) in all patients from
30 31	600	baseline to the end of the 6th cycle of chemotherapy (b) Changes of HDL-C in patients with
32	601	anthracycline-induced subclinical cardiotoxicity (AISC) (c) Changes of HDL-C in patients
33	602	without AISC
34 35	603	Figure 4 High-density linoprotein cholesterol (HDL-C) differences between anthracycline-
36	604	induced subclinical cardiotoxicity (AISC) and No-AISC (a) Highest level of HDL-C during
37	605	abametherany (b) The HDL C value increment from baseline to the highest value (a) The lowest
38	005	chemotherapy. (b) The TIDL-C value increment from baseline to the ingress value. (c) The lowest
39 40	606	level of HDL-C during chemotherapy. (d) The HDL-C value declined from baseline to the
40	607	lowest.
42	608	
43	609	
44		
45		
40 47		
48		
49		
50		
51		
52 53		
55 54		
55		
56		
57		
58 50		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- AISC

20

10

15

NO-AISC

Figure S1. Flow diagram of patients enrolled in the prospective observational study.

148x68mm (300 x 300 DPI)

Figure S2. Kaplan-Meier curves of the percentage of patients without AISC in patients stratified by HDL-C level. High HDL-C: HDL-C \geq 1.16mmol/L. Low HDL-C: HDL-C<1.16mmol/L. AISC, anthracycline-induced cardiotoxicity; HDL-C, high-density lipoprotein cholesterol; HR, hazard ratio.

112x92mm (300 x 300 DPI)

		-		
	Total cohort	Low HDL-C*	High HDL- C^*	P-value
	n=70	n=42	n=28	
Age (year)	55.03±14.79	52.48±16.11	58.86±11.83	0.077
Male/Female (n)	34/36	22/20	12/16	0.435
BMI (kg/m ²)	23.08±3.33	23.51±3.29	22.43±3.33	0.183
ECoG performance status				0.465
0 (%)	37 (52.86)	22 (52.38)	15 (53.57)	
1 (%)	24 (34.29%)	13 (30.95)	11 (39.28)	
2 (%)	9 (12.85)	7 (16.67)	2 (7.14)	
Hypertension (%)	9 (12.86)	5 (11.90)	4 (14.28)	1.000
Antihypertensive treatment	9 (12.86)	5 (11.90)	4 (14.28)	1.000
ACEI/ARB	5	2	3	
Beta-blockers	4	3	1	
Diabetes mellitus (%)	5 (7.14)	3 (7.14)	2 (7.14)	1.000
Smoking (%)	21 (30.00)	10 (23.81)	11 (39.28)	0.166
Drinking (%)	18 (25.71)	7 (16.67)	11 (39.28)	0.034
Heart rate	80.67±10.61	81.50±11.04	79.43±10.02	0.428
LVEF (%)	65.5 (63.0, 67.0)	65.0 (63.0, 67.0)	66.0 (63.2, 67.8)	0.522
FS (%)	35.67±2.10	35.60±2.14	35.79+2.08	0.713
GLS (-%)	20.0 (19.0, 22.0)	21.0 (19.0, 22.0)	20.0 (18.2, 21.0)	0.167
LVDd (mm)	46.30±3.50	46.93±3.44	45.36±3.43	0.065
LVMi (g/m ²)	94.72±17.55	96.79±18.54	91.62±15.76	0.230
E (cm/s)	69.12±13.12	69.71±12.79	68.23±13.80	0.647
e'(cm/s)	7.60±2.15	7.60±2.07	7.59±2.30	0.987
E/e'	9.61±2.41	9.66±2.30	9.53±2.59	0.832
NT-proBNP (ng/L)	62.50 (31.25, 132.25)	51.00 (29.00, 128.75)	79.00 (41.75, 168.50)	0.171
cTnT (ng/mL)	0.004 (0.000, 0.006)	0.004 (0.002, 0.007)	0.004 (0.000, 0.005)	0.509
HsCRP	2.61 (1.00, 15.64)	4.04 (1.17, 20.00)	1.95 (0.76, 14.51)	0.161
TC (mmol/L)	4.09±0.93	3.86±0.97	4.44±0.76	0.011
TG (mmol/L)	1.40 (0.97, 1.68)	1.51 (1.19, 1.93)	1.10 (0.82, 1.50)	0.002
LDL (mmol/L)	2.55±0.77	2.42±0.80	2.75±0.69	0.084
HDL-C (mmol/L)	1.08 ± 0.38	0.84±0.21	1.44 ± 0.28	<0.001

Table S1. Baseline clinical characteristics of patients enrolled

Values are expressed as mean±standard deviation, n (%), or median (Q1-Q3). Bold values indicate statistical significance.

*Low HDL-C: HDL-C<1.16mmol/L; High HDL-C: HDL-C≥1.16mmol/L. BMI: body mass index; cTnT: cardiac troponin T; ECoG: Eastern Cooperative Oncology Group; FS: fractional shortening; GLS: global longitudinal peak systolic strain; HDL-C: high-density lipoprotein cholesterol; HsCRP: high sensitivity C-reactive protein; LVEF: left ventricular ejection fraction; LVDd: left ventricular diastolic dimension; LVMi: left ventricular mass index; LDL-C: low-density lipoprotein cholesterol; NT-proBNP: N terminal-pro brain natriuretic peptide; TC: total cholesterol; TG: total triglyceride.

Variables	Univariate	P values	P values	
	HR	95%CI		
Age, per 1 year	0.97	0.943-0.998	0.034	
Female vs Male	1.41	0.63-3.19	0.404	
BMI, per 1 kg/m ²	1.09	0.97-1.22	0.139	
ECoG, 0 or 1 vs status 2	0.63	0.30-1.32	0.220	
Hypertension, yes vs no	0.22	0.03-1.62	0.136	
Diabetes mellitus, yes vs no	0.35	0.05-2.61	0.307	
Smoking, yes vs no	0.77	0.31-1.96	0.589	
Drinking, yes vs no	0.84	0.31-2.26	0.728	
Heart rate, per 1 bp	0.99	0.96-1.03	0.645	
LVEF, per 1%	1.09	0.94-1.25	0.250	
FS, per 1%	1.13	0.93-1.37	0.219	
GLS, per -1%	1.46	1.20-1.77	<0.001	
LVDd, per 1 mm	1.05	0.93-1.19	0.425	
LVMi, per 1 g/m ²	1.00	0.97-1.02	0.762	
E, per 1 cm/s	1.03	1.00-1.06	0.075	
e', per 1 cm/s	1.14	0.94-1.40	0.189	
E/e', per 1	0.97	0.81-1.16	0.752	
NT-proBNP, per 1 ng/L	1.00	0.99-1.00	0.153	
cTnT, per lg1 ng/mL	1.19	0.83-1.72	0.340	
HsCRP, per 1	1.02	0.97-1.07	0.453	
TC, per 1 mmol/L	0.78	0.51-1.20	0.259	
TG, per 1 mmol/L	0.93	0.55-1.58	0.796	
LDL-C, per 1 mmol/L	0.94	0.56-1.55	0.795	
HDL-C group (high vs low)	0.24	0.09-0.67	0.006	

Table S2. Univariable Cox regression analysis of enrolled patients.

High HDL-C group: HDL-C≥1.16mmol/L. Low HDL-C group: HDL-C<1.16mmol/L. BMI: body mass index; cTnT: cardiac troponin T; ECoG: Eastern Cooperative Oncology Group; FS: fractional shortening; GLS: global longitudinal peak systolic strain; HDL-C: high-density lipoprotein cholesterol; HsCRP: high sensitivity C-reactive protein; LVEF: left ventricular ejection fraction; LVDd: left ventricular diastolic dimension; LVMi: left ventricular mass index; LDL-C: low-density lipoprotein cholesterol; NT-proBNP: N terminal-pro brain natriuretic peptide; TC: total cholesterol; TG: total triglyceride.

BMJ Open

2	
3	
Δ	
- -	
2	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
51	
32	
33	
34	
25	
55	
36	
37	
38	
30	
10	
40	
41	
42	
43	
11	
44	
45	
46	
47	
<u>4</u> 8	
40	
49	
50	
51	
52	
52	
23	
54	
55	
56	
57	
57	
58	
59	

60

Table S3. Baseline	clinical chara	cteristics of un-	-censored patients	with or without AISC.
I wore out Dubernite	•••••••••••••••••••••••••••••••••••••••		••moorea pamento	

		1		
	Total cohort	NO-AISC	AISC	P-value
	n=34	n=10	n=24	
Age (year)	52.85±12.37	59.7±9.67	50.0±12.45	0.035
Male/Female (n)	19/15	5/5	14/10	0.947
BMI (kg/m ²)	24.01±3.21	23.67±3.83	24.15±3.00	0.698
ECoG performance status				1.000
0 (%)	23 (67.65)	7 (70.00)	16 (66.67)	
1 (%)	7 (20.59)	2 (20.00)	5 (20.83)	
2 (%)	4 (11.76)	1 (10.00)	3 (12.50)	
Hypertension (%)	4 (11.76)	3 (30.00)	1 (4.17)	0.122
Antihypertensive treatment	4 (11.76)	3 (30.00)	1 (4.17)	0.122
ACEI/ARB	3	2	1	
Beta-blockers	1	1	0	
Diabetes mellitus (%)	3 (8.82)	2 (20.00)	1 (4.17)	0.412
Smoking (%)	11 (32.35)	5 (50.00)	6 (25.00)	0.309
Drinking (%)	7 (20.59)	2 (20.00)	5 (20.83)	1.000
Heart rate	81.03±11.08	84.60±13.53	79.54±9.83	0.231
LVEF (%)	65.0 (63.0, 67.0)	64.0 (62.0, 67.3)	66.0 (64.0, 67.0)	0.270
FS (%)	35.74±2.12	35.10±2.28	36.0±2.04	0.266
GLS (-%)	21.0 (19.0, 22.0)	18.0 (17.0, 20.0)	22.0 (21.0, 22.8)	<0.001
LVDd (mm)	46.62±3.08	45.61±3.41	47.04±2.90	0.218
LVMi (g/m ²)	94.04±16.26	93.27±18.87	94.36±15.78	0.862
E (cm/s)	70.87±12.84	66.43±11.78	72.73±13.04	0.197
e'(cm/s)	7.59±1.77	6.90±1.88	7.88±1.68	0.144
E/e'	9.66±2.17	9.95±1.79	9.54±2.34	0.626
NT-proBNP (ng/L)	46.00 (28.50, 109.00)	78.50 (31.50, 133.25)	41.00 (28.00, 122.00)	0.308
cTnT (ng/mL)	0.004 (0.000, 0.007)	0.004 (0.000, 0.008)	0.004 (0.000, 0.007)	0.816
HsCRP	2.28 (0.95, 17.18)	1.62 (0.54, 13.79)	3.84 (1.21, 20.00)	0.216
TC (mmol/L)	4.07±0.95	4.38±1.31	3.95±0.75	0.219
TG (mmol/L)	1.40 (1.12, 1.63)	1.54 (1.67, 1.85)	1.38 (1.10, 1.56)	0.344
LDL-C (mmol/L)	2.59±0.83	2.73±1.15	2.53±0.68	0.530
HDL-C (mmol/L)	1.06±0.38	1.21±0.56	1.00±0.26	0.128
HDL-C group*				0.019
High (%)	12 (35.29)	7 (70.00)	5 (20.83)	
Low (%)	22 (64.71)	3 (30.00)	19 (79.17)	

*High HDL-C: HDL-C≥1.16mmol/L. Low HDL-C: HDL-C<1.16mmol/L.

AISC: anthracycline-induced subclinical cardiotoxicity; AST: aspartate transaminase; ALT: alanine aminotransferase; BMI: body mass index; cTnT: cardiac troponin T; ECoG: Eastern Cooperative Oncology Group; FS: fractional shortening; GLS: global longitudinal peak systolic strain; HDL-C: high-density lipoprotein cholesterol; HsCRP: high sensitivity C-reactive protein; LVEF: left ventricular ejection fraction; LVDd: left ventricular diastolic dimension; LVMi: left ventricular mass index; LDL-C: low-density lipoprotein cholesterol; NT-proBNP: N terminal-pro brain natriuretic peptide; TC: total

cholesterol; TG: total triglyceride.

tor occurrent on the terms on the one of the terms on the one of the terms on the one of the one of

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	1
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	2
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			
Study design	4	Present key elements of study design early in the paper	3
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	3-4
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	4
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	4
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	NA
Study size	10	Explain how the study size was arrived at	3
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	5
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	5
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	5-6
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	5-6

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	6-7
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	6-7
Discussion			
Key results	18	Summarise key results with reference to study objectives	7-8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	11
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	8-11
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other informati	ion		-
Funding	22	Give the source of funding and the role of the funders for the present study and, if	11-
		applicable, for the original study on which the present article is based	12

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml