

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The association between asymptomatic hyperuricemia and risk of arthritis, findings from a US National Survey 2007-2018

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-074391
Article Type:	Original research
Date Submitted by the Author:	04-Apr-2023
Complete List of Authors:	Liang, Zhenguo; Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology WU, Dongze; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Department of Rheumatology and Immunology; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital Gu, Jieruo; Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology
Keywords:	Rheumatology < INTERNAL MEDICINE, Knee < ORTHOPAEDIC & TRAUMA SURGERY, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

3 4	1	The association between asymptomatic hyperuricemia and risk of arthritis, findings
5	2	from a US National Survey 2007-2018
6	3	·
8	4	Author
9 10	5	Zhenguo Liang ^{1#} , Dongze Wu ^{2,3#} , Jieruo Gu ^{1*}
11 12	6	Institution
13 14	7	1.Department of Rheumatology, Third Affiliated Hospital of Sun Yat-Sen University,
15	8	Guangzhou, Guangdong, China.
16 17	9	2.Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital,
18 19	10	University of Electronic Science and Technology of China, Chengdu, China.
20 21	11	3. Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital,
22	12	Chengdu, China.
23 24	13	#Contributed equally to this manuscript.
25 26	14	Corresponding authors
27 28	15	*Prof. Jieguo Gu, PhD
29	16	Address: No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China, 510000
30 31	17	E-mail: gujieruo@mail.sysu.edu.cn
32 33	18	Telephone: (+86) 2085253333 / Fax number: (+86) 2085253336
34 35	19	Word Count: 2980 Table Count: 4 Figure Count: 1
36	20	Conflict of Interest: The authors confirm that there are no conflicts of interest.
37 38	21	Running Head: Association between asymptomatic hyperuricemia and risk of arthritis.
39 40		
41		
42 43		
44		
45 46		
40 47		
48		
49 50		
50		
52		
53		
54 55		
56		
57		
58 50		
60		ا For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2		
3 4	22	Abstract
5	23	Background
6 7	24	Arthritis is thought to be closely related to serum uric acid. The study aims to assess
8 9	25	the association between asymptomatic hyperuricemia (AH) and arthritis.
10	26	Methods
12	27	A multistage, stratified cluster was used to conduct a cross-sectional study of adult
13 14	28	U.S. civilians aged≥ 20 years from the 2007-2018 National Health and Nutrition
15 16	29	Examination Survey (NHANES). Participants with hyperuricemia and without
17	30	hyperuricemia prior to gout were included. A questionnaire was used to determine whether
18 19	31	participants had arthritis and the type of arthritis. Logistic regression was used to
20 21	32	investigate the association between hyperuricemia and arthritis.
22	33	Result
23 24	34	During the past 12 years, the percentage of participants with arthritis changed from
25 26	35	25.95% (22.53, 29.36) to 25.53% (21.62, 29.44). The prevalence of osteoarthritis (OA)
27 28	36	increased from 8.70% (95%CI: 6.56,10.85) to 12.44% (95%CI: 9.32,15.55), the prevalence
29	37	of AH changed from 16.35% (95%CI: 14.01,18.40) to 16.39% (95%CI: 13.47,19.30).
30 31	38	Participants with AH was associated with onset of arthritis (OR=1.34, 95%CI: 1.07,1.69),
32 33	39	but the association was muted after adjusting demographic, socioeconomic factors, etc. For
34 25	40	participants aged 40-49 years, AH is associated with incident arthritis (OR=1.96, 95%CI:
35 36	41	1.23, 2.99) and the relationship remained after adjusting for education level, income to
37 38	42	poverty ratio, body mass index (BMI), diabetes, hypertension, and smoking (OR=2.00,
39 40	43	95%CI: 1.94, 3.36). Compared with male, female participants with AH are more likely to
40 41	44	develop arthritis, especially in OA (OR=1.35, 95%CI: 1.14, 1.60).
42 43	45	Conclusion
44 45	46	Our data identified AH as the risk factor for incident arthritis, especially for OA,
46	47	which might be exaggerated in aged population and female population.
47 48	48	
49 50	49	Keywords: Arthritis, Asymptomatic hyperuricemia, Association, Risk
51	50	
53		
54 55		
56 57		
58		
59 60		2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

51 What is already known about this subject

- Hyperuricemia is a requisite risk factor for developing gouty arthritis, and research suggests that there may be some connection between hyperuricemia and other forms of arthritis as well.
- What does this study add

• This study establishes a link between AH and arthritis, particularly with regards to OA, which becomes more pronounced with advancing age.

- 58 How might this impact on clinical practice
 - The intimate relationship between hyperuricemia and OA may re-purpose FDAapproved urate-lowering therapy drugs in the treatment of OA.

62 Introduction

More than one in five adults in the United States had doctor-diagnosed arthritis, and arthritis-attributable activity limitations significantly increased over time independent of the population ageing[1]. By 2040, the adults with doctor-diagnosed arthritis are projected to increase 49% to 78.4 million (1 in 4 US adults), and the arthritis-attributable activity limitation will increase 52% to 34.6 million (1 in 9 adults)[2]. High medical care expenditures and earnings losses attributable to arthritis signaling the need for identification of disease and risk factor that are most need of interventions[3]. Osteoarthritis (OA), as the most comm form of arthritis, involves structural changes in the articular cartilage, subchondral bones, ligaments, bursae, synovium, and muscles surrounding the joint[4]. From 1990 to 2019, the global age standardized incidence rate of OA increased from 474 to 492 per 100, 000 population and expected to increase due to global population ageing [5, 6]. The link between metabolism and arthritis and the effect of interplay between immunological and metabolic processes is getting increasing attention as metabolic syndrome is implicated in a variety of arthritis, including OA[7, 8].

In 2007-2016, the prevalence of hyperuricemia, gout, and the urate-lowering therapy among patients with gout remained stable[9]. The true importance of asymptomatic hyperuricemia (AH) as a risk factor for incident gout as only half of patients with longstanding hyperuricemia develop clinically evident gout over 15 years[10, 11]. Advanced imaging, including ultrasonography or dual-energy CT, demonstrated

BMJ Open

approximately 15–40% of patients with chronic hyperuricemia have silent monosodium
urate crystal deposition[12]. As crystallization of monosodium urate is the turning point of
hyperuricemia progress towards gout, whether hyperuricemia contribute to other arthritis
remain uncertain[13].

Hyperuricemia and OA separately driven by common risk factors such as obesity and aging, intraarticular urate result in urate crystallization and deposition on the cartilage, disruption of cartilage by promotes urate crystallization and deposition[14]. The predilection for both OA and gout occur in the same joints strongly suggest that OA may predispose to the localized deposition of monosodium urate crystals, which influence structural joint damage [15-17]. Monosodium urate crystals have been shown to inhibit the viability and function of human chondrocytes in vitro with a dose-dependent manner[18]. Death of chondrocytes can lead to an increase in urate, which may even promote crystal deposition on the cartilage, further aggravating OA progression[14]. Monosodium urate crystals inhibit osteocyte viability and, through interactions with macrophages, indirectly promote a shift in osteocyte function that favors bone resorption and inflammation[19]. Uric acid is a danger signal of increasing risk OA through inflammasome activation[20]. Therefore, we hypothesized that hyperuricemia prior to gout was associated with OA. The aim of this study was to i) ascertain the association between AH and arthritis, ii) determine the association between AH and OA, iii) investigate the effect of age and gender on such association.

- **Patients and methods**
- **Study population**

NHANES is an ongoing longitudinal survey conducted by the National Center for Health Statistics (NCHS) to assess the health and nutritional status of the United States through a series of interviews and examination items. The NHANES is conducted biennially in a nationally representative, non-institutionalized civilian population, and use a hierarchical multi-stage probabilistic clustering design to select a representative sample of over-sampled participants. The sampling methods and examination information used in this study have been described in detail elsewhere[21]. NHANES was reviewed and approved by the NCHS Research Ethics Committee. All manipulations of the NHANES were carried out in accordance with the principles of the Helsinki Declaration. Written

113 informed consent was obtained from all participants in NHANES.

The study used data from NHANES database for the 2007-2018 study cycle (n=59,842) and excluded those who did not participate in the examination (n=2,428). We excluded participants who refused and don't know ever had or hadn't arthritis, refused to answer which type of arthritis (n=80), who are younger than 20 years old (n=24,002), who have missing and incomplete BMI, uric value, and smoking record (n=6,799). We also excluded participants who were told that you had gout(n=1,438) and participants with missing or incomplete low-density lipoprotein (LDL), cholesterol, and creatinine record. In the end, this study consisted of 13, 647 eligible participants (Figure 1), which is representative of the population size of 87,901,487.

123 Conditions of arthritis

The status of arthritis was classified using questionnaires. Participants aged 20 years and older were asked "Has a doctor or other health professional ever said that you had arthritis?". If the participants gave a positive answer, they were further asked "Which type of arthritis was it?". Participants' responses included rheumatoid arthritis (RA), OA, other, do not know type, and refuse to answer. Individuals were excluded from the current analysis if their self-reported type of arthritis declined to answer. A consistent relationship between self-reports of arthritis and a clinical diagnosis of arthritis has been demonstrated in previous reports[22].

132 Hyperuricemia

Hyperuricemia is an elevated level of uric acid in the blood. The normal upper limit for
serum uric acid (SUA) at physiological levels is 6.8 mg/dL. This is the saturation point at
which urate may precipitate under physiological conditions[23]. We put SUA>6.8 mg/dL
was defined as hyperuricemia, and SUA≤6.8 mg/dL is defined as the normal state.

137 Covariates

Covariates are identified in statistical models by means of interview responses and examinations. Covariates were selected based on the results of interviews and examinations in the NHANES database to screen for factors that may be associated with OA risk and/or may be associated with AH, which could confound the association between OA and AH. Based on self-reported demographic characteristics, including gender, age, race/, education level, BMI, blood pressure, poverty income ratio (PIR), smoking, physical activity level Page 7 of 32

BMJ Open

144 (PAL), diabetes.

Age is divided into seven groups: 20-29, 30-39, 40-49, 50-59, 60-69 and 70+. Race/ is divided into four groups: non-Hispanic white, non-Hispanic black, Hispanic and other races. Education is grouped as high school or below, some college and college graduate or above. BMI is calculated from measured weight and height determined by standard NHANES protocols[24]. BMI is categorized as three groups: Normal (<18.5kg/m²), Overweight (18.5–24.9kg/m²) and Obesity (\geq 25 kg/m²). Participants with systolic blood pressure \geq 130 mmHg or diastolic blood pressure \geq 80 mmHg are defined as hypertension[25]. PIR as a socioeconomic indicator are stratified into three levels: Low income (PIR < 1.3), Middle income ($1.3 \le PIR < 3.5$) and High income ($PIR \ge 3.5$).

Smoking status is categorized according to interview results as current (smoked more than 100 cigarettes in the lifetime and currently still smoked), before (smoked more than 100 cigarettes in the lifetime but did not currently smoke) and never (smoked less than 100 cigarettes in the lifetime). PAL is divided into two categories, moderate activity, which includes moderate work activity, walking or cycling, moderate recreational activity, and vigorous activity, which includes vigorous work activity and vigorous recreational activity. Participants with self-reported diabetes had either a diabetes physician's diagnosis of diabetes or an elevated fasting plasma glucose level or an elevated oral glucose tolerance (OGTT), or/and HbA1c≥6.5%. Laboratory data included cholesterol, LDL, High-density lipoprotein (HDL), triglycerides, creatinine, and albumin.

164 Statistical analysis

Design factors involving complex weighting, clustering, and stratification in the NHANES database. Statistical analysis was conducted using STATA (version 16). Complex stratification designs were considered using appropriate sample weights in accordance with NHANES analytical reporting guidelines. In baseline study characteristics, means and standard errors (SEs) were used for continuous variables. Categorical variables were expressed as numbers and percentages. Chi-square test and t-test were used for categorical and continuous variables, respectively. A weighted logistic regression was used to assess the association between OA and AH and to control for confounding factors. Finally, subgroup analysis was performed using hierarchical multivariate regression. The 95% confidence intervals and p-values were calculated. A two-tailed test with p-values less

than 0.05 are considered significant.

- **Results**
- 177 The characteristics of study participants

A total of 13,647 participants were eligible and included in the analysis from 2007-2008 to 2017-2018 (sTable 1). Between 2007-2008 and 2017-2018, the proportion of participants in the 60-69 age group increased from 11.44% (95%CI: 9.42, 13.46) to 14.81% (95%CI: 11.45, 18.16). In addition, the proportion of Hispanics increased from 5.09% (95%CI: 2.60, 7.58) to 6.86% (95%CI: 5.00, 8.72), while the proportion of non-Hispanic whites decreased from 70.37% (95%CI: 63.63, 77.11) to 61.96% (95%CI: 57.22, 66.69). Between 2007-2008 and 2017-2018, the proportion of high school or below decreased, which is from 43.02% (95%CI: 37.88, 48.16) to 39.61% (95%CI: 36.03, 43.19), while the proportion of college graduate or above increased, which was from 28.53% (95%CI: 24.06, 33.00) to 30.47% (95%CI: 24.72, 36.23).

During the past 12 years, the percentage of participants with arthritis changed from 25.95% (22.53, 29.36) to 25.53% (21.62, 29.44). The prevalence of RA increased from 3.57% (95%CI: 2.87,4.27) in 2007-2008 to 4.04% (95%CI: 2.82,5.25) in 2017-2018, while the proportion of those who don't know arthritis decreased from 10.13% (95%CI: 8.22,12.05) to 6.02% (95%CI: 4.66,7.37). There was also a little decrease in other arthritis 3.54% (95%CI: 2.56,4.52) and 3.04% (95%CI: 1.78,4.30). The prevalence of OA showed a clear upward trend during the 12 years, from 8.70% (95%CI: 6.56, 10.85) in 2007-2008 to 12.44% (95%CI: 9.32, 15.55) in 2017-2018 (p<0.01).

In all age groups, the highest proportion of individuals with AH was observed in the 5059 age group. (19.39% [95%CI: 17.17, 21.61]). A larger proportion of males (77.17%
[95%CI: 74.96, 79.37]) had AH compared with females (22.83 [95%CI: 20.63, 25.04])
(Table 2). There are significant differences in race between participants with and without
AH (p<0.01). Participants in the AH group had higher levels of obesity, hypertension,
diabetes, LDL, triglycerides, and creatinine than those in the healthy control group.

The prevalence of patients with osteoarthritic and AH (11.40% [95%CI: 9.56, 13.24])
is considerably higher than that of other three types of arthritis (RA: 4.62% (95%CI: 3.56, 5.69), Other: 3.14% (95%CI: 2.12, 4.17) and don't know: 7.54% (95%CI: 6.03, 9.05))
(p<0.01).

206 The characteristics of hyperuricemia and arthritis

Participants with arthritis, including OA, RA, other and don't know of arthritis, were more frequent in people aged over 50 years than those without arthritis (Table 1). The characteristics of the 13,647 participants included in our study with self-reported OA, RA, other, and don't know are presented using weighted statistics (Table 2). The prevalence of the four types of arthritis was higher among female participants than among male participants, which was most notable in OA (female: 65.94% vs male 30.06%).

Table 1. Baseline characteristics of arthritis group versus the non-arthritis group.

Characteristics	No Arthritis	OA	RA	Other	Don't konw	p value
N*	10089	1402	662	408	1086	
Gender						< 0.01
Male	50.40(49.20,51.61)	34.06(31.15,36.97)	40.89(35.23,46.54)	40.90(34.65,47.15)	42.48(38.96,46.01)	
Female	49.60(48.39,50.80)	65.94(63.03,68.85)	59.11(53.46,64.77)	59.10(52.85,65.35)	57.52(53.99,61.04)	
Age						< 0.01
20-29	24.10(22.69,25.52)	1.15(0.57,1.73)	2.62(0.30,4.94)	3.98(1.36,6.60)	3.17(1.79,4.55)	
30-39	21.40(20.16,22.64)	5.15(3.81,6.49)	6.11(3.79,8.43)	9.40(5.76,13.05)	6.35(4.47,8.24)	
40-49	20.74(19.35,22.14)	11.11(9.08,13.14)	15.63(11.52,19.73)	22.38(17.09,27.67)	15.00(11.89,18.10)	
50-59	16.53(15.39,17.66)	25.56(22.65,28.48)	26.90(20.60,33.20)	29.34(23.07,35.60)	27.60(23.49,31.71)	
60-69	10.22(9.19,11.25)	29.91(26.73,33.09)	24.48(19.59,29.36)	21.26(14.97,27.56)	23.61(20.04,27.19)	
70+	7.01(6.40,7.61)	27.11(24.11,30.12)	24.26(20.40,28.12)	13.64(9.48,17.79)	24.27(21.09,27.45)	
Race						< 0.01
Other Races	18.98(17.18,20.77)	8.68(6.70,10.65)	15.21(10.33,20.09)	7.59(4.42,10.75)	11.13(8.86,13.39)	
Hispanic	6.83(5.62,8.05)	3.21(2.36,4.06)	5.11(3.68,6.54)	4.82(2.82,6.81)	5.14(3.69,6.59)	
Non-Hispanic White	63.36(60.50,66.21)	82.00(79.15,84.86)	63.62 (57.67,69.57)	78.92 (73.97,83.87)	72.33 (68.49,76.18)	
Non-Hispanic Black	10.83(9.39,12.27)	6.11(4.65,7.57)	16.06(12.29,19.83)	8.67(5.89,11.46)	11.40(9.14,13.65)	
Education Level						< 0.01
High school or below	37.86(35.61,40.10)	34.05(30.26,37.84)	52.13(45.41,58.85)	44.35(38.06,50.64)	50.09(45.46,54.73)	
Some College	29.76(28.19,31.34)	34.45(31.27,37.18)	32.25(27.08,37.42)	31.04(24.03,38.06)	31.61(27.66,35.57)	
College graduate or above	32.38(30.03,34.73)	31.50(27.68,35.33)	15.62(9.94,21.30)	24.61(17.82,31.39)	18.29(14.06,22.52)	
BMI						< 0.01
Normal	33.47(31.83,35.12)	22.68(19.75,25.60)	27.88(22.90,32.85)	21.88(16.37,27.40)	20.66(17.17,24.15)	
Overweight	33.79(32.56,35.03)	32.36(28.93,35.80)	28.46(23.46,33.46)	29.37(23.76,34.98)	31.40(27.98,34.83)	
Obesity	32.74(31.13,34.35)	44.96(41.35,48.57)	43.66(38.74,48.58)	48.75(42.23,55.26)	47.93(43.56,52.31)	

BMJ Open

Blood pressure						
Hypertension	36.92(35.28,38.56)	66.37(62.74,70.00)	63.74(57.17,70.31)	58.84(51.88,65.81)	63.77(59.68,67.86)	
Normal	63.08(61.44,64.72)	33.63(30.00,37.26)	36.26(29.69,42.83)	41.16(34.19,48.12)	36.23(32.14,40.32)	
PIR						
Low income	22.04(20.42,23.65)	16.37(13.61,19.13)	29.76(23.51,36.01)	22.45(16.84,28.06)	24.27(19.78,28.76)	
Middle income	35.83(34.13,37.52)	36.00(32.49,39.50)	36.22(30.28,42.16)	37.89(30.75,45.02)	36.74(32.08,41.40)	
Elevated income	42.14(39.89,44.38)	47.63(43.03,52.24)	34.02(27.68,40.36)	39.66(31.66,47.67)	38.98(32.91,45.05)	
Smoking						
Current	18.69(17.41,19.97)	18.21(15.47,20.95)	27.50(22.36,32.63)	27.31(21.50,33.12)	20.56(17.17,23.95)	
Before	21.77(20.30,23.24)	32.89(29.41,36.36)	33.14(26.79,39.49)	29.07(23.55,34.59)	34.03(30.01,38.05)	
Never	59.54(57.76,61.32)	48.90(45.48,52.32)	39.36(33.15,45.58)	43.62(37.28,49.96)	45.41(41.18,49.65)	
PAL						
Moderate activities	54.56(53.24,55.88)	73.88(70.67,77.08)	72.08(66.44,77.72)	67.01(59.61,74.40)	73.28(68.99,77.58)	
Vigorous activities	45.44(44.12,46.76)	26.12(22.92,29.33)	27.92(22.28,33.56)	32.99(25.60,40.39)	26.72(22.42,31.01)	
Diabetes						
Yes	8.50 (7.63,9.36)	15.81(13.36,18.27)	22.68(19.11,26.24)	16.27(10.90,21.63)	18.40(15.33,21.48)	
No	91.51(90.64,92.37)	84.19(81.73,86.64)	77.32(73.76,80.89)	83.73(78.37,89.10)	81.60(78.52,84.67)	
Uric acid						
AH	84.35(83.33,85.38)	84.18(81.78,86.59)	80.11(75.97,84.25)	84.42(79.68,89.17)	82.04(78.71,85.36)	
Healthy control	15.65(14.62,16.67)	15.82(13.41,18.22)	19.88(15.75,24.03)	15.58(10.83,20.32)	17.96(14.64,21.29)	
Cholesterol(mg/dl) †	190.59±40.19	194.85±42.44	190.37±39.50	192.29±39.04	192.42±41.20	
LDL (mg/dl) †	113.95±35.17	113.39±36.73	111.54±35.07	112.34±34.79	113.58±35.80	
HDL (mg/dl) †	54.09±15.69	57.40±17.82	54.48±15.65	54.68±16.01	54.09±15.71	
Triglycerides(mg/dl) †	112.74±65.21	120.35±63.20	121.79±63.47	126.30±70.36	123.75±62.26	
Creatinine(mg/dl) †	129.07±79.51	111.90±67.15	118.38±72.13	122.80±68.54	118.03±71.54	
Albumin(mg/L) †	38.98±354.61	54.86±421.95	67.42±349.01	46.01±258.35	83.60±558.69	

.etio; PAL: Phy. .: Osteoarthritis; AH: asyi. .nd the remaining values are weight. .n± standard error, other figures are expressed . BMI: body mass index; PIR: poverty income ratio; PAL: Physical activity level; LDL: Low-density lipoprotein; HDL: High-density lipoprotein; RA: Rheumatoid arthritis; OA: Osteoarthritis; AH: asymptomatic hyperuricemia (serum urate > 6.8 mg/dL without gout); *N represents unweighted number, and the remaining values are weighted values using NHANES MEC examination weight. [†]Figures are expressed as mean ± standard error, other figures are expressed as percent (95% confidence intervals). For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

59

60

BMJ Open

Characteristics	Healthy control	AH
N*	11387	2260
Gender		
Male	41.66(40.55,42.76)	77.17(74.96,79
Female	58.34(57.24,59.45)	22.83(20.63,25
Age		
20-29	18.86(17.56,20.15)	17.30(15.07,19
30-39	18.03(16.98.19.07)	15 15(12 83 17
10 40	10.44(19.21.20.(7)	17 20(14 72 20
40-49	19.44(18.21,20.67)	17.39(14.72,20
50-59	19.05(17.98,20.12)	19.39(17.17,21
60-69	14.01(12.95,15.07)	15.66(13.36,17
70+	10.62(9.91,11.32)	15.11(13.21,17
Race		
Other Races	17 22(15 50 18 93)	14 33(12 20 16
Historic	(22(5 21 7 44)	5 20(4.02.02
Hispanic	0.32(3.21,7.44)	5.39(4.02 ,0.
Non-Hispanic White	66.30(63.54,69.05)	68. 32(64.74,7
Non-Hispanic Black	10.16(8.80,11.53)	11.96(9.82,14
Education Level		
High school or below	38.72(36.58,40.86)	40.33(37.04,43
Some College	30 44(28 96 31 92)	31 18(28 20 34
	20.94(29.51.22.1()	29.40(25.66.2)
College graduate of above	30.84(28.51,33.16)	28.49(23.00,3)
BMI		
Normal	34.09(32.60,35.58)	13.41(11.57,15
Overweight	33.07(32.07,34.08)	33.41(30.59,36
Obesity	32.83(31.48,34.19)	53.18(49.93,56
Blood pressure		
blood pressure		
Hypertension	40.84(39.20,42.49)	59.45(56.85,62
Normal	59.16(57.51,60.80)	40.55(37.94,43
PIR		
Low income	22.36(20.66,24.06)	18.98(17.00,20
Middle income	35 84(34 22 37 47)	36 73(33 94 30
whene meome	55.0 (51.22,57.47)	JU. 1 J (JJ. 77, J)

ric acid group versus the healthy control group.

p value

< 0.01

< 0.01

< 0.01

0.137

< 0.01

< 0.01

0.03

Elevated income	41.79(39.48,44.11)	44.28(40.87,47.69)	
Smoking			< 0.01
Current	19.72(18.32,21.11)	17.51(15.41,19.62)	
Before	23.23(21.86,24.60)	31.37(28.28,34.47)	
Never	57.06(55.32,58.79)	51.11(48.07,54.16)	
PAL			0.744
Moderate activities	59.26(57.72,60.81)	58.20(55.43,60.97)	
Vigorous activities	40.74(39.19,42.28)	41.80(39.03,44.57)	
Diabetes			< 0.01
Yes	9.85(8.99,10.70)	15.68(14.06,17.30)	
No	90.15(89.30,91.01)	84.32(82.70,85.94)	
Arthritis			< 0.01
No arthritis	75.13(73.67,76.59)	73.29(70.69,75.89)	
OA	11.54(10.55,12.53)	11.40(9.56,13.24)	
RA	3.54(3.11,3.97)	4.62(3.56,5.69)	
Other	3.24(2.69,3.79)	3.14(2.12,4.17)	
Dont know	6.55(5.88,7.22)	7.54(6.03,9.05)	
Cholesterol(mg/dl) †	191.01±40.22	192.23±41.65	0.1924
LDL (mg/dl)†	113.39±35.07	115.48±36.82	0.0088
HDL (mg/dl)†	55.58±15.89	48.87±15.10	<0.01
Triglycerides(mg/dl) †	110.45±62.12	139.39±73.24	<0.01
Creatinine(mg/dl)†	122.00±75.58	144.47±82.80	<0.01
Albumin(mg/dl)†	35.52±320.96	97.29±565.77	<0.01

BMI: body mass index; PIR: poverty income ratio; PA: Physical activity level; LDL: Lowdensity lipoprotein; HDL: High-density lipoprotein; RA: Rheumatoid arthritis; OA: Osteoarthritis; AH: asymptomatic hyperuricemia (serum urate > 6.8 mg/dL without gout). *N represents unweighted number, and the remaining values are weighted values using NHANES MEC examination weight.

[†]Figures are expressed as mean ± standard error, other figures are expressed as percent (95% confidence intervals).

Participants with OA are higher in non-Hispanic white (82.00% [95%CI: 79.15, 84.86]), hypertension (66.37% [62.74, 70.00]), elevated income (47.63% [43.03, 52.24]), moderate activities (73.88% [70.67, 77.08]), cholesterol (194.85±42.44) and HDL (57.40±36.73) than those without arthritis. Similar trends are observed in participants with RA, OA, other types of arthritis and those who responded with "don't know" when asked about the type of arthritis.

And the proportion of participants who self-reported OA was the highest in arthritis. The proportion of AH is higher in participants with OA (84.18% [95%CI: 81.78, 85.59]) than in those with RA (80.11% [95%CI: 75.97, 84.25]) and don't know (82.04% [95%CI: 78.71, 85.36]) arthritis types. But it is slightly lower than no arthritis (84.35% [95%CI: 83.33, 85.38]) and other arthritis (84.42% [95%CI; 79.68,89.17]) (p<0.01) (Table 1)

The association between AH and arthritis

Overall, AH was associated with onset of arthritis (OR=1.34, 95%CI: 1.07, 1.69) (Table 3). However, the association muted in different models after adjusting for demographic, socioeconomic factors, etc.

justed model	model 1	model 2	model 3
1	1	1	1
4(1.07,1.69) 1.14	(0.87,1.49) 1.11	(0.83,1.48) 1.0)7(0.80,1.41)
0.012	< 0.01	<0.01	< 0.01
	ljusted model 1 1 4(1.07,1.69) 1.14 0.012	ljusted model 1 1 1 4(1.07,1.69) 1.14(0.87,1.49) 1.11 0.012 <0.01	Ijusted model model 1 model 2 1 1 1 4(1.07,1.69) 1.14(0.87,1.49) 1.11(0.83,1.48) 1.0 0.012 <0.01

Table 3. Association between asymptomatic hyperuricemia and total arthritis.

Model1: Adjusted for age, gender, and race.

Model2: Adjusted for age, gender, education level, income to poverty ratio, race, BMI, PAL, diabetes, hypertension and smoking record.

Model3: Adjusted for age, gender, education level, income to poverty ratio, race, BMI, PAL, hypertension, smoking, cholesterol, LDL, HDL, triglyceride, creatinine, and albumin.

For participants aged 40-49 years, AH is significantly associated with incident arthritis (OR=1.96, 95%CI: 1.23, 2.99). The association remained after adjusted for education level, income to poverty ratio, BMI, diabetes, hypertension, and smoking (OR=2.00, 95%CI: 1.94, 3.36) (Table 4).

	Model 1 (OR,95%, P)	Model 2(OR,95%, P)	Model 3(OR,95%,P)
Gander			
Male	1	1	1
Female	0.753(0.633,0.896)0.002	0.730 (0.608,0.877) 0.001	0.712(0.582,0.872)0.001
Age			
20-29	1	1	1
30-39	1.788(1.078,2.966)0.025	1.718(1.003,2.940)0.048	1.181(0.635,2.199)0.595
40-49	1.957(1.285,2.981)0.002	2.002(1.941,3.358)0.009	1.324(0.721,2.432)0.362
50-59	1.409(0.989,2.008)0.057	1.472(0.963,2.251)0.074	0.975(0.582,1.632)0.932
60-69	1.034(0.718,1.489)0.856	1.076(0.700,1.653)0.737	0.721(0.436,1.192)0.200
70+	1.106(0.789,1.549)0.556	1.122(0.725,1.737)0.602	0.739(0.426,1.282)0.278
Race			
Other Race	1	1	1
Hispanic	1.604(1.136,2.264)0.008	1.582(1.056,2.371)0.027	1.456(0.962,2.203)0.075
Non-Hispanic White	0.895(0.696,1.150)0.381	1.040(0.786,1.376)0.780	0.971(0.732,1.288)0.839
Non-Hispanic Black	2.017(1.471,2.765)0.000	2.305(1.622,3.276)0.000	2.203(1.536,3.160)0.000
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	1 1		

\mathbf{I} abit $\mathbf{T}_{\mathbf{i}}$ bubging analyses shalling by genuci, ago and lace	Table	e 4.	Subgroup	analyse	s stratified	by	gender.	age and	race
---	-------	------	----------	---------	--------------	----	---------	---------	------

Model1: Adjusted for age, gender, and race.

Model 2: Adjusted for age, gender, race, education level, income to poverty ratio, BMI, diabetes, hypertension, and smoking record.

Model 3: Adjusted for age, gender, race, education level, income to poverty ratio, BMI, hypertension, smoking, cholesterol, LDL, HDL, triglyceride, creatinine and albumin.

For participants in non-Hispanic blacks, AH was significantly associated with new development of arthritis (OR=2.02, 95%CI: 1.47, 2.77). The results kept significant adjusting for education level, income to poverty ratio, BMI, diabetes, hypertension, and smoking (OR=2.31, 95%CI: 1.62, 3.28) and for cholesterol, LDL, HDL, triglyceride, creatinine, and albumin (OR=2.20,95%CI: 1.55, 3.16) (Table 4).

Compared with male participants, female participants with AH are more likely to develop OA (OR=1.35, 95%CI: 1.14, 1.60), RA (OR: 1.08 95%CI: 0.83, 1.41), other arthritis (OR: 1.00, 95%CI 0.78,1.29), Don't know (OR: 0.99, 95%CI: 0.82,1.20). This

BMJ Open

phenomenon is more obvious in the OA subgroup. (sTable 2). Among participants aged > 50 years, there is a significant association between AH and different types of arthritis (including OA, RA, other, don't know). More importantly, the strength of this association increased with age, specifically for 50-59 year, 60-69 years, 70+ years.

Discussion

Based on 12 years of nationally representative data from NHANES, our data showed a relationship between AH and incident arthritis, especially OA. About 20% of the general population affected by hyperuricemia, which might be more prominent in male and aged population[26]. In 2010-2012, US had doctor-diagnosed arthritis and arthritis-attributable activity limitation was 52.5 million and 22.7 million are projected to increase 49% and 52% to 78.4 million and 34.6 million by 2040, respectively[2].

Although hyperuricemia is a major contributor to the development of gouty arthritis, accumulating evidence suggest that AH may increase the risk of developing RA, psoriatic arthritis and spondylarthritis. In vitro studies on synoviocytes from healthy and rheumatoid arthritis subjects revealed that monosodium urate crystals could increase the release of the inflammatory cytokine IL-6, the chemokine CXCL8 and the matrix metalloproteinase-1[27]. The injection of urate crystals in vivo leads to produce main mediators in the pathogenesis of PsA, such as IL-17 [28]. The hyperuricemia not only play an important role the development and progression of psoriatic arthritis, but also affect severity of clinical manifestations and degree of inflammation[29]. Monosodium urate crystals interact with articular tissues to influence the development of axial spondyloarthritis as monosodium urate crystal deposition associated with the progress of radiographic grade at the sacroiliac joint[16, 30].

Our data confirm the AH is danger signal of increasing risk for OA[20]. An increasing body of evidence suggests that AH, characterized by elevated serum uric acid levels without any symptoms of gout or kidney stone disease, may be associated with an increased risk of OA, particularly in weight-bearing joints such as the knee[14, 31, 32]. The relationship between AH and arthritis is complex and multifaceted, and the exact nature of this relationship is not yet clear. Hyperuricemia may promote the development of arthritis via deposition of urate crystals in the joints, promoting chronic low-grade inflammation, and exacerbating oxidative stress[18, 20, 33]. However, it is also possible that the

association between hyperuricemia and arthritis is partially due to common risk factors such as obesity and metabolic syndrome[34, 35]. Further research is needed to better understand the relationship between these two conditions and to identify potential therapeutic targets for the prevention or treatment of arthritis in patients with hyperuricemia.

The intimate relationship between hyperuricemia and OA may re-purpose FDAapproved urate-lowering therapy drugs in the treatment of OA. Currently, the drugs used to treat OA mainly include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and opioids[36]. However, these drugs could only used to relieve the clinical symptoms but not decrease the onset of arthritis. In recent years, there has been growing interest in exploring the role of urate-lowering therapy in the treatment of OA[37]. Urate crystal deposition can directly damage cartilage, stimulate the production of proinflammatory cytokines, and lead to inflammation and cartilage degradation[38]. Uratelowering therapy drugs such as allopurinol and febuxostat have been shown to have antiinflammatory properties, inhibit the production of reactive oxygen species, reduce the expression of pro-inflammatory cytokine[39-41]. Our results also suggest pharmacological treatment of AH via a treat-to-target (T2T) strategy may decrease incident of arthritis, especially for OA. The T2T strategy involves targeting specific uric acid levels and adjusting drug therapy accordingly to achieve this goal[42, 43].

Our findings highlight those female participants with AH are more likely to develop arthritis, especially for OA, than male participants, and ageing may exaggerate this trend. Among adults in the US, mean serum urate levels were 6.0 mg/dl in men and 4.8 mg/dl in women, and hyperuricemia prevalence rates were 20.2% and 20.0%, respectively[9]. Studies have also shown that hyperuricemia is more common in men over 30 and women over 50[44]. The gender and age associated increase in serum uric acid levels may be explained by menopause in women and alcohol consumption in men[45]. Menopause can lead to an increase in serum uric acid levels, while postmenopausal hormone replacement therapy may be associated with a decrease in serum uric acid levels[46]. The difference in serum uric acid levels between men and women is due to the increased renal uric acid clearance caused by estrogen in women before menopause[47]. When osteophytes were present, blood uric acid levels were significantly elevated in women with OA, but this was

BMJ Open

not observed in men with OA[48]. Female typically have a higher prevalence of hand and knee arthritis than males, females also tend to have more severe knee OA, particularly after menopausal age[49].

The strength of our study was the use of data from a large, nationally representative sample. However, results should be interpreted with caution with inherent limitation. First, it is not possible to interpret the findings from a causal point of view due to the cross-sectional approach. Prospective study and mendelian randomization study are needed to further investigate the relationship between the AH and arthritis, especially OA. Second, recall bias may affect the accuracy of prevalence estimates although this study used CDC-recommended self-reported and physician-diagnosed arthritis as case definitions[22, 50]. Third, our result might be charged with choosing a single number to represent prevalent of arthritis in the US population as it only included adults in the national non-institutionalized population of the country[51]. Fourth, medication use for the participants was not included in this study. Finally, we had limited information on the involvement of OA in each participant, such as imaging and treatment procedures.

In summary, our study results suggest that AH patients may benefit from close monitoring for the development of arthritis, understanding the relationship between hyperuricemia and arthritis, and identifying factors that contribute to their increased risk of these diseases, which may be of great significance for the prevention and management of these conditions.

Contributors

Prof. JRG is the guarantor of the study and had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Dr. Zhenguo Liang, Dr. Dongze Wu, and Prof. Jieruo Gu, conceived and designed the study, performed the analysis, and wrote the paper. All authors read and commented on the manuscript and approved the final version of the manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding

Project funded by Guangdong Clinical Research Center of Immune Disease (2020B1111170008) & Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (2022QN38).

Disclaimer

The funder was not involved in the preparation of this manuscript.

Declaration of interests

The authors declare no conflict of interests.

Ethical approval

The data released from the National Health and Nutrition Examination Survey did not require informed patient consent. This study used an anonymized publicly available data set with no identifiable information on the survey participants, and thus did not require ethics approval.

Data sharing

The data used for the analyses are publicly available from the National Center for Health Statistics (NCHS), which is part of the Centers for Disease Control and Prevention (CDC) in the United States (https://www.cdc.gov/nchs/nhanes/).

Reference

- Barbour, K.E., et al., *Vital Signs: Prevalence of Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation - United States, 2013-2015.* MMWR Morb Mortal Wkly Rep, 2017. 66(9): p. 246-253.
- Hootman, J.M., et al., Updated Projected Prevalence of Self-Reported Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation Among US Adults, 2015-2040. Arthritis Rheumatol, 2016. 68(7): p. 1582-7.
- 3. Murphy, L.B., et al., *Medical Expenditures and Earnings Losses Among US Adults With Arthritis in 2013.* Arthritis Care Res (Hoboken), 2018. **70**(6): p. 869-876.
- 4. Hunter, D.J. and S. Bierma-Zeinstra, *Osteoarthritis.* Lancet, 2019. **393**(10182): p. 1745-1759.
- Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020.
 396(10258): p. 1204-1222.
- Partridge, L., J. Deelen, and P.E. Slagboom, *Facing up to the global challenges of ageing.* Nature, 2018. 561(7721): p. 45-56.
- 7. Bortoluzzi, A., F. Furini, and C.A. Scirè, *Osteoarthritis and its management Epidemiology, nutritional aspects and environmental factors.* Autoimmun Rev, 2018. **17**(11): p. 1097-1104.
- 8. Mobasheri, A., et al., *The role of metabolism in the pathogenesis of osteoarthritis.* Nat Rev Rheumatol, 2017. **13**(5): p. 302-311.
- Chen-Xu, M., et al., Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007-2016. Arthritis Rheumatol, 2019. 71(6): p. 991-999.
- 10. Dalbeth, N., et al., *Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis.* Ann Rheum Dis, 2018. **77**(7): p. 1048-1052.
- 11. Lioté, F. and T. Pascart, *From hyperuricaemia to gout: what are the missing links?* Nat Rev Rheumatol, 2018. **14**(8): p. 448-449.
- Dalbeth, N. and L. Stamp, *Hyperuricaemia and gout: time for a new staging system?* Ann Rheum Dis, 2014. (9): p. 1598-600.
- 13. Dalbeth, N., et al., *Gout.* Lancet, 2021. **397**(10287): p. 1843-1855.
- 14. Neogi, T., S. Krasnokutsky, and M.H. Pillinger, *Urate and osteoarthritis: Evidence for a reciprocal relationship.* Joint Bone Spine, 2019. **86**(5): p. 576-582.
- 15. Roddy, E., W. Zhang, and M. Doherty, *Are joints affected by gout also affected by osteoarthritis?* Ann Rheum Dis, 2007. **66**(10): p. 1374-7.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
27	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22 24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
12	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
58	
59	
60	
~~~	

- 16. Dalbeth, N., et al., *Relationship between structural joint damage and urate deposition in gout: a plain radiography and dual-energy CT study.* Ann Rheum Dis, 2015. **74**(6): p. 1030-6.
- 17. Yokose, C., et al., *Gout and Osteoarthritis: Associations, Pathophysiology, and Therapeutic Implications.* Curr Rheumatol Rep, 2016. **18**(10): p. 65.
- Chhana, A., et al., *The effects of monosodium urate monohydrate crystals on chondrocyte viability and function: implications for development of cartilage damage in gout.* J Rheumatol, 2013. **40**(12): p. 2067-74.
- Chhana, A., et al., Monosodium urate crystals reduce osteocyte viability and indirectly promote a shift in osteocyte function towards a proinflammatory and proresorptive state. Arthritis Res Ther, 2018. 20(1): p. 208.
- 20. Denoble, A.E., et al., *Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation.* Proc Natl Acad Sci U S A, 2011. **108**(5): p. 2088-93.
- 21. Zhu, Z., et al., *The Association between Retinopathy and Arthritis: Findings from a US National Survey 2005-2008.* Curr Eye Res, 2020. **45**(12): p. 1543-1549.
- 22. March, L.M., et al., *Clinical validation of self-reported osteoarthritis.* Osteoarthritis Cartilage, 1998. **6**(2): p. 87-93.
- 23. Martillo, M.A., L. Nazzal, and D.B. Crittenden, *The crystallization of monosodium urate.* Curr Rheumatol Rep, 2014. **16**(2): p. 400.
- 24. *Plan and operation of the Third National Health and Nutrition Examination Survey, 1988-94. Series 1: programs and collection procedures.* Vital Health Stat 1, 1994(32): p. 1-407.
- Whelton, P.K., et al., 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 2018. **71**(6): p. 1269-1324.
- 26. Kuo, C.F., et al., *Global epidemiology of gout: prevalence, incidence and risk factors.* Nat Rev Rheumatol, 2015. **11**(11): p. 649-62.
- 27. Chen, D.P., et al., *Activation of human fibroblast-like synoviocytes by uric acid crystals in rheumatoid arthritis.* Cell Mol Immunol, 2011. **8**(6): p. 469-78.
- 28. Raucci, F., et al., *IL-17A neutralizing antibody regulates monosodium urate crystal-induced gouty inflammation.* Pharmacol Res, 2019. **147**: p. 104351.
- 29. Tripolino, C., et al., *Hyperuricemia in Psoriatic Arthritis: Epidemiology, Pathophysiology, and Clinical Implications.* Front Med (Lausanne), 2021. **8**: p. 737573.
- 30. Zhu, J., et al., *Monosodium urate crystal deposition associated with the progress of radiographic grade at the sacroiliac joint in axial SpA: a dual-energy CT study.* Arthritis Res

2		
3		Ther. 2017. <b>19</b> (1): p. 83.
4	21	Wang S at al. The approximation between asymptometric hypervisionmic and know
5	51.	Wang, S., et al., The association between asymptomatic hyperuncenna and knee
7		osteoarthritis: data from the third National Health and Nutrition Examination Survey.
8		Osteoarthritis Cartilage, 2019. <b>27</b> (9): p. 1301-1308.
9	32.	Xiao, L., S. Lin, and F. Zhan, The association between serum uric acid level and changes
10		of MRI findings in knee osteoarthritis: A retrospective study (A STROBE-compliant article)
11		Medicine (Poltimere) 2010 <b>09</b> (21): n. e15810
13		Medicine (Bailinore), 2019. <b>96</b> (21). p. e15619.
14	33.	Joosten, L.A.B., et al., Asymptomatic hyperuricaemia: a silent activator of the innate
15		<i>immune system.</i> Nat Rev Rheumatol, 2020. <b>16</b> (2): p. 75-86.
16 17	34.	Zurita-Cruz, J., et al., Resistin/Uric Acid Index as a Prognostic Factor in Adolescents with
17		Obesity after Lifestyle Intervention J Pediatr 2020 219 p 38-42 e1
19	25	Musuresi C at al Octoberthetic in the XX/at contumy rick forters and behaviours that
20	35.	
21		<i>influence disease onset and progression.</i> Int J Mol Sci, 2015. <b>16</b> (3): p. 6093-112.
22	36.	Zhang, Y., et al., <i>Low-dose aspirin use and recurrent gout attacks.</i> Ann Rheum Dis, 2014.
24		<b>73</b> (2): p. 385-90.
25	37.	Bardin, T. and P. Richette, Impact of comorbidities on gout and hyperuricaemia; an update
26		on prevalence and treatment options BMC Med 2017 <b>15</b> (1): p. 123
27	~~	
20 29	38.	Schett, G., et al., Why does the gout attack stop? A roadmap for the immune pathogenesis
30		<i>of gout.</i> RMD Open, 2015. <b>1</b> (Suppl 1): p. e000046.
31	39.	Geng, Q., et al., Febuxostat mitigates IL-18-induced inflammatory response and reduction
32		<i>of extracellular matrix gene.</i> Am J Transl Res, 2021. <b>13</b> (3): p. 979-987.
33 34	40.	Nasi, S., et al., Xanthine, Oxidoreductase, Is Involved in Chondrocyte Mineralization and
35	10.	Expressed in Octoberthritic Damaged Cartilage Front Coll Day Biol. 2021. 0: p. 612440
36		Expressed in Osteoartinuc Damaged Cartinage. From Cell Dev Biol, 2021. 9. p. 612440.
37	41.	Li, J., Z. Zhang, and X. Huang, <i>I-Arginine and allopurinol supplementation attenuates</i>
38		inflammatory mediators in human osteoblasts-osteoarthritis cells. Int J Biol Macromol, 2018.
40		<b>118</b> (Pt A): p. 716-721.
41	42.	Kiltz, U., et al., <i>Treat-to-target (T2T) recommendations for gout.</i> Ann Rheum Dis, 2017.
42		<b>76</b> (4): n 632-638
43	40	$P_{0}(\tau)$ , $p_{1}$ , $0.02-0.00$ .
45	43.	Perez-Ruiz, F., et al., <i>Treat to target in gout.</i> Rneumatology (Oxford), 2018. <b>57</b> (suppl_1):
46		p. i20-i26.
47	44.	Miao, Z., et al., Dietary and lifestyle changes associated with high prevalence of
48		hyperuricemia and gout in the Shandong coastal cities of Eastern China. J Rheumatol,
49 50		2008 <b>35</b> (9) p 1859-64
51	45	Lin KC HV Lin and B Chau. The interaction between uric acid level and other rick
52	45.	Lin, K.C., H.T. Lin, and F. Chou, <i>The Interaction between unc acid level and other risk</i>
53		factors on the development of gout among asymptomatic hyperuricemic men in a
54 55		<i>prospective study.</i> J Rheumatol, 2000. <b>27</b> (6): p. 1501-5.
56	46.	Hak, A.E. and H.K. Choi, Menopause, postmenopausal hormone use and serum uric acid
57		
58		
59 60		2 For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

*levels in US women--the Third National Health and Nutrition Examination Survey.* Arthritis Res Ther, 2008. **10**(5): p. R116.

- 47. Nicholls, A., M.L. Snaith, and J.T. Scott, *Effect of oestrogen therapy on plasma and urinary levels of uric acid.* Br Med J, 1973. **1**(5851): p. 449-51.
- 48. Ding, X., et al., *The associations of serum uric acid level and hyperuricemia with knee osteoarthritis.* Rheumatol Int, 2016. **36**(4): p. 567-73.
- 49. Srikanth, V.K., et al., *A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis.* Osteoarthritis Cartilage, 2005. **13**(9): p. 769-81.
- 50. El Miedany, Y., et al., *Incorporating patient reported outcome measures in clinical practice: development and validation of a questionnaire for inflammatory arthritis.* Clin Exp Rheumatol, 2010. **28**(5): p. 734-44.
- 51. Murphy, L.B., et al., Defining Arthritis for Public Health Surveillance: Methods and Estimates in Four US Population Health Surveys. Arthritis Care Res (Hoboken), 2017.
  69(3): p. 356-367.

## **Figure legends**

Figure 1. Flow chart of sample selection from the NHANES 2007–2018

## Supplemental appendix

**sTable 1.** Characteristics of participants included in this study. **sTable 2.** Subgroup analysis of the association of arthritis subtype (RA, OA, others and

don't know) and AH.

to beet terien only





188x175mm (300 x 300 DPI)

### Supplementary materials

The association between asymptomatic hyperuricemia and risk of arthritis, findings from a US National Survey 2007-2018

#### **Supplementary Tables**

sTable1. Characteristics of participants included in this study

**sTable2.** Subgroup analysis of the association of arthritis subtype (RA, OA, others and don't know) and AH.

	2007-2008	2009-2010	2011-2012	2013-2014	2015-2016	2017-2018	р
N*	2330	2528	2229	2367	2067	2126	
Uricacid							0.438
NA	83.65(81.60,85.69)	84.50(82.38,86.62)	84.71(82.87,86.64)	83.55(81.95,85.15)	84.13(82.09,86.17)	83.61(80.70,86.53)	
AH	16.35(14.01,18.40)	15.50(13.38,17.62)	15.29(13.46,17.13)	16.45(14.85,18.05)	15.87(13.83,17.91)	16.39(13.47,19.30)	
Gender							0.279
Male	47.25(45.60,48.89)	45.56(43.56,47.55)	47.90(45.04,50.75)	47.69(45.61,49.77)	47.36(45.31,49.42)	48.09(44.95,51.22)	
Female	52.75(51.11,54.40)	54.44(52.45,56.44)	52.10(49.25,54.96)	52.31(50.23,54.39)	52.64(50.58,54.69)	51.91(48.78,55.05)	
Age							< 0.01
20-29	19.13(16.42,21.85)	19.35(16.80,21.90)	18.23(15.01,21.45)	18.40(15.73,21.08)	16.67(14.61,18.72)	19.86(16.81,22.90)	
30-39	18.20(15.96,20.43)	16.98(14.62,19.35)	18.53(15.67,21.39)	17.24(15.16,19.31)	15.59(14.04,17.15)	18.76(15.92,21.60)	
40-49	20.97(17.50,24.44)	21.50(19.52,23.49)	18.86(15.20,22.52)	19.43(16.80,22.07)	18.56(15.67,21.45)	15.71(13.13,18.28)	
50-59	19.29(16.77,21.80)	19.37(16.98,21.77)	19.08(17.07,21.08)	18.17(15.58,20.76)	18.81(17.09,20.54)	19.93(16.84,23.02)	
60-69	11.44(9.42,13.46)	11.18(9.90,12.46)	14.03(12.10,15.96)	14.71(12.03,17.38)	19.21(16.43,22.00)	14.81(11.45,18.16)	
70+	10.98(9.65,12.30)	11.60(10.10,13.10)	11.26(9.65,12.88)	12.05(10.37,13.73)	11.16(9.36,12.96)	10.95(8.93,12.97)	
Race/Ethnicity							< 0.01
Other Race	13.87(10.43,17.31)	16.55(11.72,21.38)	15.80(11.44,20.16)	16.88(12.75,21.02)	17.24(13.58,20.90)	19.91(16.40,23.42)	
Hispanic	5.09(2.60,7.58)	5.84(2.94,8.74)	6.74(3.84,9.64)	5.67(2.34,8.61)	6.74(3.88,9.59)	6.86(5.00,8.72)	
Non-Hispanic White	70.37(63.63,77.11)	66.91(60.23,73.59)	68.04(61.22,74.87)	67.07(60.01,74.13)	65.74(57.81,73.66)	61.96(57.22,66.69)	

BMJ Open

Non Hispania Plack	10 67(6 62 14 70)	10 70(8 67 12 72)	0 42(5 04 12 00)	10 27(7 68 12 07)	10 20(5 86 14 71)	11 27(7 61 14 02)	
Fducation Level	10.07(0.03,14.70)	10.70(8.07,12.72)	9.42(3.94,12.90)	10.57(7.08,15.07)	10.29(3.80,14.71)	11.27(7.01,14.93)	_
High school or below	43 02(37 88 48 16)	41 31(37 13 45 52)	37 42(31 97 42 87)	36 42(30 79 42 04)	36 46(30 23 42 68)	39 61(36 03 43 19)	
Some college	28 45(26 32 30 58)	29 63(26 71 32 56)	31 10(27 90 34 30)	32 90(29 91 35 90)	31 18(27 20 35 16)	29 91(25 07 34 76)	
College graduate or above	28 53(24 06 33 00)	29.05(25.76.32.33)	31 48(25 02 37 94)	30 68(26 29 35 07)	32 36(25 35 39 37)	30 47(24 72 36 23)	
BMI	20.33(24.00,33.00)	29.03(25.10,52.55)	51.40(25.02,57.54)	30.00(20.2),33.07)	52.50(25.55,57.57)	50.47(24.72,50.25)	<
Normal	33 39(31 60 35 19)	32 13(28 74 35 52)	31 68(27 63 35 73)	31 24(28 78 33 70)	27 17(23 38 30 96)	29 29(25 52 33 05)	
Overweight	35 11(32 97 37 26)	32 96(30 44 35 48)	33 36(31 12 35 60)	33 31(30 91 35 70)	32 66(31 03 34 28)	31 53(29 18 33 8)	
Obesity	31 49(28 61 34 37)	34 91(32 02 37 79)	34 96(31 50 38 42)	35 45(33 20 37 70)	40 17(36 34 44 00)	39 18(35 37 43 00)	
Blood pressure	51.+9(20.01,5+.57)	54.71(32.02,31.17)	54.90(51.50,50.42)	55.45(55.20,57.70)	40.17(30.34,44.00)	57.10(55.57,+5.00)	<
Hypertension	40 92(37 47 44 37)	40 38(36 47 44 30)	45 82(41 97 49 68)	• 43 84(39 24 48 43)	44 44(40 49 48 40)	46 99(43 71 50 28)	
Normal	59 08(55 63 62 53)	59 62(55 70 63 53)	54 18(50 32 58 03)	56 16(51 57 60 76)	55 56(51 60 59 51)	53 01(49 72 56 29)	
PIR	57.00(55.05,02.55)	57.02(35.70,05.55)	54.10(50.52,50.05)	50.10(51.57,00.70)	55.50(51.00,57.51)	55.01(47.72,50.27)	<
Low income	19 38(16 16 22 61)	21 90(19 24 24 56)	24 29(20 21 28 38)	25 33(19 07 31 59)	19 64(16 45 22 82)	20 01(17 46 22 56)	
Middle income	33 99(30 47 37 52)	37 50(33 75 41 26)	35 70(31 24 40 17)	33 69(30 70 36 68)	37 50(34 14 40 87)	37 61(33 36 41 86)	
High income	46.62(41.80.51.44)	40.60(36.83.44.36)	40.00(33.29.46.72)	40.98(34.20.47.76)	42.86(37.83.47.88)	42.38(37.89.46.88)	
Somking	10.02(11.00,01.11)	10.00(30.05,11.20)	10.00(00.2),10.72)	10.90(31.20,11.10)	12.00(07.00, 17.00)	12.00(07.00), 10.00)	ſ
Current	21 61(18 39 24 83)	18 98(17 51 20 45)	20.06(16.75.23.36)	19 50(15 86 23 14)	18 73(15 50 21 97)	17 47(14 68 20 27)	
Before	24.99(22.25.27.73)	24.21(20.55.27.87)	23.04(20.16.25.92)	23.68(20.64.26.72)	26.46(22.62.30.31)	24.90(22.47.27.32)	
Never	53 40(49 73 57 07)	56 80(53 00 60 61)	56 90(53 76 60 05)	56 82(52 86 60 78)	54 81(50 57 59 04)	57 63(54 64 60 62)	
110701	55. 70(77.15,51.01)	50.00(55.00,00.01)	56.76(55.70,00.05)	56.62(52.00,00.70)	57.01(50.57,57.04)	57.05(54.04,00.02)	

PAL							< 0.01
Moderate activities	58.98(55.40,62.57)	62.32(59.17,65.48)	61.71(57.96,65.46)	62.05(59.40,64.70)	57.56(54.23,60.90)	52.20(49.94,54.47)	
Vigorous activities	41.02(37.43,44.60)	37.68(34.52,40.83)	38.29(34.54,42.04)	37.95(35.30,40.60)	42.44(39.10,45.77)	47.80(45.53,50.06)	
Diabetes							< 0.01
Yes	10.17(8.32,12.03)	9.47(8.21,10.74)	10.20(8.31,12.09)	10.34(8.83,11.84)	12.25(9.95,14.55)	12.14(9.78,14.49)	
No	89.83(87.97,91.68)	90.53(89.26,91.79)	89.80(87.91,91.69)	89.66(88.16,91.17)	87.75(85.45,90.05)	87.86(85.51,90.22)	
With or without arthritis							< 0.01
No arthritis	74.05(70.64,77.47)	74.90(72.43,77.38)	77.19(73.85,80.53)	75.09(72.40,77.78)	73.16(70.09,76.24)	74.47(70.56,78.38)	
Arthritis	25.95(22.53,29.36)	25.10(22.62,27.57)	22.81(19.47,26.15)	24.91(22.22,27.60)	26.84(23.76,29.91)	25.53(21.62,29.44)	
OA	8.70(6.56,10.85)	9.56(8.30,10.82)	11.30(8.92,13.68)	13.88(11.87,15.89)	12.92(10.99,14.86)	12.44(9.32,15.55)	
RA	3.57(2.87,4.27)	4.11(3.18,5.04)	3.90(2.78,5.02)	3.09(2.15,4.02)	3.59(2.53,4.64)	4.04(2.82,5.25)	
Other	3.54(2.56,4.52)	3.64(2.80,4.47)	2.88(1.39,4.37)	2.98(2.05,3.91)	3.33(1.66,5.01)	3.04(1.78,4.30)	
Dont know	10.13(8.22,12.05)	7.79(6.41,9.17)	4.73(3.14,6.33)	4.96(4.03,5.89)	6.99(5.25,8.73)	6.02(4.66,7.37)	
Cholesterol(mg/dl)†	194.90±40.98	195.00±39.66	191.78±39.95	188.44±39.94	190.31±41.06	186.04±40.55	< 0.01
LDL(mg/dl)†	115.60±35.83	116.32±34.82	114.41±34.74	111.74±35.10	112.89±35.82	110.72±35.69	< 0.01
HDL(mg/dl)†	54.15±15.40	54.40±15.95	53.78±14.93	54.58±16.11	55.97±17.56	54.02±15.74	< 0.01
Triglyceride(mg/dl)†	125.72±66.36	121.43±64.17	117.95±64.42	110.61±65.08	107.26±63.05	106.48±63.30	< 0.01
Creatinine(mg/dl)†	123.56±74.93	124.01±74.60	125.83±78.25	119.58±74.02	126.23±77.54	136.33±83.94	< 0.01
Albumin(mg/dl)†	58.18±663.81	33.09±182.80	37.78±211.82	40.30±250.06	51.49±338.92	56.01±379.49	0.105

*N represents unweighted number, and the remaining values are weighted values using NHANES MEC examination weight.

†Figures are expressed as mean ± standard error, other figures are expressed as percent (95% confidence intervals).

 BMJ Open

BMI: body mass index; PIR: poverty income ratio; PAL: Physical activity level; LDL: Low-density lipoprotein; HDL: High-density lipoprotein; RA: Rheumatoid arthritis; OA: Osteoarthritis; AH: asymptomatic hyperuricemia (serum urate > 6.8 mg/dL with no gout); NA: no-hyperuricemia.

	OA (OR,95%, P)	RA (OR,95%, P)	Other (OR,95%, P)	Don't know (OR,95%, P)
Gander				
Male	1	1	1	1
Female	1.35(1.14,1.60)0.00	1.08(0.83,1.41)0.59	1.00(0.78,1.29)1.00	0.99(0.82,1.20)0.96
Age				
20-29	1	1	1	1
30-39	0.36(0.27,0.49)0.00	0.36(0.24,0.54)0.00	0.35(0.23,0.55)0.00	0.38(0.27,0.53)0.00
40-49	0.80(0.62,1.04)0.97	0.99(0.71,1.38)0.96	0.88(0.64,1.21)0.44	0.95(0.70,1.30)0.74
50-59	2.16(1.72,2.72)0.00	2.12(1.50,3.00)0.000	1.35(1.00,1.83)0.51	1.90(1.44,2.49)0.00
60-69	4.18(3.26,5.35)0.00	3.34(2.50,4.46)0.000	1.69(1.13,2.53)0.01	2.70(1.92,3.78)0.00
70+	5.50(4.18,7.22)0.00	4.57(3.40,6.15)0.000	1.51(0.99,2.33)0.06	4.24(3.16,5.69)0.00

Supplementary Table 2. Subgroup analysis of the association of arthritis subtype (RA, OA, others and don't know) and AH

All data were adjusted for gender, age, race, BMI, education level and poverty to income ratio, hypertension, ever cigarette smoking and diabetes.

## STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	<ul><li>(a) Indicate the study's design with a commonly used term in the title or the abstract</li><li>(b) Provide in the abstract an informative and balanced summary of what was</li></ul>	1-2
		done and what was found	
Introduction			1
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4
Participants	6	<ul> <li>(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up</li> <li>(b) For matched studies, give matching criteria and number of exposed and unexposed</li> </ul>	4
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	4-6
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	<ul> <li>(a) Describe all statistical methods, including those used to control for confounding</li> <li>(b) Describe any methods used to examine subgroups and interactions</li> <li>(c) Explain how missing data were addressed</li> <li>(d) If applicable, explain how loss to follow-up was addressed</li> <li>(<u>e</u>) Describe any sensitivity analyses</li> </ul>	6
Results			
Participants	13*	<ul> <li>(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed</li> <li>(b) Give reasons for non-participation at each stage</li> <li>(c) Consider use of a flow diagram</li> </ul>	6
Descriptive data	14*	<ul> <li>(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders</li> <li>(b) Indicate number of participants with missing data for each variable of interest</li> <li>(c) Summarise follow-up time (eg, average and total amount)</li> </ul>	6-7
Outcome data	15*	Report numbers of outcome events or summary measures over time	6

#### **BMJ** Open

Main results	16	( <i>a</i> ) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	13- 14
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	15- 16
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	18
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

## **BMJ Open**

# The association between asymptomatic hyperuricemia and risk of arthritis, findings from a US National Survey 2007-2018

Journal:	BMJ Open			
Manuscript ID	bmjopen-2023-074391.R1			
Article Type:	Original research			
Date Submitted by the Author:	14-Nov-2023			
Complete List of Authors:	Liang, Zhenguo; The Fifth Affiliated Hospital of Sun Yat-sen University, Department of Rheumatology and Immunology; Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology WU, Dongze; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Department of Rheumatology and Immunology; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital Zhang, Hua; The Fifth Affiliated Hospital of Sun Yat-sen University, Department of Rheumatology and Immunology Gu, Jieruo; Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology			
<b>Primary Subject Heading</b> :	Immunology (including allergy)			
Secondary Subject Heading:	Complementary medicine			
Keywords:	Rheumatology < INTERNAL MEDICINE, Knee < ORTHOPAEDIC & TRAUMA SURGERY, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT			

SCHOLARONE[™] Manuscripts


I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2							
3 4	1	The association between asymptomatic hyperuricemia and risk of arthritis, findings					
5	2	from a US National Survey 2007-2018					
6 7	3						
8 9	4	Author					
10 11	5	Zhenguo Liang ^{1,2#} , Dongze Wu ^{3,4#} , Hua Zhang ^{1#} , Jieruo Gu ^{2*}					
12	6	Institution					
13 14	7	1.Department of Rheumatology and Immunology, The Fifth Affiliated Hospital of Sun					
15 16	8	Yet-Sen University, Zhuhai, Guangdong, China.					
17	9	2.Department of Rheumatology, Third Affiliated Hospital of Sun Yat-Sen University,					
18 19	10	Guangzhou, Guangdong, China.					
20 21	11	3.Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital,					
22 23	12	School of Medicine, University of Electronic Science and Technology of China, Chengdu,					
24	13	China.					
25 26	14	4. Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital,					
27 28	15	Chengdu, China.					
29 30	16	#Contributed equally to this manuscript.					
31	17	Corresponding authors					
32 33	18	*Prof. Jieruo Gu, PhD					
34 35	19	Address: No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China, 510000					
36	20	E-mail: gujieruo@mail.sysu.edu.cn					
37 38	21	Telephone: (+86) 2085253333 / Fax number: (+86) 2085253336					
39 40	22	Word Count: 3153Table Count: 4Figure Count: 1					
41 42	23	Conflict of Interest: The authors confirm that there are no conflicts of interest.					
43	24	Running Head: Association between asymptomatic hyperuricemia and risk of arthritis.					
44 45							
46 47							
48							
49 50							
51							
52							
55 54							
55							
56 57							
58							
59 60		l For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

1 2		
3	25	Abstract
5	26	Background
6 7	27	Arthritis is thought to be closely related to serum uric acid. The study aims to assess
8 9	28	the association between asymptomatic hyperuricemia (AH) and arthritis.
10	29	Methods
12	30	A multistage, stratified cluster was used to conduct a cross-sectional study of adult
13 14	31	U.S. civilians aged≥ 20 years from the 2007-2018 National Health and Nutrition
15 16	32	Examination Survey (NHANES). Participants with hyperuricemia and without
10	33	hyperuricemia prior to gout were included. A questionnaire was used to determine whether
18 19	34	participants had arthritis and the type of arthritis. Logistic regression was used to
20 21	35	investigate the association between hyperuricemia and arthritis.
22	36	Result
23	37	During the past 12 years, the percentage of participants with arthritis changed from
25 26	38	25.95% (22.53, 29.36) to 25.53% (21.62, 29.44). The prevalence of osteoarthritis (OA)
27 28	39	increased from 8.70% (95%CI: 6.56,10.85) to 12.44% (95%CI: 9.32,15.55), the prevalence
29	40	of AH changed from 16.35% (95%CI: 14.01,18.40) to 16.39% (95%CI: 13.47,19.30).
30 31	41	Participants with AH was associated with onset of arthritis (OR=1.34, 95%CI: 1.07,1.69),
32 33	42	but the association was muted after adjusting demographic, socioeconomic factors, etc. For
34 35	43	participants aged 40-49 years, AH is associated with incident arthritis (OR=1.96, 95%CI:
36	44	1.23, 2.99) and the relationship remained after adjusting for education level, income to
37 38	45	poverty ratio, body mass index (BMI), diabetes, hypertension, and smoking (OR=2.00,
39 40	46	95%CI: 1.94, 3.36). Compared with male, female participants with AH are more likely to
41	47	develop arthritis, especially in OA (OR=1.35, 95%CI: 1.14, 1.60).
42 43	48	Conclusion
44 45	49	Our data identified AH as the risk factor for incident arthritis, especially for OA,
46 47	50	which might be exaggerated in aged population and female population.
48	51	
49 50	52	Keywords: Arthritis, Asymptomatic hyperuricemia, Association, Risk
51 52	53	
53		
54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### 54 STRENGTHS AND LIMITATIONS OF THIS STUDY

• This study marks the inaugural analysis of population characteristics among participants with arthritis in the NHANES database from 2007 to 2019. It delves into the specific characteristics of arthritis and asymptomatic hyperuricemia, as well as exploring the potential connections between these two conditions.

Beyond its well-documented association with gout, this study lends credence to the
 notion that asymptomatic hyperuricemia may serve as a predictive factor for the onset
 of arthritis, with a particular emphasis on OA.

While the data within the NHANES database has undergone significant refinement,
 it's important to note that the statistical cycle occurs biennially, and adjustments are
 made to the statistical scheme in different cycles.

Our analysis focused exclusively on the NHANES database spanning the years 2007
 to 2019. We did not extend our analysis to other time periods, which represents a
 limitation inherent to cross-sectional studies. It's important to recognize that the
 NHANES database, compiled by the CDC, encompasses data from the entire
 American population. Consequently, its applicability to other countries or ethnic
 groups worldwide may be constrained due to these specific demographics and contexts.

#### 71 Introduction

More than one in five adults in the United States had doctor-diagnosed arthritis, and arthritis-attributable activity limitations significantly increased over time independent of the population ageing [1]. By 2040, the adults with doctor-diagnosed arthritis are projected to increase 49% to 78.4 million (1 in 4 US adults), and the arthritis-attributable activity limitation will increase 52% to 34.6 million (1 in 9 adults)[2]. High medical care expenditures and earnings losses attributable to arthritis signaling the need for identification of disease and risk factor that are in most need for interventions[3]. OA as the most common form of arthritis, involves structural changes in the articular cartilage, subchondral bones, ligaments, bursae, synovium, and muscles surrounding the joint[4]. From 1990 to 2019, the global age standardized incidence rate of OA increased from 474 to 492 per 100, 000 population and expected to increase due to global population ageing [5, 6]. About 20% of the general population affected by hyperuricemia, which might be more prominent in male and aged population[7]. Prior research has consistently shown a 

#### Page 5 of 31

#### BMJ Open

significant correlation between arthritis, particularly OA and rheumatoid arthritis (RA), and
hypertension[8]. The intricate relationship between metabolic processes and arthritis,
alongside the interplay between metabolic and immunological factors, is garnering
heightened attention. Metabolic syndrome's implication in various forms of arthritis, such
as OA, is increasingly recognized. [9, 10].

In 2007-2016, the prevalence of hyperuricemia, gout, and the urate-lowering therapy among patients with gout remained stable[11]. The true significance of asymptomatic hyperuricemia (AH) as a risk factor for incident gout becomes apparent when considering that only half of patients with longstanding hyperuricemia develop clinically evident gout over a 15-year period. [12, 13]. Advanced imaging, including ultrasonography or dual-energy CT, demonstrated approximately 15–40% of patients with chronic hyperuricemia have silent monosodium urate crystal deposition[14]. As the crystallization of monosodium urate marks the progression of hyperuricemia towards gout, it remains uncertain whether hyperuricemia contributes to other forms of arthritis.[15]. 

Both hyperuricemia and OA are influenced by common risk factors such as obesity and aging. This shared relationship between risk factors suggests a potential connection between the hyperuricemia and OA, with intraarticular urate contributing to crystallization and cartilage disruption in the context of these shared risk factors. [16]. The predilection for both OA and gout occur in the same joints strongly suggest that OA may predispose to the localized deposition of monosodium urate crystals, which influence structural joint damage[17-19]. Monosodium urate crystals have been shown to inhibit the viability and function of human chondrocytes in vitro with a dose-dependent manner[20]. Death of chondrocytes can lead to an increase in urate, which may even promote crystal deposition on the cartilage, further aggravating OA progression[16]. Monosodium urate crystals inhibit osteocyte viability and, through interactions with macrophages, indirectly promote a shift in osteocyte function that favors bone resorption and inflammation[21]. Uric acid is a danger signal of increasing risk OA through inflammasome activation[22]. Therefore, we hypothesized that hyperuricemia prior to gout was associated with OA. The aim of this study was to i) ascertain the association between AH and arthritis, ii) determine the association between AH and OA, iii) investigate the effect of age and gender on such association. 

**Patients and methods** 

**Patient and Public Involvement** 

NHANES is an ongoing longitudinal survey conducted by the National Center for Health Statistics (NCHS) to assess the health and nutritional status of the United States through a series of interviews and examination items. The NHANES is conducted biennially in a nationally representative, non-institutionalized civilian population, and use a hierarchical multi-stage probabilistic clustering design to select a representative sample of over-sampled participants. The sampling methods and examination information used in this study have been described in detail elsewhere [23]. NHANES was reviewed and approved by the NCHS Research Ethics Committee. All manipulations of the NHANES were carried out in accordance with the principles of the Helsinki Declaration. Written informed consent was obtained from all participants in NHANES.

The study used data from NHANES database for the 2007-2018 study cycle (n=59,842) and excluded those who did not participate in the examination (n=2,428). We excluded participants who refused and don't know ever had or hadn't arthritis, refused to answer which type of arthritis (n=80), who are younger than 20 years old (n=24,002), who have missing and incomplete BMI, uric value, and smoking record (n=2,549). We also excluded participants who were told that you had gout(n=1.438) and participants with missing or incomplete low-density lipoprotein (LDL), cholesterol, and creatinine record. In the end, this study consisted of 13, 647 eligible participants (Figure 1), which is representative of the population size of 87,901,487. 

**Conditions of arthritis** 

The status of arthritis was classified using questionnaires. Participants aged 20 years and older were asked "Has a doctor or other health professional ever said that you had arthritis?". If the participants gave a positive answer, they were further asked "Which type of arthritis was it?". Participants' responses included RA, OA, other, do not know type, and refuse to answer. Individuals were excluded from the current analysis if their self-reported type of arthritis declined to answer. A consistent relationship between self-reports of arthritis and a clinical diagnosis of arthritis has been demonstrated in previous reports [24]. Hyperuricemia 

Hyperuricemia is an elevated level of uric acid in the blood. The normal upper limit for

Page 7 of 31

#### **BMJ** Open

serum uric acid (SUA) at physiological levels is 6.8 mg/dL. This is the saturation point at
which urate may precipitate under physiological conditions[25, 26]. We put SUA>6.8
mg/dL was defined as hyperuricemia, and SUA≤6.8 mg/dL is defined as the normal state.
Covariates

Covariates are identified in statistical models by means of interview responses and examinations. Covariates that could confound the association between OA and AH were selected based on the results of interviews and examinations in the NHANES database. These factors were chosen to screen for variables that might be associated with OA risk and/or could be associated with AH. This selection aimed to minimize potential confounding variables in the association between OA and AH. The chosen covariates included self-reported demographic characteristics, such as gender, age, race, education level, BMI, blood pressure, poverty income ratio (PIR), smoking, physical activity level (PAL), and diabetes. 

Age is divided into seven groups: 20-29, 30-39, 40-49, 50-59, 60-69 and 70+. Race is divided into four groups: non-Hispanic white, non-Hispanic black, Hispanic and other races. Education is grouped as high school or below, some college and college graduate or above. BMI is calculated from measured weight and height determined by standard NHANES protocols[27]. BMI is categorized as three groups: Normal (<18.5kg/m²), Overweight (18.5–24.9kg/m²) and Obesity ( $\geq 25$  kg/m²). Participants with systolic blood pressure  $\geq$  130 mmHg or diastolic blood pressure  $\geq$  80 mmHg are defined as hypertension[28]. PIR as a socioeconomic indicator is stratified into three levels: Low income (PIR < 1.3), Middle income ( $1.3 \le PIR < 3.5$ ) and High income ( $PIR \ge 3.5$ ).

Smoking status is categorized according to interview results as current (smoked more than 100 cigarettes in the lifetime and currently still smoked), before (smoked more than 100 cigarettes in the lifetime but did not currently smoke) and never (smoked less than 100 cigarettes in the lifetime). PAL is divided into two categories, moderate activity, which includes moderate work activity, walking or cycling, moderate recreational activity, and vigorous activity, which includes vigorous work activity and vigorous recreational activity. Participants with self-reported diabetes had either a diabetes physician's diagnosis of diabetes or an elevated fasting plasma glucose level or an elevated oral glucose tolerance (OGTT), or/and HbA1c≥6.5%. Laboratory data included cholesterol, LDL, High-density 

178 lipoprotein (HDL), triglycerides, creatinine, and albumin.

#### 179 Statistical analysis

 Design factors involving complex weighting, clustering, and stratification in the NHANES database. Statistical analysis was conducted using STATA (version 16). Complex stratification designs were considered using appropriate sample weights in accordance with NHANES analytical reporting guidelines. In baseline study characteristics, means and standard errors (SEs) were used for continuous variables. Categorical variables were expressed as numbers and percentages. Chi-square test and t-test were used for categorical and continuous variables, respectively. A weighted logistic regression was used to assess the association between OA and AH and to control for confounding factors. Finally, subgroup analysis was performed using hierarchical multivariate regression. The 95% confidence intervals and p-values were calculated. A two-tailed test with p-values less than 0.05 are considered significant. 

#### **Results**

#### 192 The characteristics of study participants

A total of 13,647 participants were eligible and included in the analysis from 2007-2008 to 2017-2018 (sTable 1). Between 2007-2008 and 2017-2018, the proportion of participants in the 60-69 age group increased from 11.44% (95%CI: 9.42, 13.46) to 14.81% (95%CI: 11.45, 18.16). In addition, the proportion of Hispanics increased from 5.09% (95%CI: 2.60, 7.58) to 6.86% (95%CI: 5.00, 8.72), while the proportion of non-Hispanic whites decreased from 70.37% (95%CI: 63.63, 77.11) to 61.96% (95%CI: 57.22, 66.69). Between 2007-2008 and 2017-2018, the proportion of high school or below decreased, which is from 43.02% (95%CI: 37.88, 48.16) to 39.61% (95%CI: 36.03, 43.19), while the proportion of college graduate or above increased, which was from 28.53% (95%CI: 24.06, 33.00) to 30.47% (95%CI: 24.72, 36.23) (sTable 1).

During the past 12 years, the percentage of participants with arthritis changed from 25.95% (22.53, 29.36) to 25.53% (21.62, 29.44). The prevalence of RA increased from 3.57% (95%CI: 2.87,4.27) in 2007-2008 to 4.04% (95%CI: 2.82,5.25) in 2017-2018, while the proportion of those who don't know arthritis decreased from 10.13% (95%CI: 8.22,12.05) to 6.02% (95%CI: 4.66,7.37). There was also a little decrease in other arthritis 3.54% (95%CI: 2.56,4.52) and 3.04% (95%CI: 1.78,4.30). The prevalence of OA showed

Page 9 of 31

#### **BMJ** Open

a clear upward trend during the 12 years, from 8.70% (95%CI: 6.56, 10.85) in 2007-2008
to 12.44% (95%CI: 9.32, 15.55) in 2017-2018 (p<0.01) (sTable 1).</li>

The 50-59 age group displayed the highest percentage of individuals with AH (19.39% [95%CI: 17.17, 21.61]) among all the age groups that were examined. A larger proportion of males (77.17% [95%CI: 74.96, 79.37]) had AH compared with females (22.83 [95%CI: 20.63, 25.04]) (Table 1). There are significant differences in race between participants with and without AH (p<0.01). Participants in the AH group had higher levels of obesity, hypertension, diabetes, LDL, triglycerides, and creatinine than those in the normal state group (Table 1).

The prevalence of patients with OA and AH (11.40% [95%CI: 9.56, 13.24]) is considerably higher than that of other three types of arthritis (RA: 4.62% (95%CI: 3.56, 5.69), Other: 3.14% (95%CI: 2.12, 4.17) and unspecified: 7.54% (95%CI: 6.03, 9.05)) (p<0.01) (Table 1).

222 The characteristics of hyperuricemia and arthritis

The higher frequency of participants with arthritis, including OA, RA, other forms, and those who were unaware of having arthritis, among individuals aged over 50 years, suggests that age may be a contributing factor to the prevalence of arthritis in this population (Table 2). The characteristics of the 13,647 participants included in our study with self-reported OA, RA, other, and Unspecified are presented using weighted statistics (Table 1). The prevalence of the four types of arthritis was higher among female participants than among male participants, which was most notable in OA (female: 65.94%) vs male 34.06%) (Table 2).

Characteristics	Normal state	AH	p value
N*	11387	2260	
Gender			< 0.01
Male	41.66(40.55,42.76)	77.17(74.96,79.37)	
Female	58.34(57.24,59.45)	22.83(20.63,25.04)	
Age			< 0.01
20-29	18.86(17.56,20.15)	17.30(15.07,19.53)	
30-39	18.03(16.98,19.07)	15.15(12.83,17.48)	
40-49	19.44(18.21,20.67)	17.39(14.72,20.05)	
50-59	19.05(17.98,20.12)	19.39(17.17,21.61)	
60-69	14.01(12.95,15.07)	15.66(13.36,17.95)	
70+	10.62(9.91,11.32)	15.11(13.21,17.00)	
Race			< 0.01
Other Races	17.22(15.50,18.93)	14.33(12.20,16.47)	
Hispanic	6.32(5.21,7.44)	5.39(4.02 ,6.76)	
Non-Hispanic White	66.30(63.54,69.05)	68. 32(64.74,71.91)	
Non-Hispanic Black	10.16(8.80,11.53)	11.96(9.82,14.09)	
Education Level			0.137
High school or below	38.72(36.58,40.86)	40.33(37.04,43.63)	
Some College	30.44(28.96,31.92)	31.18(28.20,34.17)	
College graduate or above	30.84(28.51,33.16)	28.49(25.66,31.31)	
BMI			<0.01
Normal	34.09(32.60,35.58)	13.41(11.57,15.25)	
Overweight	33.07(32.07,34.08)	33.41(30.59,36.23)	
Obesity	32.83(31.48,34.19)	53.18(49.93,56.43)	
Blood pressure			< 0.01
Hypertension	40.84(39.20,42.49)	59.45(56.85,62.06)	
Normal	59.16(57.51,60.80)	40.55(37.94,43.15)	
PIR			0.03
Low income	22.36(20.66,24.06)	18.98(17.00,20.97)	
Middle income	35.84(34.22,37.47)	36.73(33.94,39.53)	

### Table 1. Baseline characteristics of high uric acid group versus the normal state group.

#### BMJ Open

	<b>F1</b> (1)			
	Elevated income	41.79(39.48,44.11)	44.28(40.87,47.69)	
	Smoking			<0.01
	Current	19.72(18.32,21.11)	17.51(15.41,19.62)	
	Before	23.23(21.86,24.60)	31.37(28.28,34.47)	
	Never	57.06(55.32,58.79)	51.11(48.07,54.16)	
	PAL			0.744
	Moderate activities	59.26(57.72,60.81)	58.20(55.43,60.97)	
	Vigorous activities	40.74(39.19,42.28)	41.80(39.03,44.57)	
	Diabetes			<0.01
	Yes	9.85(8.99,10.70)	15.68(14.06,17.30)	
	No	90.15(89.30,91.01)	84.32(82.70,85.94)	
	Arthritis			<0.01
	No arthritis	75.13(73.67,76.59)	73.29(70.69,75.89)	
	OA	11.54(10.55,12.53)	11.40(9.56,13.24)	
	RA	3.54(3.11,3.97)	4.62(3.56,5.69)	
	Other	3.24(2.69,3.79)	3.14(2.12,4.17)	
	Unspecified	6.55(5.88,7.22)	7.54(6.03,9.05)	
	Cholesterol(mg/dl) †	191.01±40.22	192.23±41.65	0.1924
	LDL (mg/dl)†	113.39±35.07	115.48±36.82	0.0088
	HDL (mg/dl)†	55.58±15.89	48.87±15.10	<0.01
	Triglycerides(mg/dl) †	110.45±62.12	139.39±73.24	<0.01
	Creatinine(mg/dl)†	122.00±75.58	144.47±82.80	<0.01
	Albumin(mg/dl)†	35.52±320.96	97.29±565.77	<0.01
2	BMI: body mass index; PII	R: poverty income ratio	; PA: Physical activity	/ level; LDL: Low-density lipoprotein; HDL:
33	High-density lipoprotein; RA	A: Rheumatoid arthritis;	OA: Osteoarthritis; AI	I: asymptomatic hyperuricemia (serum urate >
234	6.8 mg/dL without gout).			
35	*N represents unweighted i	number, and the remain	ing values are weighte	ed values using NHANES MEC examination
36	weight.			

Characteristics	No Arthritis	OA	RA	Other	Unspecified	p value
N*	10089	1402	662	408	1086	
Gender						< 0.01
Male	50.40(49.20,51.61)	34.06(31.15,36.97)	40.89(35.23,46.54)	40.90(34.65,47.15)	42.48(38.96,46.01)	
Female	49.60(48.39,50.80)	65.94(63.03,68.85)	59.11(53.46,64.77)	59.10(52.85,65.35)	57.52(53.99,61.04)	
Age						< 0.01
20-29	24.10(22.69,25.52)	1.15(0.57,1.73)	2.62(0.30,4.94)	3.98(1.36,6.60)	3.17(1.79,4.55)	
30-39	21.40(20.16,22.64)	5.15(3.81,6.49)	6.11(3.79,8.43)	9.40(5.76,13.05)	6.35(4.47,8.24)	
40-49	20.74(19.35,22.14)	11.11(9.08,13.14)	15.63(11.52,19.73)	22.38(17.09,27.67)	15.00(11.89,18.10)	
50-59	16.53(15.39,17.66)	25.56(22.65,28.48)	26.90(20.60,33.20)	29.34(23.07,35.60)	27.60(23.49,31.71)	
60-69	10.22(9.19,11.25)	29.91(26.73,33.09)	24.48(19.59,29.36)	21.26(14.97,27.56)	23.61(20.04,27.19)	
70+	7.01(6.40,7.61)	27.11(24.11,30.12)	24.26(20.40,28.12)	13.64(9.48,17.79)	24.27(21.09,27.45)	
Race						< 0.01
Other Races	18.98(17.18,20.77)	8.68(6.70,10.65)	15.21(10.33,20.09)	7.59(4.42,10.75)	11.13(8.86,13.39)	
Hispanic	6.83(5.62,8.05)	3.21(2.36,4.06)	5.11(3.68,6.54)	4.82(2.82,6.81)	5.14(3.69,6.59)	
Non-Hispanic White	63.36(60.50,66.21)	82.00(79.15,84.86)	63.62 (57.67,69.57)	78.92 (73.97,83.87)	72.33 (68.49,76.18)	
Non-Hispanic Black	10.83(9.39,12.27)	6.11(4.65,7.57)	16.06(12.29,19.83)	8.67(5.89,11.46)	11.40(9.14,13.65)	
Education Level						< 0.01
High school or below	37.86(35.61,40.10)	34.05(30.26,37.84)	52.13(45.41,58.85)	44.35(38.06,50.64)	50.09(45.46,54.73)	
Some College	29.76(28.19,31.34)	34.45(31.27,37.18)	32.25(27.08,37.42)	31.04(24.03,38.06)	31.61(27.66,35.57)	
College graduate or above	32.38(30.03,34.73)	31.50(27.68,35.33)	15.62(9.94,21.30)	24.61(17.82,31.39)	18.29(14.06,22.52)	
BMI						< 0.01
Normal	33.47(31.83,35.12)	22.68(19.75,25.60)	27.88(22.90,32.85)	21.88(16.37,27.40)	20.66(17.17,24.15)	
Overweight	33.79(32.56,35.03)	32.36(28.93,35.80)	28.46(23.46,33.46)	29.37(23.76,34.98)	31.40(27.98,34.83)	
Obesity	32.74(31.13,34.35)	44.96(41.35,48.57)	43.66(38.74,48.58)	48.75(42.23,55.26)	47.93(43.56,52.31)	
Blood pressure						< 0.01
Hypertension	36.92(35.28,38.56)	66.37(62.74,70.00)	63.74(57.17,70.31)	58.84(51.88,65.81)	63.77(59.68,67.86)	
Normal	63.08(61.44,64.72)	33.63(30.00,37.26)	36.26(29.69,42.83)	41.16(34.19,48.12)	36.23(32.14,40.32)	
PIR						< 0.01
Low income	22.04(20.42,23.65)	16.37(13.61,19.13)	29.76(23.51,36.01)	22.45(16.84,28.06)	24.27(19.78,28.76)	
Middle income	35.83(34.13,37.52)	36.00(32.49,39.50)	36.22(30.28,42.16)	37.89(30.75,45.02)	36.74(32.08,41.40)	
Elevated income	42.14(39.89,44.38)	47.63(43.03,52.24)	34.02(27.68,40.36)	39.66(31.66,47.67)	38.98(32.91,45.05)	
Smoking						< 0.01
Current	18.69(17.41,19.97)	18.21(15.47,20.95)	27.50(22.36,32.63)	27.31(21.50,33.12)	20.56(17.17,23.95)	
Before	21.77(20.30,23.24)	32.89(29.41,36.36)	33.14(26.79,39.49)	29.07(23.55,34.59)	34.03(30.01,38.05)	

#### **Table 2.** Baseline characteristics of arthritis group versus the non-arthritis group.

## For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1								
2 3		Never	59 54(57 76 61 32)	48 90(45 48 52 22)	30 36(33 15 45 58)	43 62(37 28 49 96)	45 41(41 18 49 65)	
4		DAT	59.54(51.10,01.52)	40.90(43.40,32.32)	57.50(55.15,45.56)	43.02(37.28,49.90)	45.41(41.10,49.05)	-0.01
5		TAL			20 00/// 11 22 20			<0.01
7		Moderate activities	54.56(53.24,55.88)	73.88(70.67,77.08)	72.08(66.44,77.72)	67.01(59.61,74.40)	73.28(68.99,77.58)	
8		Vigorous activities	45.44(44.12,46.76)	26.12(22.92,29.33)	27.92(22.28,33.56)	32.99(25.60,40.39)	26.72(22.42,31.01)	
9 10		Diabetes						<0.01
11		Yes	8.50 ( 7.63,9.36 )	15.81(13.36,18.27)	22.68(19.11,26.24)	16.27(10.90,21.63)	18.40(15.33,21.48)	
12		No	91.51(90.64,92.37)	84.19(81.73,86.64)	77.32(73.76,80.89)	83.73(78.37,89.10)	81.60(78.52,84.67)	
13		Uric acid						< 0.01
15		AH	84.35(83.33,85.38)	84.18(81.78,86.59)	80.11(75.97,84.25)	84.42(79.68,89.17)	82.04(78.71,85.36)	
16 17		Normal state	15.65(14.62,16.67)	15.82(13.41,18.22)	19.88(15.75,24.03)	15.58(10.83,20.32)	17.96(14.64,21.29)	
18		Cholesterol(mg/dl) †	190.59±40.19	194.85±42.44	190.37±39.50	192.29±39.04	192.42±41.20	0.0041
19		LDL (mg/dl) †	113.95±35.17	113.39±36.73	111.54±35.07	112.34±34.79	113.58±35.80	0.256
20 21		HDL (mg/dl) †	54.09±15.69	57.40±17.82	54.48±15.65	54.68±16.01	54.09±15.71	< 0.01
22		Triglycerides(mg/dl) †	112.74±65.21	120.35±63.20	121.79±63.47	126.30±70.36	123.75±62.26	0.015
23		Creatinine(mg/dl) †	129.07±79.51	111.90±67.15	118.38±72.13	122.80±68.54	118.03±71.54	<0.01
24		Albumin(mg/L) †	38.98±354.61	54.86±421.95	67.42±349.01	46.01±258.35	83.60±558.69	<0.01
26	239	BMI: body mass inde	x· PIR· noverty i	ncome ratio: PA	· Physical activity	v level: LDL: Low	-density linoprotei	n HDL
27	240	High-density lipoprot	ein; RA: Rheuma	toid arthritis; OA:	Osteoarthritis; AH	I: asymptomatic hy	peruricemia (seru	n urate >
29	241	6.8 mg/dL without go	out);	,		5 1 5		
30	242	*N represents unweig	ghted number, an	d the remaining	values are weighte	ed values using NI	IANES MEC exa	mination
31 32	243	weight.	-	-		-		
33	244	†Figures are expresse	ed as mean ± stand	lard error, other f	igures are expresse	ed as percent (95%	confidence interva	als).
34	245							
36								
37								
38 39								
40								
41								
42 43								
44								
45 46								
47								
48								
49 50								
51								
52								
55 54								
55								
56 57								
58								
59		F	o or voitor	( b+++	1		o o vlotno l	
60		Forp	peer review only	y - http://bmjop	pen.pmj.com/sit	e/about/guidelii	ies.xntml	

Participants with OA are higher in non-Hispanic white (82.00% [95%CI: 79.15, 84.86]), hypertension (66.37% [62.74, 70.00]), elevated income (47.63% [43.03, 52.24]), moderate activities (73.88% [70.67, 77.08]), cholesterol (194.85±42.44) and HDL (57.40±36.73) than those without arthritis. Similar trends are observed in participants with RA, OA, other types of arthritis and those who responded with "don't know" when asked about the type of arthritis (Table 2).

And the proportion of participants who self-reported OA was the highest in arthritis. The proportion of AH is higher in participants with OA (84.18% [95%CI: 81.78, 85.59]) than in those with RA (80.11% [95%CI: 75.97, 84.25]) and unspecified (82.04% [95%CI: 78.71, 85.36]) arthritis types. But it is slightly lower than no arthritis (84.35% [95%CI: 83.33, 85.38]) and other arthritis (84.42% [95%CI; 79.68,89.17]) (p<0.01) (Table 2)

250 = 85.55, 85.58 and other artiffins (84.4270 [9570C1, 79.08, 89.17]) (p

#### 257 The association between AH and arthritis

Overall, AH was associated with onset of arthritis (OR=1.34, 95%CI: 1.07, 1.69) (Table 3). However, the association muted in different models after adjusting for demographic, socioeconomic factors, etc.

**Table 3.** Association between asymptomatic hyperuricemia and total arthritis.

Unadjusted model	model 1	model 2	model 3
1	1	1	1
1.34(1.07,1.69)	1.14(0.87,1.49)	1.11(0.83,1.48)	1.07(0.80,1.41)
0.012	< 0.01	<0.01	< 0.01
	Unadjusted model 1 1.34(1.07,1.69) 0.012	Unadjusted model         model 1           1         1           1.34(1.07,1.69)         1.14(0.87,1.49)           0.012         <0.01	Unadjusted model         model 1         model 2           1         1         1           1.34(1.07,1.69)         1.14(0.87,1.49)         1.11(0.83,1.48)           0.012         <0.01

263 Model1: Adjusted for age, gender, and race.

264 Model2: Adjusted for age, gender, education level, income to poverty ratio, race, BMI, PAL, diabetes, hypertension and 265 smoking record.

Model3: Adjusted for age, gender, education level, income to poverty ratio, race, BMI, PAL, hypertension, smoking,cholesterol, LDL, HDL, triglyceride, creatinine, and albumin.

For participants aged 40-49 years, AH is significantly associated with incident arthritis
(OR=1.96, 95%CI: 1.23, 2.99). The association remained after adjusted for education level,
income to poverty ratio, BMI, diabetes, hypertension, and smoking (OR=2.00, 95%CI:
1.94, 3.36) (Table 4).

#### BMJ Open

#### **Table 4.** The total arthritis was analyzed stratified by gender, age, and race

	Model 1 (OR,95%, P)	Model 2 (OR,95%, P)	Model 3 (OR,95%,P)		
Gander					
Male	1	1	1		
Female	0.753(0.633,0.896)0.002	0.730 ( 0.608,0.877 ) 0.001	0.712(0.582,0.872)0.001		
Age					
20-29	1	1	1		
30-39	1.788(1.078,2.966)0.025	1.718(1.003,2.940)0.048	1.181(0.635,2.199)0.595		
40-49	1.957(1.285,2.981)0.002	2.002(1.941,3.358)0.009	1.324(0.721,2.432)0.362		
50-59	1.409(0.989,2.008)0.057	1.472(0.963,2.251)0.074	0.975(0.582,1.632)0.932		
60-69	1.034(0.718,1.489)0.856	1.076(0.700,1.653)0.737	0.721(0.436,1.192)0.200		
70+	1.106(0.789,1.549)0.556	1.122(0.725,1.737)0.602	0.739(0.426,1.282)0.278		
Race					
Other Race	1	1	1		
Hispanic	1.604(1.136,2.264)0.008	1.582(1.056,2.371)0.027	1.456(0.962,2.203)0.075		
Non-Hispanic White	0.895(0.696,1.150)0.381	1.040(0.786,1.376)0.780	0.971(0.732,1.288)0.839		
Non-Hispanic Black	2.017(1.471,2.765)0.000	2.305(1.622,3.276)0.000	2.203(1.536,3.160)0.000		
Model 2: Adjusted for a smoking record. Model 3: Adjusted for cholesterol, LDL, HDL, t	ge, gender, race, education le age, gender, race, education riglyceride, creatinine and alb	evel, income to poverty ratio, BM level, income to poverty ratio, umin.	II, diabetes, hypertension, an BMI, hypertension, smokinş		
Among non-Hi	spanic black participan	ts, AH was significantly a	ssociated with arthritis		
(OR=2.02, 95%CI:	1.47, 2.77). The resu	ults kept significant adjust	ing for education level		
income to poverty ratio, BMI, diabetes, hypertension, and smoking (OR=2.31, 95%CI					
1.62, 3.28) and	for cholesterol, LDL	, HDL, triglyceride, cre	eatinine, and albumin		
(OR=2.20,95%CI:	1.55, 3.16) (Table 4).				
	, , , , , ,				
Compared with	h male participants, f	cemale participants with	AH showed a highe		

1.41), other forms of arthritis (OR: 1.00, 95%CI: 0.78, 1.29), and the 'Unspecified' category

289 (OR: 0.99, 95%CI: 0.82, 1.20), the observed associations were not statistically significant.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Notably, this trend was more prominent within the OA subgroup (sTable 2). Among participants aged > 50 years, there is a significant association between AH and different types of arthritis (including OA, RA, other, unspecified). More importantly, the strength of this association increased with age, specifically for 50-59 years, 60-69 years, 70+ years.

294 Discussion

Based on 12 years of nationally representative data from NHANES, our findings indicated an association between AH and the arthritis, with a notable focus on OA. The correlation was present before adjusting the model. However, after adjusting for additional variables such as cholesterol and creatinine, the correlation weakened, suggesting that the relationship between AH and arthritis (including OA) might not be independent and could be influenced by metabolic and physiological factors like cholesterol and creatinine[29]. Our research findings suggest a significant correlation between asymptomatic hyperuricemia (AH) and arthritis among non-Hispanic Black individuals, possibly due to metabolic syndrome-related metabolic abnormalities being less sensitive in identifying elevated uric acid levels in non-Hispanic Black populations [30]. 

Although hyperuricemia is a major contributor to the development of gouty arthritis, accumulating evidence suggest that AH may increase the risk of developing RA, psoriatic arthritis and spondylarthritis[31-33]. In vitro studies on synoviocytes from healthy and RA subjects revealed that monosodium urate crystals could increase the release of the inflammatory cytokine IL-6, the chemokine CXCL8 and the matrix metalloproteinase-1[34]. The injection of urate crystals in vivo leads to produce main mediators in the pathogenesis of PsA, such as IL-17 [35]. The hyperuricemia not only play an important role the development and progression of psoriatic arthritis, but also affect severity of clinical manifestations and degree of inflammation[36]. Monosodium urate crystals interact with articular tissues to influence the development of axial spondyloarthritis as monosodium urate crystal deposition associated with the progress of radiographic grade at the sacroiliac joint[18, 37]. 

Our data indicate that AH may serve as a marker for potential risk in relation to OA. [22]. An increasing body of evidence suggests that AH, characterized by elevated serum uric acid levels without any symptoms of gout or kidney stone disease, may be associated with an increased risk of OA, particularly in weight-bearing joints such as the knee[16, 38, Page 17 of 31

#### **BMJ** Open

39]. The relationship between AH and arthritis is complex and multifaceted, and the exact nature of this relationship is not vet clear. Hyperuricemia may promote the development of arthritis via deposition of urate crystals in the joints, promoting chronic low-grade inflammation, and exacerbating oxidative stress [20, 22, 40]. However, it is also possible that the association between hyperuricemia and arthritis is partially due to common risk factors such as obesity and metabolic syndrome [41, 42]. Further research is needed to better understand the relationship between these two conditions and to identify potential therapeutic targets for the prevention or treatment of arthritis in patients with hyperuricemia. 

The intimate relationship between hyperuricemia and OA may re-purpose FDA-approved urate-lowering therapy drugs in the treatment of OA. Currently, the drugs used to treat OA mainly include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids[43]. However, these drugs could only use to relieve the clinical symptoms but not decrease the onset of arthritis. In accordance with our findings, another study also supports the significant association between arthritis and hypertension[44]. In recent years, there has been growing interest in exploring the role of urate-lowering therapy in the treatment of OA[45]. Urate crystal deposition can directly damage cartilage, stimulate the production of pro-inflammatory cytokines, and lead to inflammation and cartilage degradation[46]. Urate-lowering therapy drugs such as allopurinol and febuxostat have been shown to have anti-inflammatory properties, inhibit the production of reactive oxygen species, reduce the expression of pro-inflammatory cytokine[47-49]. Our results raise the possibility that pharmacological treatment of AH via a treat-to-target (T2T) strategy may decrease incident of arthritis, especially for OA. The T2T strategy involves targeting specific uric acid levels and adjusting drug therapy accordingly to achieve this goal[50, 51].

Our findings highlight those female participants with AH are more likely to develop arthritis, especially for OA, than male participants, and ageing may exaggerate this trend. Among adults in the US, mean uric acid levels were 6.0 mg/dl in men and 4.8 mg/dl in women, and hyperuricemia prevalence rates were 20.2% and 20.0%, respectively[11]. Studies have also shown that hyperuricemia is more common in men over 30 and women over 50[52]. The gender and age associated increase in serum uric acid levels may be explained by menopause in women and alcohol consumption in men[53]. Menopause can

lead to an increase in serum uric acid levels, while postmenopausal hormone replacement therapy may be associated with a decrease in serum uric acid levels[54]. The difference in serum uric acid levels between men and women is due to the increased renal uric acid clearance caused by estrogen in women before menopause[55]. Serum Urate levels were significantly associated with knee OA as determined by osteophytosis in women but not in men[56]. Female typically have a higher prevalence of hand and knee arthritis than males, females also tend to have more severe knee OA, particularly after menopausal age[57].

The strength of our study was the use of data from a large, nationally representative sample. However, results should be interpreted with caution with inherent limitation. First, it is not possible to interpret the findings from a causal point of view due to the cross-sectional approach. Prospective study and mendelian randomization study are needed to further investigate the relationship between the AH and arthritis, especially OA. Second, recall bias may affect the accuracy of prevalence estimates although this study used CDC-recommended self-reported and physician-diagnosed arthritis as case definitions[24, 58]. Third, our result might be charged with choosing a single number to represent prevalent of arthritis in the US population as it only included adults in the national non-institutionalized population of the country[59]. Fourth, medication use for the participants was not included in this study. Finally, we had limited information on the involvement of OA in each participant, such as imaging and treatment procedures. 

In summary, our study results suggest that AH patients may benefit from close monitoring for the development of arthritis, understanding the relationship between hyperuricemia and arthritis, and identifying factors that contribute to their increased risk of these diseases, which may be of great significance for the prevention and management of these conditions.

### BMJ Open

2		
3 4	376	Contributors
5	377	Prof. Jieruo Gu is the guarantor of the study and had full access to all the data in the
6 7	378	study and takes responsibility for the integrity of the data and the accuracy of the data
8 9	379	analysis. Dr. Zhenguo Liang, Dr. Dongze Wu, and Prof. Jieruo Gu, conceived and designed
10 11	380	the study, performed the analysis, and wrote the paper. Prof. Hua Zhang participated in the
12	381	revision and refinement of the content. All authors read and commented on the manuscript
13 14	382	and approved the final version of the manuscript. The corresponding author attests that all
15 16	383	listed authors meet authorship criteria and that no others meeting the criteria have been
17	384	omitted.
18	385	
20 21	386	Funding
22 23	387	Project funded by Guangdong Clinical Research Center of Immune Disease
24	388	(2020B1111170008) & Scientific Research Fund of Sichuan Academy of Medical
25 26	389	Sciences (N/A) & Sichuan Provincial People's Hospital (2022QN38).
27 28	390	
29	391	Disclaimer
31	392	The funder was not involved in the preparation of this manuscript.
32 33	393	
34 35	394	Declaration of interests
36	395	The authors declare no conflict of interests.
37 38	396	
39 40	397	Ethical approval
41 42	398	The data released from the National Health and Nutrition Examination Survey did not
43	399	require informed patient consent. This study used an anonymized publicly available data
44 45	400	set with no identifiable information on the survey participants, and thus did not require
46 47	401	ethics approval.
48	402	
49 50	403	Data sharing
51 52	404	The data used for the analyses are publicly available from the National Center for Health
53 54	405	Statistics (NCHS), which is part of the Centers for Disease Control and Prevention (CDC)
55	406	in the United States (https://www.cdc.gov/nchs/nhanes/).
50 57		
58 59		1,
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	407	Ref	erence
4 5	408		
6			
7	409	1.	Barbour, K.E., et al., Vital Signs: Prevalence of Doctor-Diagnosed Arthritis and Arthritis-
9	410		Attributable Activity Limitation - United States, 2013-2015. MMWR Morb Mortal Wkly Rep,
10	411		2017. <b>66</b> (9): p. 246-253.
11 12	412	2.	Hootman, J.M., et al., Updated Projected Prevalence of Self-Reported Doctor-Diagnosed
13	413		Arthritis and Arthritis-Attributable Activity Limitation Among US Adults, 2015-2040. Arthritis
14	414		Rheumatol, 2016. <b>68</b> (7): p. 1582-7.
15 16	415	3.	Murphy, L.B., et al., Medical Expenditures and Earnings Losses Among US Adults With
17	416		<i>Arthritis in 2013.</i> Arthritis Care Res (Hoboken), 2018. <b>70</b> (6): p. 869-876.
18 19	417	4.	Hunter, D.J. and S. Bierma-Zeinstra, Osteoarthritis. Lancet, 2019. 393(10182): p. 1745-
20	418		1759.
21	419	5.	Global burden of 369 diseases and injuries in 204 countries and territories. 1990-2019: a
22 23	420		systematic analysis for the Global Burden of Disease Study 2019, Lancet, 2020.
24	421		<b>396</b> (10258); p. 1204-1222.
25 26	422	6	Partridge I I Deelen and P.F. Slagboom <i>Eacing up to the global challenges of ageing</i>
27	423	0.	Nature 2018 <b>561</b> (7721): p. 45-56
28	123	7	Kuo C.E. et al. Global epidemiology of gout: prevalence incidence and risk factors. Nat
29 30	425	1.	Ruo, C.I., et al., <i>Clobal epiderniology of goul. prevalence, incluence and hist factors.</i> Nat
31	425	0	Liong X at al. (a hypertension approxisted with arthritic? The United States national health
32 33	420	0.	Liang, X., et al., <i>is hypertension associated with antinuis? The Onited States national near</i>
34	427	0	and nutrition examination survey 1999-2018. Ann Med, 2022. 54(1): p. 1767-1775.
35	428	9.	Bortoluzzi, A., F. Furini, and C.A. Scire, <i>Osteoarthritis and its management - Epidemiology,</i>
36 37	429		nutritional aspects and environmental factors. Autoimmun Rev, 2018. <b>17</b> (11): p. 1097-1104.
38	430	10.	Mobasheri, A., et al., <i>The role of metabolism in the pathogenesis of osteoarthritis.</i> Nat Rev
39 40	431		Rheumatol, 2017. <b>13</b> (5): p. 302-311.
40 41	432	11.	Chen-Xu, M., et al., Contemporary Prevalence of Gout and Hyperuricemia in the United
42	433		States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007-
43 44	434		<i>2016.</i> Arthritis Rheumatol, 2019. <b>71</b> (6): p. 991-999.
45	435	12.	Dalbeth, N., et al., Relationship between serum urate concentration and clinically evident
46 47	436		incident gout: an individual participant data analysis. Ann Rheum Dis, 2018. 77(7): p. 1048-
47 48	437		1052.
49	438	13.	Lioté, F. and T. Pascart, From hyperuricaemia to gout: what are the missing links? Nat Rev
50 51	439		Rheumatol, 2018. <b>14</b> (8): p. 448-449.
52	440	14.	Dalbeth, N. and L. Stamp, Hyperuricaemia and gout: time for a new staging system? Ann
53	441		Rheum Dis, 2014. <b>73</b> (9): p. 1598-600.
54 55	442	15.	Dalbeth, N., et al., <i>Gout.</i> Lancet, 2021. <b>397</b> (10287): p. 1843-1855.
56			
57 58			
59			1
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### BMJ Open

3 4	443	16.	Neogi, T., S. Krasnokutsky, and M.H. Pillinger, Urate and osteoarthritis: Evidence for a
5	444		reciprocal relationship. Joint Bone Spine, 2019. 86(5): p. 576-582.
6 7	445	17.	Roddy, E., W. Zhang, and M. Doherty, Are joints affected by gout also affected by
8	446		<i>osteoarthritis?</i> Ann Rheum Dis, 2007. <b>66</b> (10): p. 1374-7.
9	447	18.	Dalbeth, N., et al., Relationship between structural joint damage and urate deposition in
10 11	448		gout: a plain radiography and dual-energy CT study. Ann Rheum Dis, 2015. 74(6): p. 1030-
12	449		6.
13 14	450	19.	Yokose, C., et al., Gout and Osteoarthritis: Associations, Pathophysiology, and
15	451		Therapeutic Implications. Curr Rheumatol Rep, 2016. 18(10): p. 65.
16 17	452	20.	Chhana, A., et al., The effects of monosodium urate monohydrate crystals on chondrocyte
18	453		viability and function: implications for development of cartilage damage in gout. J
19 20	454		Rheumatol, 2013. <b>40</b> (12): p. 2067-74.
20 21	455	21.	Chhana, A., et al., Monosodium urate crystals reduce osteocyte viability and indirectly
22	456		promote a shift in osteocyte function towards a proinflammatory and proresorptive state.
23 24	457		Arthritis Res Ther, 2018. 20(1): p. 208.
25	458	22.	Denoble, A.E., et al., Uric acid is a danger signal of increasing risk for osteoarthritis through
26 27	459		inflammasome activation. Proc Natl Acad Sci U S A, 2011. 108(5): p. 2088-93.
28	460	[datas	set] 23. Zhu, Z., et al., The Association between Retinopathy and Arthritis: Findings from a
29 30	461	-	US National Survey 2005-2008. Curr Eye Res, 2020. <b>45</b> (12): p. 1543-1549.
31	462	24.	March, L.M., et al., Clinical validation of self-reported osteoarthritis. Osteoarthritis Cartilage,
32	463		1998. <b>6</b> (2): p. 87-93.
33 34	464	25.	Martillo, M.A., L. Nazzal, and D.B. Crittenden, <i>The crystallization of monosodium urate.</i>
35	465		Curr Rheumatol Rep, 2014. <b>16</b> (2): p. 400.
36 37	466	26.	FitzGerald, J.D., et al., 2020 American College of Rheumatology Guideline for the
38	467		Management of Gout. Arthritis Care Res (Hoboken), 2020. 72(6): p. 744-760.
39 40	468	27.	Plan and operation of the Third National Health and Nutrition Examination Survey, 1988-
41	469		94. Series 1: programs and collection procedures. Vital Health Stat 1, 1994(32): p. 1-407.
42 43	470	28.	Whelton, P.K., et al., 2017
44	471		ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the
45	472		Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults:
40 47	473		Executive Summary: A Report of the American College of Cardiology/American Heart
48	474		Association Task Force on Clinical Practice Guidelines. Hypertension, 2018. 71(6): p.
49 50	475		1269-1324.
51	476	29.	Kerekes, G., et al., Rheumatoid arthritis and metabolic syndrome. Nat Rev Rheumatol,
52 53	477		2014. <b>10</b> (11): p. 691-6.
54	478	30.	DeBoer, M.D. and M.J. Gurka. Low sensitivity for the metabolic syndrome to detect uric
55 56	479		acid elevations in females and non-Hispanic-black male adolescents: an analysis of
57			
58			
59 60			2 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4	480		<i>NHANES 1999-2006.</i> Atherosclerosis, 2012. <b>220</b> (2): p. 575-80.
5	481	31.	Chiou, A., et al., Coexistent Hyperuricemia and Gout in Rheumatoid Arthritis: Associations
6	482		With Comorbidities, Disease Activity, and Mortality. Arthritis Care Res (Hoboken), 2020.
8	483		<b>72</b> (7): p. 950-958.
9	484	32.	Tsuruta, N., S. Imafuku, and Y. Narisawa, Hyperuricemia is an independent risk factor for
10 11	485		<i>psoriatic arthritis in psoriatic patients.</i> J Dermatol, 2017. <b>44</b> (12): p. 1349-1352.
12	486	33.	Ho, H.H., et al., <i>Coexisting ankylosing spondylitis and gouty arthritis.</i> Clin Rheumatol, 2007.
13 14	487		<b>26</b> (10): p. 1655-61.
15	488	34.	Chen, D.P., et al., Activation of human fibroblast-like synoviocytes by uric acid crystals in
16 17	489		<i>rheumatoid arthritis.</i> Cell Mol Immunol, 2011. <b>8</b> (6): p. 469-78.
18	490	35.	Raucci, F., et al., IL-17A neutralizing antibody regulates monosodium urate crystal-induced
19 20	491		gouty inflammation. Pharmacol Res, 2019. <b>147</b> : p. 104351.
20	492	36.	Tripolino, C., et al., Hyperuricemia in Psoriatic Arthritis: Epidemiology, Pathophysiology,
22	493		and Clinical Implications. Front Med (Lausanne), 2021. 8: p. 737573.
23 24	494	37.	Zhu, J., et al., Monosodium urate crystal deposition associated with the progress of
25	495		radiographic grade at the sacroiliac joint in axial SpA: a dual-energy CT study. Arthritis Res
26 27	496		Ther, 2017. <b>19</b> (1): p. 83.
28	497	38.	Wang, S., et al., The association between asymptomatic hyperuricemia and knee
29 30	498		osteoarthritis: data from the third National Health and Nutrition Examination Survey.
31	499		Osteoarthritis Cartilage, 2019. <b>27</b> (9): p. 1301-1308.
32 33	500	39.	Xiao, L., S. Lin, and F. Zhan, The association between serum uric acid level and changes
34	501		of MRI findings in knee osteoarthritis: A retrospective study (A STROBE-compliant article).
35 36	502		Medicine (Baltimore), 2019. <b>98</b> (21): p. e15819.
37	503	40.	Joosten, L.A.B., et al., Asymptomatic hyperuricaemia: a silent activator of the innate
38	504		<i>immune system.</i> Nat Rev Rheumatol, 2020. <b>16</b> (2): p. 75-86.
39 40	505	41.	Zurita-Cruz, J., et al., <i>Resistin/Uric Acid Index as a Prognostic Factor in Adolescents with</i>
41	506		Obesity after Lifestyle Intervention. J Pediatr, 2020. 219: p. 38-42.e1.
42 43	507	42.	Musumeci, G., et al., Osteoarthritis in the XXIst century: risk factors and behaviours that
44	508		influence disease onset and progression. Int J Mol Sci, 2015. 16(3): p. 6093-112.
45 46	509	43.	Zhang, Y., et al., Low-dose aspirin use and recurrent gout attacks. Ann Rheum Dis, 2014.
47	510		<b>73</b> (2): p. 385-90.
48 49	511	44.	Krasnokutsky, S., et al., Serum Urate Levels Predict Joint Space Narrowing in Non-Gout
50	512		Patients With Medial Knee Osteoarthritis. Arthritis Rheumatol, 2017. 69(6): p. 1213-1220.
51 52	513	45.	Bardin, T. and P. Richette, Impact of comorbidities on gout and hyperuricaemia: an update
53	514		on prevalence and treatment options. BMC Med, 2017. 15(1): p. 123.
54 55	515	46.	Schett, G., et al., Why does the gout attack stop? A roadmap for the immune pathogenesis
56	516		<i>of gout.</i> RMD Open, 2015. <b>1</b> (Suppl 1): p. e000046.
57 58			
50 59			2
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 31

60

#### BMJ Open

1			
2 3			
4	517	47.	Geng, Q., et al., <i>Febuxostat mitigates IL-18-induced inflammatory response and reduction</i>
5	518		<i>of extracellular matrix gene.</i> Am J Transl Res, 2021. <b>13</b> (3): p. 979-987.
7	519	48.	Nasi, S., et al., Xanthine Oxidoreductase Is Involved in Chondrocyte Mineralization and
8	520		Expressed in Osteoarthritic Damaged Cartilage. Front Cell Dev Biol, 2021. 9: p. 612440.
9 10	521	49.	Li, J., Z. Zhang, and X. Huang, I-Arginine and allopurinol supplementation attenuates
11	522		inflammatory mediators in human osteoblasts-osteoarthritis cells. Int J Biol Macromol, 2018.
12	523		<b>118</b> (Pt A): p. 716-721.
13 14	524	50.	Kiltz, U., et al., Treat-to-target (T2T) recommendations for gout. Ann Rheum Dis, 2017.
15	525		<b>76</b> (4): p. 632-638.
16 17	526	51.	Perez-Ruiz, F., et al., <i>Treat to target in gout.</i> Rheumatology (Oxford), 2018. <b>57</b> (suppl_1):
18	527		p. i20-i26.
19 20	528	52.	Miao, Z., et al., Dietary and lifestyle changes associated with high prevalence of
20 21	529		hyperuricemia and gout in the Shandong coastal cities of Eastern China. J Rheumatol,
22	530		2008. <b>35</b> (9): p. 1859-64.
23 24	531	53.	Lin, K.C., H.Y. Lin, and P. Chou, The interaction between uric acid level and other risk
25	532		factors on the development of gout among asymptomatic hyperuricemic men in a
26 27	533		<i>prospective study.</i> J Rheumatol, 2000. <b>27</b> (6): p. 1501-5.
28	534	54.	Hak, A.E. and H.K. Choi, Menopause, postmenopausal hormone use and serum uric acid
29 30	535		levels in US womenthe Third National Health and Nutrition Examination Survey. Arthritis
31	536		Res Ther, 2008. <b>10</b> (5): p. R116.
32 33	537	55.	Nicholls, A., M.L. Snaith, and J.T. Scott, Effect of oestrogen therapy on plasma and urinary
34	538		<i>levels of uric acid.</i> Br Med J, 1973. <b>1</b> (5851): p. 449-51.
35 36	539	56.	Ding, X., et al., The associations of serum uric acid level and hyperuricemia with knee
37	540		osteoarthritis. Rheumatol Int, 2016. 36(4): p. 567-73.
38 39	541	57.	Srikanth, V.K., et al., A meta-analysis of sex differences prevalence, incidence and severity
40	542		of osteoarthritis. Osteoarthritis Cartilage, 2005. <b>13</b> (9): p. 769-81.
41 42	543	58.	El Miedany, Y., et al., Incorporating patient reported outcome measures in clinical practice:
42 43	544		development and validation of a questionnaire for inflammatory arthritis. Clin Exp
44	545		Rheumatol, 2010. <b>28</b> (5): p. 734-44.
45 46	546	59.	Murphy, L.B., et al., Defining Arthritis for Public Health Surveillance: Methods and
47	547		Estimates in Four US Population Health Surveys. Arthritis Care Res (Hoboken), 2017.
48 40	548		<b>69</b> (3): p. 356-367.
49 50	549		
51			
52 53			
54			
55 56			
50 57			
58			
59			2

#### **Figure legends**

Figure 1. Flow chart of sample selection from the NHANES 2007–2018 

#### Supplemental appendix

- sTable 1. Characteristics of participants included in this study.
- **sTable 2.** Subgroup analysis of the association of arthritis subtype (RA, OA, other and
  - unspecified) and AH.



Figure 1. Flow chart of sample selection from the NHANES 2007-2018

188x175mm (300 x 300 DPI)

#### Supplementary materials

The association between asymptomatic hyperuricemia and risk of arthritis, findings from a US National Survey 2007-2018

#### **Supplementary Tables**

sTable1. Characteristics of participants included in this study

**sTable2.** Subgroup analysis of the association of arthritis subtype (RA, OA, Other and Unspecified) and AH.

	2007-2008	2009-2010	2011-2012	2013-2014	2015-2016	2017-2018	р
N*	2330	2528	2229	2367	2067	2126	
Uricacid							0.43
NA	83.65(81.60,85.69)	84.50(82.38,86.62)	84.71(82.87,86.64)	83.55(81.95,85.15)	84.13(82.09,86.17)	83.61(80.70,86.53)	
AH	16.35(14.01,18.40)	15.50(13.38,17.62)	15.29(13.46,17.13)	16.45(14.85,18.05)	15.87(13.83,17.91)	16.39(13.47,19.30)	
Gender							0.279
Male	47.25(45.60,48.89)	45.56(43.56,47.55)	47.90(45.04,50.75)	47.69(45.61,49.77)	47.36(45.31,49.42)	48.09(44.95,51.22)	
Female	52.75(51.11,54.40)	54.44(52.45,56.44)	52.10(49.25,54.96)	52.31(50.23,54.39)	52.64(50.58,54.69)	51.91(48.78,55.05)	
Age							< 0.0
20-29	19.13(16.42,21.85)	19.35(16.80,21.90)	18.23(15.01,21.45)	18.40(15.73,21.08)	16.67(14.61,18.72)	19.86(16.81,22.90)	
30-39	18.20(15.96,20.43)	16.98(14.62,19.35)	18.53(15.67,21.39)	17.24(15.16,19.31)	15.59(14.04,17.15)	18.76(15.92,21.60)	
40-49	20.97(17.50,24.44)	21.50(19.52,23.49)	18.86(15.20,22.52)	19.43(16.80,22.07)	18.56(15.67,21.45)	15.71(13.13,18.28)	
50-59	19.29(16.77,21.80)	19.37(16.98,21.77)	19.08(17.07,21.08)	18.17(15.58,20.76)	18.81(17.09,20.54)	19.93(16.84,23.02)	
60-69	11.44(9.42,13.46)	11.18(9.90,12.46)	14.03(12.10,15.96)	14.71(12.03,17.38)	19.21(16.43,22.00)	14.81(11.45,18.16)	
70+	10.98(9.65,12.30)	11.60(10.10,13.10)	11.26(9.65,12.88)	12.05(10.37,13.73)	11.16(9.36,12.96)	10.95(8.93,12.97)	
Race/Ethnicity							< 0.0
Other Race	13.87(10.43,17.31)	16.55(11.72,21.38)	15.80(11.44,20.16)	16.88(12.75,21.02)	17.24(13.58,20.90)	19.91(16.40,23.42)	
Hispanic	5.09(2.60,7.58)	5.84(2.94,8.74)	6.74(3.84,9.64)	5.67(2.34,8.61)	6.74(3.88,9.59)	6.86(5.00,8.72)	
Non-Hispanic White	70.37(63.63,77.11)	66.91(60.23,73.59)	68.04(61.22,74.87)	67.07(60.01,74.13)	65.74(57.81,73.66)	61.96(57.22,66.69)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

	Non-Hispanic Black	10.67(6.63,14.70)	10.70(8.67,12.72)	9.42(5.94,12.90)	10.37(7.68,13.07)	10.29(5.86,14.71)	11.27(7.61,14.93)	
]	Education Level							< 0.01
	High school or below	43.02(37.88,48.16)	41.31(37.13,45.52)	37.42(31.97,42.87)	36.42(30.79,42.04)	36.46(30.23,42.68)	39.61(36.03,43.19)	
	Some college	28.45(26.32,30.58)	29.63(26.71,32.56)	31.10(27.90,34.30)	32.90(29.91,35.90)	31.18(27.20,35.16)	29.91(25.07,34.76)	
	College graduate or above	28.53(24.06,33.00)	29.05(25.76,32.33)	31.48(25.02,37.94)	30.68(26.29,35.07)	32.36(25.35,39.37)	30.47(24.72,36.23)	
]	BMI							< 0.01
	Normal	33.39(31.60,35.19)	32.13(28.74,35.52)	31.68(27.63,35.73)	31.24(28.78,33.70)	27.17(23.38,30.96)	29.29(25.52,33.05)	
	Overweight	35.11(32.97,37.26)	32.96(30.44,35.48)	33.36(31.12,35.60)	33.31(30.91,35.70)	32.66(31.03,34.28)	31.53(29.18,33.8)	
	Obesity	31.49(28.61,34.37)	34.91(32.02,37.79)	34.96(31.50,38.42)	35.45(33.20,37.70)	40.17(36.34,44.00)	39.18(35.37,43.00)	
]	Blood pressure							< 0.01
	Hypertension	40.92(37.47,44.37)	40.38(36.47,44.30)	45.82(41.97,49.68)	43.84(39.24,48.43)	44.44(40.49,48.40)	46.99(43.71,50.28)	
	Normal	59.08(55.63,62.53)	59.62(55.70,63.53)	54.18(50.32,58.03)	56.16(51.57,60.76)	55.56(51.60,59.51)	53.01(49.72,56.29)	
]	PIR							< 0.01
	Low income	19.38(16.16,22.61)	21.90(19.24,24.56)	24.29(20.21,28.38)	25.33(19.07,31.59)	19.64(16.45,22.82)	20.01(17.46,22.56)	
	Middle income	33.99(30.47,37.52)	37.50(33.75,41.26)	35.70(31.24,40.17)	33.69(30.70,36.68)	37.50(34.14,40.87)	37.61(33.36,41.86)	
	High income	46.62(41.80,51.44)	40.60(36.83,44.36)	40.00(33.29,46.72)	40.98(34.20,47.76)	42.86(37.83,47.88)	42.38(37.89,46.88)	
5	Somking							0.01
	Current	21.61(18.39,24.83)	18.98(17.51,20.45)	20.06(16.75,23.36)	19.50(15.86,23.14)	18.73(15.50,21.97)	17.47(14.68,20.27)	
	Before	24.99(22.25,27.73)	24.21(20.55,27.87)	23.04(20.16,25.92)	23.68(20.64,26.72)	26.46(22.62,30.31)	24.90(22.47,27.32)	
	Never	53.40(49.73,57.07)	56.80(53.00,60.61)	56.90(53.76,60.05)	56.82(52.86,60.78)	54.81(50.57,59.04)	57.63(54.64,60.62)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PAL							
Moderate activities	58.98(55.40,62.57)	62.32(59.17,65.48)	61.71(57.96,65.46)	62.05(59.40,64.70)	57.56(54.23,60.90)	52.20(49.94,54.47)	
Vigorous activities	41.02(37.43,44.60)	37.68(34.52,40.83)	38.29(34.54,42.04)	37.95(35.30,40.60)	42.44(39.10,45.77)	47.80(45.53,50.06)	
Diabetes							
Yes	10.17(8.32,12.03)	9.47(8.21,10.74)	10.20(8.31,12.09)	10.34(8.83,11.84)	12.25(9.95,14.55)	12.14(9.78,14.49)	
No	89.83(87.97,91.68)	90.53(89.26,91.79)	89.80(87.91,91.69)	89.66(88.16,91.17)	87.75(85.45,90.05)	87.86(85.51,90.22)	
With or without arthritis							
No arthritis	74.05(70.64,77.47)	74.90(72.43,77.38)	77.19(73.85,80.53)	75.09(72.40,77.78)	73.16(70.09,76.24)	74.47(70.56,78.38)	
Arthritis	25.95(22.53,29.36)	25.10(22.62,27.57)	22.81(19.47,26.15)	24.91(22.22,27.60)	26.84(23.76,29.91)	25.53(21.62,29.44)	
OA	8.70(6.56,10.85)	9.56(8.30,10.82)	11.30(8.92,13.68)	13.88(11.87,15.89)	12.92(10.99,14.86)	12.44(9.32,15.55)	
RA	3.57(2.87,4.27)	4.11(3.18,5.04)	3.90(2.78,5.02)	3.09(2.15,4.02)	3.59(2.53,4.64)	4.04(2.82,5.25)	
Other	3.54(2.56,4.52)	3.64(2.80,4.47)	2.88(1.39,4.37)	2.98(2.05,3.91)	3.33(1.66,5.01)	3.04(1.78,4.30)	
Unspecified	10.13(8.22,12.05)	7.79(6.41,9.17)	4.73(3.14,6.33)	4.96(4.03,5.89)	6.99(5.25,8.73)	6.02(4.66,7.37)	
Cholesterol(mg/dl)†	194.90±40.98	195.00±39.66	191.78±39.95	188.44±39.94	190.31±41.06	186.04±40.55	
LDL(mg/dl)†	115.60±35.83	116.32±34.82	114.41±34.74	111.74±35.10	112.89±35.82	110.72±35.69	
HDL(mg/dl)†	54.15±15.40	54.40±15.95	53.78±14.93	54.58±16.11	55.97±17.56	54.02±15.74	
Triglyceride(mg/dl)†	125.72±66.36	121.43±64.17	117.95±64.42	110.61±65.08	107.26±63.05	106.48±63.30	
Creatinine(mg/dl)†	123.56±74.93	124.01±74.60	125.83±78.25	119.58±74.02	126.23±77.54	136.33±83.94	
Albumin(mg/dl)†	58.18±663.81	33.09±182.80	37.78±211.82	40.30±250.06	51.49±338.92	56.01±379.49	

*N represents unweighted number, and the remaining values are weighted values using NHANES MEC examination weight.

 $\dagger$ Figures are expressed as mean  $\pm$  standard error, other figures are expressed as percent (95% confidence intervals).

BMI: body mass index; PIR: poverty income ratio; PAL: Physical activity level; LDL: Low-density lipoprotein; HDL: High-density lipoprotein; RA: Rheumatoid arthritis; OA: Osteoarthritis; AH: asymptomatic hyperuricemia (serum urate > 6.8 mg/dL with no gout); NA: no-hyperuricemia.

	OA (OR,95%, P)	RA (OR,95%, P)	Other (OR,95%, P)	Unspecified (OR,95%, P)
Gander				
Male	1	1	1	1
Female	1.35(1.14,1.60)0.00	1.08(0.83,1.41)0.59	1.00(0.78,1.29)1.00	0.99(0.82,1.20)0.96
Age				
20-29	1	T L	1	1
30-39	0.36(0.27,0.49)0.00	0.36(0.24,0.54)0.00	0.35(0.23,0.55)0.00	0.38(0.27,0.53)0.00
40-49	0.80(0.62,1.04)0.97	0.99(0.71,1.38)0.96	0.88(0.64,1.21)0.44	0.95(0.70,1.30)0.74
50-59	2.16(1.72,2.72)0.00	2.12(1.50,3.00)0.000	1.35(1.00,1.83)0.51	1.90(1.44,2.49)0.00
60-69	4.18(3.26,5.35)0.00	3.34(2.50,4.46)0.000	1.69(1.13,2.53)0.01	2.70(1.92,3.78)0.00
70+	5.50(4.18,7.22)0.00	4.57(3.40,6.15)0.000	1.51(0.99,2.33)0.06	4.24(3.16,5.69)0.00

Supplementary Table 2. Subgroup analysis of the association of arthritis subtype (RA, OA, Other and Unspecified) and AH

 All data were adjusted for gender, age, race, BMI, education level and poverty to income ratio, hypertension, ever cigarette smoking and diabetes.

### STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	( <i>a</i> ) Indicate the study's design with a commonly used term in the title or the	1-2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			2
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	5-6
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		( <u>e</u> ) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7-8
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	7-8
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	8, 13- 14

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	13-
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	14-
		analyses	15
Discussion			
Key results	18	Summarise key results with reference to study objectives	15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	17
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	17
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	17

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## **BMJ Open**

# The association between asymptomatic hyperuricemia and risk of arthritis, findings from a US National Survey 2007-2018

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-074391.R2
Article Type:	Original research
Date Submitted by the Author:	23-Dec-2023
Complete List of Authors:	Liang, Zhenguo; The Fifth Affiliated Hospital of Sun Yat-sen University, Department of Rheumatology and Immunology; Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology WU, Dongze; University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Department of Rheumatology and Immunology Zhang, Hua; The Fifth Affiliated Hospital of Sun Yat-sen University, Department of Rheumatology and Immunology Gu, Jieruo; Third Affiliated Hospital of Sun Yat-Sen University, Department of Rheumatology
<b>Primary Subject Heading</b> :	Immunology (including allergy)
Secondary Subject Heading:	Complementary medicine
Keywords:	Rheumatology < INTERNAL MEDICINE, Knee < ORTHOPAEDIC & TRAUMA SURGERY, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

SCHOLARONE[™] Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		
3 ⊿	1	The association between asymptomatic hyperuricemia and risk of arthritis, findings
5	2	from a US National Survey 2007-2018
6 7	3	
8	4	Author
9 10	5	Zhenguo Liang ^{1,2#} , Dongze Wu ^{3#} , Hua Zhang ^{1#} , Jieruo Gu ^{2*}
11 12	6	Institution
13 14	7	1.Department of Rheumatology and Immunology, The Fifth Affiliated Hospital of Sun
15	8	Yet-Sen University, Zhuhai, Guangdong, China.
16 17	9	2.Department of Rheumatology, Third Affiliated Hospital of Sun Yat-Sen University,
18 19	10	Guangzhou, Guangdong, China.
20 21	11	3.Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital,
22	12	School of Medicine, University of Electronic Science and Technology of China, Chengdu,
23 24	13	China.
25 26	14	#Contributed equally to this manuscript.
27 28	15	Corresponding authors
29	16	*Prof. Jieruo Gu, PhD
30 31	17	Address: No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong, China, 510000
32 33	18	E-mail: gujieruo@mail.sysu.edu.cn
34 35	19	Telephone: (+86) 2085253333 / Fax number: (+86) 2085253336
36	20	Word Count: 3271 Table Count: 4 Figure Count: 1
37 38	21	Conflict of Interest: The authors confirm that there are no conflicts of interest.
39 40	22	Running Head: Association between asymptomatic hyperuricemia and risk of arthritis.
41 42		
43		
44 45		
46		
47 48		
49		
50		
51		
53		
54		
55 56		
57		
58		
59 60		l For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	23	Abstract
5	24	Background
6 7	25	Arthritis is thought to be closely related to serum uric acid. The study aims to assess
8 9	26	the association between asymptomatic hyperuricemia (AH) and arthritis.
10	27	Methods
12	28	A multistage, stratified cluster was used to conduct a cross-sectional study of adult
13 14	29	U.S. civilians aged≥ 20 years from the 2007-2018 National Health and Nutrition
15 16	30	Examination Survey (NHANES). Participants with hyperuricemia and without
10	31	hyperuricemia prior to gout were included. A questionnaire was used to determine whether
18 19	32	participants had arthritis and the type of arthritis. Logistic regression was used to
20 21	33	investigate the association between hyperuricemia and arthritis.
22	34	Result
23	35	During the past 12 years, the percentage of participants with arthritis changed from
25 26	36	25.95% (22.53, 29.36) to 25.53% (21.62, 29.44). The prevalence of osteoarthritis (OA)
27 28	37	increased from 8.70% (95%CI: 6.56,10.85) to 12.44% (95%CI: 9.32,15.55), the prevalence
29	38	of AH changed from 16.35% (95%CI: 14.01,18.40) to 16.39% (95%CI: 13.47,19.30).
30 31	39	Participants with AH was associated with onset of arthritis (OR=1.34, 95%CI: 1.07,1.69),
32 33	40	but the association was muted after adjusting demographic and socioeconomic factors. For
34 35	41	participants aged 40-49 years, AH is associated with incident arthritis (OR=1.96, 95%CI:
36	42	1.23, 2.99) and the relationship remained after adjusting for education level, income to
37 38	43	poverty ratio, body mass index (BMI), diabetes, hypertension, and smoking (OR=2.00,
39 40	44	95%CI: 1.94, 3.36). Compared with male, female participants with AH are more likely to
41	45	develop arthritis, especially in OA (OR=1.35, 95%CI: 1.14, 1.60).
42	46	Conclusion
44 45	47	Our data identified AH as the risk factor for incident arthritis, especially for OA,
46 47	48	which might be exaggerated in aged population and female population.
48	49	
49 50	50	Keywords: Arthritis, Asymptomatic hyperuricemia, Association, Risk
51 52	51	
53		
55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
#### STRENGTHS AND LIMITATIONS OF THIS STUDY

The study comprehensively assessed the association between asymptomatic hyperuricemia and arthritis in the United States population aged≥ 20 years during 2007-2018.

The respondents were intricately weighted, and adjustments were made for different • covariates to reduce the likelihood of interference from confounding factors.

Due to the observational study design, future randomized control study or longitudinal study should be conducted to validate the causal relationship between asymptomatic hyperuricemia and onset of arthritis other than gouty arthritis.

Our findings report trends through 2007-2018, it will be important to continue to examine how the COVID-19 pandemic has potentially influence such trends when data from 2019 and 2022 become available.

#### Introduction

More than one in five adults in the United States had doctor-diagnosed arthritis, and arthritis-attributable activity limitations significantly increased over time independent of the population ageing[1]. By 2040, the adults with doctor-diagnosed arthritis are projected to increase 49% to 78.4 million (1 in 4 US adults), and the arthritis-attributable activity limitation will increase 52% to 34.6 million (1 in 9 adults)[2]. High medical care expenditures and earnings losses attributable to arthritis signaling the need for identification of disease and risk factors that are in most need for interventions[3]. OA as the most common form of arthritis, involves structural changes in the articular cartilage, subchondral bones, ligaments, bursae, synovium, and muscles surrounding the joint[4]. From 1990 to 2019, the global age standardized incidence rate of OA increased from 474 to 492 per 100, 000 population and expected to increase due to global population ageing [5, 6]. About 20% of the general population affected by hyperuricemia, which might be more prominent in male and aged population[7]. Prior research has consistently shown a significant correlation between arthritis, particularly OA and rheumatoid arthritis (RA), and hypertension[8]. The intricate relationship between metabolic processes and arthritis, alongside the interplay between metabolic and immunological factors, is garnering heightened attention. Metabolic syndrome's implication in various forms of arthritis, such as OA, is increasingly recognized. [9, 10].

Page 5 of 31

## **BMJ** Open

In 2007-2016, the prevalence of hyperuricemia, gout, and the urate-lowering therapy among patients with gout remained stable[11]. The true significance of asymptomatic hyperuricemia (AH) as a risk factor for incident gout becomes apparent when considering that only half of patients with longstanding hyperuricemia develop clinically evident gout over a 15-year period.[12, 13]. Advanced imaging, including ultrasonography or dual-energy CT, demonstrated approximately 15–40% of patients with chronic hyperuricemia have silent monosodium urate crystal deposition[14]. As the crystallization of monosodium urate marks the progression of hyperuricemia towards gout, it remains uncertain whether hyperuricemia contributes to other forms of arthritis.[15]. 

Both hyperuricemia and OA are influenced by common risk factors such as obesity and aging. This shared relationship between risk factors suggests a potential connection between the hyperuricemia and OA, with intraarticular urate contributing to crystallization and cartilage disruption in the context of these shared risk factors. [16]. The predilection for both OA and gout occur in the same joints strongly suggest that OA may predispose to the localized deposition of monosodium urate crystals, which influence structural joint damage[17-19]. Monosodium urate crystals have been shown to inhibit the viability and function of human chondrocytes in vitro with a dose-dependent manner[20]. Death of chondrocytes can lead to an increase in urate, which may even promote crystal deposition on the cartilage, further aggravating OA progression[16]. Monosodium urate crystals inhibit osteocyte viability and, through interactions with macrophages, indirectly promote a shift in osteocyte function that favors bone resorption and inflammation[21]. Uric acid is a danger signal of increasing risk OA through inflammasome activation[22]. Therefore, we hypothesized that hyperuricemia prior to gout was associated with OA. The aim of this study was to i) ascertain the association between AH and arthritis, ii) determine the association between AH and OA, iii) investigate the effect of age and gender on such association. 

- 109 Patients and methods
- 110 Patient and Public Involvement

NHANES is an ongoing longitudinal survey conducted by the National Center for
Health Statistics (NCHS) to assess the health and nutritional status of the United States
through a series of interviews and examination items. The NHANES is conducted

biennially in a nationally representative, non-institutionalized civilian population, and use a hierarchical multi-stage probabilistic clustering design to select a representative sample of over-sampled participants. The sampling methods and examination information used in this study have been described in detail elsewhere[23]. NHANES was reviewed and approved by the NCHS Research Ethics Committee. All manipulations of the NHANES were carried out in accordance with the principles of the Helsinki Declaration. Written informed consent was obtained from all participants in NHANES.

The study used data from NHANES database for the 2007-2018 study cycle (n=59,842) and excluded those who did not participate in the examination (n=2,428). We excluded participants who refused and don't know ever had or hadn't arthritis, refused to answer which type of arthritis (n=80), who are younger than 20 years old (n=24,002), who have missing and incomplete BMI, uric value, and smoking record (n=2,549). We also excluded participants who were told that you had gout(n=1.438) and participants with missing or incomplete low-density lipoprotein (LDL), cholesterol, and creatinine record. In the end, this study consisted of 13, 647 eligible participants (Figure 1), which is representative of the population size of 87,901,487.

### **Conditions of arthritis**

The status of arthritis was classified using questionnaires. Participants aged 20 years and older were asked "Has a doctor or other health professional ever said that you had arthritis?". If the participants gave a positive answer, they were further asked "Which type of arthritis was it?". Participants' responses included RA, OA, other, do not know type, and refuse to answer. Individuals were excluded from the current analysis if their self-reported type of arthritis declined to answer. A consistent relationship between self-reports of arthritis and a clinical diagnosis of arthritis has been demonstrated in previous reports[24].

# 138 Hyperuricemia

Hyperuricemia is an elevated level of uric acid in the blood. The normal upper limit for
serum uric acid (SUA) at physiological levels is 6.8 mg/dL. This is the saturation point at
which urate may precipitate under physiological conditions[25, 26]. We put SUA>6.8
mg/dL was defined as hyperuricemia, and SUA≤6.8 mg/dL is defined as the normal state.
Covariates

- - 144 Covariates are identified in statistical models by means of interview responses and

examinations. Covariates that could confound the association between OA and AH were selected based on the results of interviews and examinations in the NHANES database. These factors were chosen to screen for variables that might be associated with OA risk and/or could be associated with AH. This selection aimed to minimize potential confounding variables in the association between OA and AH. The chosen covariates included self-reported demographic characteristics, such as gender, age, race, education level, BMI, blood pressure, poverty income ratio (PIR), smoking, physical activity level (PAL), and diabetes. 

Age is divided into seven groups: 20-29, 30-39, 40-49, 50-59, 60-69 and 70+. Race is divided into four groups: non-Hispanic white, non-Hispanic black, Hispanic and other races. Education is grouped as high school or below, some college and college graduate or above. BMI is calculated from measured weight and height determined by standard NHANES protocols [27]. BMI is categorized as three groups: Normal (<18.5kg/m²), Overweight (18.5–24.9kg/m²) and Obesity ( $\geq$ 25 kg/m²). Participants with systolic blood pressure  $\geq$  130 mmHg or diastolic blood pressure  $\geq$  80 mmHg are defined as hypertension[28]. PIR as a socioeconomic indicator is stratified into three levels: Low income (PIR < 1.3), Middle income ( $1.3 \le PIR < 3.5$ ) and High income (PIR  $\ge 3.5$ ). 

Smoking status is categorized according to interview results as current (smoked more than 100 cigarettes in the lifetime and currently still smoked), before (smoked more than 100 cigarettes in the lifetime but did not currently smoke) and never (smoked less than 100 cigarettes in the lifetime). PAL is divided into two categories, moderate activity, which includes moderate work activity, walking or cycling, moderate recreational activity, and vigorous activity, which includes vigorous work activity and vigorous recreational activity. Participants with self-reported diabetes had either a diabetes physician's diagnosis of diabetes or an elevated fasting plasma glucose level or an elevated oral glucose tolerance (OGTT), or/and HbA1c≥6.5%. Laboratory data included cholesterol, LDL, High-density lipoprotein (HDL), triglycerides, creatinine, and albumin. 

172 Statistical analysis

Design factors involving complex weighting, clustering, and stratification in the
NHANES database. Statistical analysis was conducted using STATA (version 16).
Complex stratification designs were considered using appropriate sample weights in

accordance with NHANES analytical reporting guidelines. In baseline study characteristics, means and standard errors (SEs) were used for continuous variables. Categorical variables were expressed as numbers and percentages. Chi-square test and t-test were used for categorical and continuous variables, respectively. A weighted logistic regression was used to assess the association between OA and AH and to control for confounding factors. Finally, subgroup analysis was performed using hierarchical multivariate regression. The 95% confidence intervals and p-values were calculated. A two-tailed test with p-values less than 0.05 are considered significant. 

- Results

# The characteristics of study participants

A total of 13,647 participants were eligible and included in the analysis from 2007-2008 to 2017-2018 (sTable 1). Between 2007-2008 and 2017-2018, the proportion of participants in the 60-69 age group increased from 11.44% (95%CI: 9.42, 13.46) to 14.81% (95%CI: 11.45, 18.16). In addition, the proportion of Hispanics increased from 5.09% (95%CI: 2.60, 7.58) to 6.86% (95%CI: 5.00, 8.72), while the proportion of non-Hispanic whites decreased from 70.37% (95%CI: 63.63, 77.11) to 61.96% (95%CI: 57.22, 66.69). Between 2007-2008 and 2017-2018, the proportion of high school or below decreased, which is from 43.02% (95%CI: 37.88, 48.16) to 39.61% (95%CI: 36.03, 43.19), while the proportion of college graduate or above increased, which was from 28.53% (95%CI: 24.06, 33.00) to 30.47% (95%CI: 24.72, 36.23) (sTable 1).

During the past 12 years, the percentage of participants with arthritis changed from 25.95% (22.53, 29.36) to 25.53% (21.62, 29.44). The prevalence of RA increased from 3.57% (95%CI: 2.87,4.27) in 2007-2008 to 4.04% (95%CI: 2.82,5.25) in 2017-2018, while the proportion of those who don't know arthritis decreased from 10.13% (95%CI: 8.22,12.05) to 6.02% (95%CI: 4.66,7.37). There was also a little decrease in other arthritis 3.54% (95%CI: 2.56,4.52) and 3.04% (95%CI: 1.78,4.30). The prevalence of OA showed a clear upward trend during the 12 years, from 8.70% (95%CI: 6.56, 10.85) in 2007-2008 to 12.44% (95%CI: 9.32, 15.55) in 2017-2018 (p<0.01) (sTable 1).

The 50-59 age group displayed the highest percentage of individuals with AH (19.39%) [95%CI: 17.17, 21.61]) among all the age groups that were examined. A larger proportion of males (77.17% [95%CI: 74.96, 79.37]) had AH compared with females (22.83 [95%CI: 

1	
2	
3	
4 5	
6	
7	
8 9	
10	
11	
12	
14	
15 16	
17	
18	
19 20	
20	
22	
23 24	
25	
26	
27	
29	
30	
31 32	
33	
34 25	
35 36	
37	
38 30	
40	
41	
42 43	
44	
45	
46 47	
48	
49 50	
50 51	
52	
53	
54 55	
56	

57 58 59

60

207 20.63, 25.04]) (Table 1). There are significant differences in race between participants with and without AH (p < 0.01). Participants in the AH group had higher levels of obesity, 208 209 hypertension, diabetes, LDL, triglycerides, and creatinine than those in the normal state 210 group (Table 1).

The prevalence of patients with OA and AH (11.40% [95%CI: 9.56, 13.24]) is 211 considerably higher than that of other three types of arthritis (RA: 4.62% (95%CI: 3.56, 212 5.69), Other: 3.14% (95%CI: 2.12, 4.17) and unspecified: 7.54% (95%CI: 6.03, 9.05)) 213 (p<0.01) (Table 1). 214

#### The characteristics of hyperuricemia and arthritis 215

The higher frequency of participants with arthritis, including OA, RA, other forms, and 216 those who were unaware of having arthritis, among individuals aged over 50 years, 217 suggests that age may be a contributing factor to the prevalence of arthritis in this 218 population (Table 2). The characteristics of the 13,647 participants included in our study 219 with self-reported OA, RA, other, and Unspecified are presented using weighted statistics 220 (Table 1). The prevalence of the four types of arthritis was higher among female 221 222 participants than among male participants, which was most notable in OA (female: 65.94%) vs male 34.06%) (Table 2). 223

Characteristics	Normal state	AH	p value
N*	11387	2260	
Gender			< 0.01
Male	41.66(40.55,42.76)	77.17(74.96,79.37)	
Female	58.34(57.24,59.45)	22.83(20.63,25.04)	
Age			< 0.01
20-29	18.86(17.56,20.15)	17.30(15.07,19.53)	
30-39	18.03(16.98,19.07)	15.15(12.83,17.48)	
40-49	19.44(18.21,20.67)	17.39(14.72,20.05)	
50-59	19.05(17.98,20.12)	19.39(17.17,21.61)	
60-69	14.01(12.95,15.07)	15.66(13.36,17.95)	
70+	10.62(9.91,11.32)	15.11(13.21,17.00)	
Race			< 0.01
Other Races	17.22(15.50,18.93)	14.33(12.20,16.47)	
Hispanic	6.32(5.21,7.44)	5.39(4.02 ,6.76)	
Non-Hispanic White	66.30(63.54,69.05)	68. 32(64.74,71.91)	
Non-Hispanic Black	10.16(8.80,11.53)	11.96(9.82,14.09)	
Education Level			0.137
High school or below	38.72(36.58,40.86)	40.33(37.04,43.63)	
Some College	30.44(28.96,31.92)	31.18(28.20,34.17)	
College graduate or above	30.84(28.51,33.16)	28.49(25.66,31.31)	
BMI			<0.01
Normal	34.09(32.60,35.58)	13.41(11.57,15.25)	
Overweight	33.07(32.07,34.08)	33.41(30.59,36.23)	
Obesity	32.83(31.48,34.19)	53.18(49.93,56.43)	
Blood pressure			< 0.01
Hypertension	40.84(39.20,42.49)	59.45(56.85,62.06)	
Normal	59.16(57.51,60.80)	40.55(37.94,43.15)	
PIR			0.03
Low income	22.36(20.66,24.06)	18.98(17.00,20.97)	

## **Table 1.** Baseline characteristics of high uric acid group versus the normal state group.

## BMJ Open

	Elevated income	41.79(39.48,44.11)	44.28(40.87,47.69)	
	Smoking			<0.01
	Current	19.72(18.32,21.11)	17.51(15.41,19.62)	
	Before	23.23(21.86,24.60)	31.37(28.28,34.47)	
	Never	57.06(55.32,58.79)	51.11(48.07,54.16)	
	PAL			0.744
	Moderate activities	59.26(57.72,60.81)	58.20(55.43,60.97)	
	Vigorous activities	40.74(39.19,42.28)	41.80(39.03,44.57)	
	Diabetes			<0.01
	Yes	9.85(8.99,10.70)	15.68(14.06,17.30)	
	No	90.15(89.30,91.01)	84.32(82.70,85.94)	
	Arthritis			<0.01
	No arthritis	75.13(73.67,76.59)	73.29(70.69,75.89)	
	OA	11.54(10.55,12.53)	11.40(9.56,13.24)	
	RA	3.54(3.11,3.97)	4.62(3.56,5.69)	
	Other	3.24(2.69,3.79)	3.14(2.12,4.17)	
	Unspecified	6.55(5.88,7.22)	7.54(6.03,9.05)	
	Cholesterol(mg/dl) †	191.01±40.22	192.23±41.65	0.1924
	LDL (mg/dl)†	113.39±35.07	115.48±36.82	0.0088
	HDL (mg/dl)†	55.58±15.89	48.87±15.10	<0.01
	Triglycerides(mg/dl) †	110.45±62.12	139.39±73.24	<0.01
	Creatinine(mg/dl)†	122.00±75.58	144.47±82.80	<0.01
	Albumin(mg/dl)†	35.52±320.96	97.29±565.77	<0.01
225	BMI: body mass index; PII	R: poverty income ratio	; PA: Physical activity	v level; LDL: Low-density lipoprotein; HDL:
226	High-density lipoprotein; RA	A: Rheumatoid arthritis;	OA: Osteoarthritis; Al	H: asymptomatic hyperuricemia (serum urate >
227	6.8 mg/dL without gout).			
228	*N represents unweighted 1	number, and the remain	ing values are weight	ed values using NHANES MEC examination
	maight			

Characteristics	No Arthritis	OA	RA	Other	Unspecified	p value
N*	10089	1402	662	408	1086	
Gender						< 0.01
Male	50.40(49.20,51.61)	34.06(31.15,36.97)	40.89(35.23,46.54)	40.90(34.65,47.15)	42.48(38.96,46.01)	
Female	49.60(48.39,50.80)	65.94(63.03,68.85)	59.11(53.46,64.77)	59.10(52.85,65.35)	57.52(53.99,61.04)	
Age						< 0.01
20-29	24.10(22.69,25.52)	1.15(0.57,1.73)	2.62(0.30,4.94)	3.98(1.36,6.60)	3.17(1.79,4.55)	
30-39	21.40(20.16,22.64)	5.15(3.81,6.49)	6.11(3.79,8.43)	9.40(5.76,13.05)	6.35(4.47,8.24)	
40-49	20.74(19.35,22.14)	11.11(9.08,13.14)	15.63(11.52,19.73)	22.38(17.09,27.67)	15.00(11.89,18.10)	
50-59	16.53(15.39,17.66)	25.56(22.65,28.48)	26.90(20.60,33.20)	29.34(23.07,35.60)	27.60(23.49,31.71)	
60-69	10.22(9.19,11.25)	29.91(26.73,33.09)	24.48(19.59,29.36)	21.26(14.97,27.56)	23.61(20.04,27.19)	
70+	7.01(6.40,7.61)	27.11(24.11,30.12)	24.26(20.40,28.12)	13.64(9.48,17.79)	24.27(21.09,27.45)	
Race						< 0.01
Other Races	18.98(17.18,20.77)	8.68(6.70,10.65)	15.21(10.33,20.09)	7.59(4.42,10.75)	11.13(8.86,13.39)	
Hispanic	6.83(5.62,8.05)	3.21(2.36,4.06)	5.11(3.68,6.54)	4.82(2.82,6.81)	5.14(3.69,6.59)	
Non-Hispanic White	63.36(60.50,66.21)	82.00(79.15,84.86)	63.62 (57.67,69.57)	78.92 (73.97,83.87)	72.33 (68.49,76.18)	
Non-Hispanic Black	10.83(9.39,12.27)	6.11(4.65,7.57)	16.06(12.29,19.83)	8.67(5.89,11.46)	11.40(9.14,13.65)	
Education Level						< 0.01
High school or below	37.86(35.61,40.10)	34.05(30.26,37.84)	52.13(45.41,58.85)	44.35(38.06,50.64)	50.09(45.46,54.73)	
Some College	29.76(28.19,31.34)	34.45(31.27,37.18)	32.25(27.08,37.42)	31.04(24.03,38.06)	31.61(27.66,35.57)	
College graduate or above	32.38(30.03,34.73)	31.50(27.68,35.33)	15.62(9.94,21.30)	24.61(17.82,31.39)	18.29(14.06,22.52)	
BMI						< 0.01
Normal	33.47(31.83,35.12)	22.68(19.75,25.60)	27.88(22.90,32.85)	21.88(16.37,27.40)	20.66(17.17,24.15)	
Overweight	33.79(32.56,35.03)	32.36(28.93,35.80)	28.46(23.46,33.46)	29.37(23.76,34.98)	31.40(27.98,34.83)	
Obesity	32.74(31.13,34.35)	44.96(41.35,48.57)	43.66(38.74,48.58)	48.75(42.23,55.26)	47.93(43.56,52.31)	
Blood pressure						< 0.01
Hypertension	36.92(35.28,38.56)	66.37(62.74,70.00)	63.74(57.17,70.31)	58.84(51.88,65.81)	63.77(59.68,67.86)	
Normal	63.08(61.44,64.72)	33.63(30.00,37.26)	36.26(29.69,42.83)	41.16(34.19,48.12)	36.23(32.14,40.32)	
PIR						< 0.01
Low income	22.04(20.42,23.65)	16.37(13.61,19.13)	29.76(23.51,36.01)	22.45(16.84,28.06)	24.27(19.78,28.76)	
Middle income	35.83(34.13,37.52)	36.00(32.49,39.50)	36.22(30.28,42.16)	37.89(30.75,45.02)	36.74(32.08,41.40)	
Elevated income	42.14(39.89,44.38)	47.63(43.03,52.24)	34.02(27.68,40.36)	39.66(31.66,47.67)	38.98(32.91,45.05)	
Smoking						<0.01
Current	18.69(17.41,19.97)	18.21(15.47,20.95)	27.50(22.36,32.63)	27.31(21.50,33.12)	20.56(17.17,23.95)	
Before	21.77(20.30,23.24)	32.89(29.41,36.36)	33.14(26.79,39.49)	29.07(23.55,34.59)	34.03(30.01,38.05)	

# **Table 2.** Baseline characteristics of arthritis group versus the non-arthritis group.

1								
2 3		Never	59 54(57 76 61 32)	48 90(45 48 52 22)	30 36(33 15 45 58)	43 62(37 28 49 96)	45 41(41 18 49 65)	
4		DAT	39.34(37.70,01.32)	40.90(43.40,32.32)	39.30(33.13,43.38)	43.02(37.26,49.90)	45.41(41.10,49.05)	-0.01
5		TAL	54 56(53 24 55 00)					<0.01
7		Moderate activities	54.56(53.24,55.88)	73.88(70.67,77.08)	72.08(66.44,77.72)	67.01(59.61,74.40)	/3.28(68.99,//.58)	
8		Vigorous activities	45.44(44.12,46.76)	26.12(22.92,29.33)	27.92(22.28,33.56)	32.99(25.60,40.39)	26.72(22.42,31.01)	
9 10		Diabetes						<0.01
11		Yes	8.50 ( 7.63,9.36 )	15.81(13.36,18.27)	22.68(19.11,26.24)	16.27(10.90,21.63)	18.40(15.33,21.48)	
12		No	91.51(90.64,92.37)	84.19(81.73,86.64)	77.32(73.76,80.89)	83.73(78.37,89.10)	81.60(78.52,84.67)	
15		Uric acid						< 0.01
15		AH	84.35(83.33,85.38)	84.18(81.78,86.59)	80.11(75.97,84.25)	84.42(79.68,89.17)	82.04(78.71,85.36)	
16 17		Normal state	15.65(14.62,16.67)	15.82(13.41,18.22)	19.88(15.75,24.03)	15.58(10.83,20.32)	17.96(14.64,21.29)	
18		Cholesterol(mg/dl) †	190.59±40.19	194.85±42.44	190.37±39.50	192.29±39.04	192.42±41.20	0.0041
19		LDL (mg/dl) †	113.95±35.17	113.39±36.73	111.54±35.07	112.34±34.79	113.58±35.80	0.256
20 21		HDL (mg/dl) †	54.09±15.69	57.40±17.82	54.48±15.65	54.68±16.01	54.09±15.71	< 0.01
22		Triglycerides(mg/dl) †	112.74±65.21	120.35±63.20	121.79±63.47	126.30±70.36	123.75±62.26	0.015
23		Creatinine(mg/dl) †	129.07±79.51	111.90±67.15	118.38±72.13	122.80±68.54	118.03±71.54	<0.01
24 25		Albumin(mg/L) †	38 98±354 61	54 86±421 95	67 42±349 01	46 01±258 35	83 60±558 69	<0.01
26	232	BMI: body mass inde	x· PIR· noverty i	ncome ratio [.] PAl	Physical activity	v level: LDL: Low	-density linoprotei	n' HDL
27 28	232	High-density lipoprot	ein: RA: Rheumat	toid arthritis: OA:	Osteoarthritis: AF	I: asymptomatic hy	peruricemia (serur	n urate >
29	234	6.8 mg/dL without go	out);			ing provide s	F	
30	235	*N represents unweig	ghted number, and	d the remaining	values are weighte	ed values using NI	HANES MEC exa	mination
31	236	weight.						
33	237	†Figures are expresse	ed as mean $\pm$ stand	lard error, other f	igures are expresse	ed as percent (95%	confidence interva	als).
34 35	238							
36								
37								
38 39								
40								
41 42								
42								
44								
45 46								
47								
48								
49 50								
51								
52								
55								
55								
56 57								
58								
59		Гени		/_http://bmic-	1 pop brai com /sit	o/about/auidalia	aas yhtml	
60		Forp	beer review only	/ - nttp://bmJop	pen.pmj.com/sit	e/about/guidelii	ies.xntml	

Participants with OA are higher in non-Hispanic white (82.00% [95%CI: 79.15, 84.86]),
hypertension (66.37% [62.74, 70.00]), elevated income (47.63% [43.03, 52.24]), moderate
activities (73.88% [70.67, 77.08]), cholesterol (194.85±42.44) and HDL (57.40±36.73)
than those without arthritis. Similar trends are observed in participants with RA, OA, other
types of arthritis and those who responded with "don't know" when asked about the type
of arthritis (Table 2).

And the proportion of participants who self-reported OA was the highest in arthritis. The proportion of AH is higher in participants with OA (84.18% [95%CI: 81.78, 85.59]) than in those with RA (80.11% [95%CI: 75.97, 84.25]) and unspecified (82.04% [95%CI: 78.71, 85.36]) arthritis types. But it is slightly lower than no arthritis (84.35% [95%CI: 83.33, 85.38]) and other arthritis (84.42% [95%CI; 79.68,89.17]) (p<0.01) (Table 2)

249 = 65.55, 85.56 and other artiffus (64.4270 [9570C1, 79.08, 69.17]) (p

# 250 The association between AH and arthritis

Overall, AH was associated with onset of arthritis (OR=1.34, 95%CI: 1.07, 1.69) (Table 3). However, the association muted in different models after adjusting for demographic, socioeconomic factors, etc.

**Table 3.** Association between asymptomatic hyperuricemia and total arthritis.

	Unadjusted model	model 1	model 2	model 3
Control (Reference)	1	1	1	1
Total arthritis				
OR (95% CI)	1.34(1.07,1.69)	1.14(0.87,1.49)	1.11(0.83,1.48)	1.07(0.80,1.41)
Р	0.012	< 0.01	<0.01	< 0.01

256 Model1: Adjusted for age, gender, and race.

Model2: Adjusted for age, gender, education level, income to poverty ratio, race, BMI, PAL, diabetes, hypertension and
 smoking record.

Model3: Adjusted for age, gender, education level, income to poverty ratio, race, BMI, PAL, hypertension, smoking,cholesterol, LDL, HDL, triglyceride, creatinine, and albumin.

For participants aged 40-49 years, AH is significantly associated with incident arthritis (OR=1.96, 95%CI: 1.23, 2.99). The association remained after adjusted for education level, income to poverty ratio, BMI, diabetes, hypertension, and smoking (OR=2.00, 95%CI: 1.94, 3.36) (Table 4).

# BMJ Open

266	
267	Table 1. The total arthrit

# **Table 4.** The total arthritis was analyzed stratified by gender, age, and race

	Model 1 (OR,95%, P)	Model 2 (OR,95%, P)	Model 3 (OR,95%,P)			
Gander						
Male	1	1	1			
Female	0.753(0.633,0.896)0.002	0.730 ( 0.608,0.877 ) 0.001	0.712(0.582,0.872)0.001			
Age						
20-29	1	1	1			
30-39	1.788(1.078,2.966)0.025	1.718(1.003,2.940)0.048	1.181(0.635,2.199)0.595			
40-49	1.957(1.285,2.981)0.002	2.002(1.941,3.358)0.009	1.324(0.721,2.432)0.362			
50-59	1.409(0.989,2.008)0.057	1.472(0.963,2.251)0.074	0.975(0.582,1.632)0.932			
60-69	1.034(0.718,1.489)0.856	1.076(0.700,1.653)0.737	0.721(0.436,1.192)0.200			
70+	1.106(0.789,1.549)0.556	1.122(0.725,1.737)0.602	0.739(0.426,1.282)0.278			
Race						
Other Race	1	1	1			
Hispanic	1.604(1.136,2.264)0.008	1.582(1.056,2.371)0.027	1.456(0.962,2.203)0.075			
Non-Hispanic White	0.895(0.696,1.150)0.381	1.040(0.786,1.376)0.780	0.971(0.732,1.288)0.839			
Non-Hispanic Black	2.017(1.471,2.765)0.000	2.305(1.622,3.276)0.000	2.203(1.536,3.160)0.000			
Model1: Adjusted for ag	e, gender, and race.					
Model 2: Adjusted for a	ge, gender, race, education le	vel, income to poverty ratio, BM	II, diabetes, hypertension, and			
smoking record.						
Model 3: Adjusted for	age, gender, race, education	level, income to poverty ratio,	BMI, hypertension, smoking			
cholesterol, EDE, HDE,						
Among non-Hi	spanic black participan	ts AH was significantly a	ssociated with arthritis			
(OR=2.02.95%CI)	(147, 2.77) The result	ults kept significant adjust	ing for education level			
income to poverty	ratio BMI diabetes	hypertension and smoki	$\log (OR = 2.31 \ 95\% CI)$			
$1.62 \cdot 3.28$ and	for cholesterol I DI	HDI triglyceride cr	estinine and albumir			
(OP-2, 20, 05%) and $(OP-2, 20, 05%)$ CI:	155 (216) (Table 4)	, IIDL, tilgiyeende, en	catilitie, and albuilli			
(OR=2.20,95%CI:	1.55, 3.16) (Table 4).	<b>.</b>				
Compared wit	h male participants, f	emale participants with	AH showed a higher			
likelihood of OA (	OR=1.35, 95%CI: 1.14,	, 1.60). However, for RA (	OR: 1.08, 95%CI: 0.83			
1.41), other forms	of arthritis (OR: 1.00, 9	5%CI: 0.78, 1.29), and the	e 'Unspecified' category			
(OR: 0.99, 95%CI: 0.82, 1.20), the observed associations were not statistically significant.						

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Notably, this trend was more prominent within the OA subgroup (sTable 2). Among participants aged > 50 years, there is a significant association between AH and different types of arthritis (including OA, RA, other, unspecified). More importantly, the strength of this association increased with age, specifically for 50-59 years, 60-69 years, 70+ years.

287 Discussion

Based on 12 years of nationally representative data from NHANES, our findings indicated an association between AH and the arthritis, with a notable focus on OA. The correlation was present before adjusting the model. However, after adjusting for additional variables such as cholesterol and creatinine, the correlation weakened, suggesting that the relationship between AH and arthritis (including OA) might not be independent and could be influenced by metabolic and physiological factors like cholesterol and creatinine[29]. Our research findings suggest a significant correlation between asymptomatic hyperuricemia (AH) and arthritis among non-Hispanic Black individuals, possibly due to metabolic syndrome-related metabolic abnormalities being less sensitive in identifying elevated uric acid levels in non-Hispanic Black populations [30]. 

Although hyperuricemia is a major contributor to the development of gouty arthritis, accumulating evidence suggest that AH may increase the risk of developing RA, psoriatic arthritis and spondylarthritis[31-33]. In vitro studies on synoviocytes from healthy and RA subjects revealed that monosodium urate crystals could increase the release of the inflammatory cytokine IL-6, the chemokine CXCL8 and the matrix metalloproteinase-1[34]. The injection of urate crystals in vivo leads to produce main mediators in the pathogenesis of PsA, such as IL-17 [35]. The hyperuricemia not only play an important role the development and progression of psoriatic arthritis, but also affect severity of clinical manifestations and degree of inflammation[36]. Monosodium urate crystals interact with articular tissues to influence the development of axial spondyloarthritis as monosodium urate crystal deposition associated with the progress of radiographic grade at the sacroiliac joint[18, 37]. 

310 Our data indicate that AH may serve as a marker for potential risk in relation to OA. 311 [22]. An increasing body of evidence suggests that AH, characterized by elevated serum 312 uric acid levels without any symptoms of gout or kidney stone disease, may be associated 313 with an increased risk of OA, particularly in weight-bearing joints such as the knee[16, 38, Page 17 of 31

## **BMJ** Open

39]. The relationship between AH and arthritis is complex and multifaceted, and the exact nature of this relationship is not vet clear. Hyperuricemia may promote the development of arthritis via deposition of urate crystals in the joints, promoting chronic low-grade inflammation, and exacerbating oxidative stress [20, 22, 40]. However, it is also possible that the association between hyperuricemia and arthritis is partially due to common risk factors such as obesity and metabolic syndrome[41, 42]. Further research is needed to better understand the relationship between these two conditions and to identify potential therapeutic targets for the prevention or treatment of arthritis in patients with hyperuricemia. 

The intimate relationship between hyperuricemia and OA may re-purpose FDA-approved urate-lowering therapy drugs in the treatment of OA. Currently, the drugs used to treat OA mainly include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids[43]. However, these drugs could only use to relieve the clinical symptoms but not decrease the onset of arthritis. In accordance with our findings, another study also supports the significant association between arthritis and hypertension[44]. In recent years, there has been growing interest in exploring the role of urate-lowering therapy in the treatment of OA[45]. Urate crystal deposition can directly damage cartilage, stimulate the production of pro-inflammatory cytokines, and lead to inflammation and cartilage degradation[46]. Urate-lowering therapy drugs such as allopurinol and febuxostat have been shown to have anti-inflammatory properties, inhibit the production of reactive oxygen species, reduce the expression of pro-inflammatory cytokine[47-49]. Our results raise the possibility that pharmacological treatment of AH via a treat-to-target (T2T) strategy may decrease incident of arthritis, especially for OA. The T2T strategy involves targeting specific uric acid levels and adjusting drug therapy accordingly to achieve this goal[50, 51].

Our findings highlight those female participants with AH are more likely to develop arthritis, especially for OA, than male participants, and ageing may exaggerate this trend. Among adults in the US, serum urate was 6.0 mg/dl in men and 4.8 mg/dl in women, and hyperuricemia prevalence rates were 20.2% and 20.0%, respectively[11]. Studies have also shown that hyperuricemia is more common in men over 30 and women over 50[52]. The gender and age associated increase in serum uric acid levels may be explained by menopause in women and alcohol consumption in men[53]. Menopause can lead to an

increase in serum uric acid levels, while postmenopausal hormone replacement therapy may be associated with a decrease in serum uric acid levels[54]. The difference in serum uric acid levels between men and women is due to the increased renal uric acid clearance caused by estrogen in women before menopause[55]. Serum Urate levels were significantly associated with knee OA as determined by osteophytosis in women but not in men[56]. Female typically have a higher prevalence of hand and knee arthritis than males, females also tend to have more severe knee OA, particularly after menopausal age[57].

The strength of our study was the use of data from a large, nationally representative sample. However, results should be interpreted with caution with inherent limitation. First, it is not possible to interpret the findings from a causal point of view due to the cross-sectional approach. Prospective study and mendelian randomization study are needed to further investigate the relationship between the AH and arthritis, especially OA. Second, recall bias may affect the accuracy of prevalence estimates although this study used CDC-recommended self-reported and physician-diagnosed arthritis as case definitions[24, 58]. Third, our result might be charged with choosing a single number to represent prevalent of arthritis in the US population as it only included adults in the national non-institutionalized population of the country[59]. Fourth, medication use for the participants was not included in this study. Finally, we had limited information on the involvement of OA in each participant, such as imaging and treatment procedures. 

In summary, our study results suggest that AH patients may benefit from close monitoring for the development of arthritis, understanding the relationship between hyperuricemia and arthritis, and identifying factors that contribute to their increased risk of these diseases, which may be of great significance for the prevention and management of these conditions.

1		
3	369	Contributors
4 5	370	Prof. Jieruo Gu is the guarantor of the study and had full access to all the data in the
6 7	371	study and takes responsibility for the integrity of the data and the accuracy of the data
8	372	analysis. Dr. Zhenguo Liang, Dr. Dongze Wu, and Prof. Jieruo Gu, conceived and designed
10	373	the study, performed the analysis, and wrote the paper. Prof. Hua Zhang participated in the
11 12	374	revision and refinement of the content. All authors read and commented on the manuscript
13 14	375	and approved the final version of the manuscript. The corresponding author attests that all
15 16	376	listed authors meet authorship criteria and that no others meeting the criteria have been
17	377	omitted.
18 19	378	
20 21	379	Funding
22	380	Project funded by Guangdong Clinical Research Center of Immune Disease
24	381	(2020B1111170008) & Scientific Research Fund of Sichuan Academy of Medical
25 26	382	Sciences (N/A) & Sichuan Provincial People's Hospital (2022QN38).
27 28	383	
29 30	384	Disclaimer
31	385	The funder was not involved in the preparation of this manuscript.
32 33	386	
34 35	387	Declaration of interests
36	388	The authors declare no conflict of interests.
38	389	
39 40	390	Ethical approval
41 42	391	The data released from the National Health and Nutrition Examination Survey did not
43	392	require informed patient consent. This study used an anonymized publicly available data
44 45	393	set with no identifiable information on the survey participants, and thus did not require
46 47	394	ethics approval.
48 49	395	
50	396	Data sharing
52	397	The data used for the analyses are publicly available from the National Center for Health
53 54	398	Statistics (NCHS), which is part of the Centers for Disease Control and Prevention (CDC)
55 56	399	in the United States (https://www.cdc.gov/nchs/nhanes/).
57		
58 59		1/
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	400	Refe	erence
4 5	401		
6	400		
/ 8	402	1.	Barbour, K.E., et al., Vital Signs: Prevalence of Doctor-Diagnosed Arthritis and Arthritis-
9	403		Attributable Activity Limitation - United States, 2013-2015. MMWR Morb Mortal Wkly Rep,
10	404		2017. <b>66</b> (9): p. 246-253.
12	405	2.	Hootman, J.M., et al., Updated Projected Prevalence of Self-Reported Doctor-Diagnosed
13	406		Arthritis and Arthritis-Attributable Activity Limitation Among US Adults, 2015-2040. Arthritis
14 15	407		Rheumatol, 2016. 68(7): p. 1582-7.
16	408	3.	Murphy, L.B., et al., Medical Expenditures and Earnings Losses Among US Adults With
17	409		<i>Arthritis in 2013.</i> Arthritis Care Res (Hoboken), 2018. <b>70</b> (6): p. 869-876.
18 19	410	4.	Hunter, D.J. and S. Bierma-Zeinstra, Osteoarthritis. Lancet, 2019. 393(10182): p. 1745-
20	411		1759.
21 22	412	5.	Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a
23	413		systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020.
24 25	414		<b>396</b> (10258): p. 1204-1222.
25 26	415	6.	Partridge, L., J. Deelen, and P.E. Slagboom, <i>Facing up to the global challenges of ageing.</i>
27	416		Nature, 2018. <b>561</b> (7721): p. 45-56.
28 29	417	7.	Kuo, C.F., et al., <i>Global epidemiology of gout: prevalence, incidence and risk factors.</i> Nat
30	418		Rev Rheumatol, 2015. <b>11</b> (11): p. 649-62.
31 32	419	8.	Liang, X., et al., Is hypertension associated with arthritis? The United States national health
33	420		and nutrition examination survey 1999-2018. Ann Med, 2022. 54(1): p. 1767-1775.
34 35	421	9.	Bortoluzzi, A., F. Furini, and C.A. Scirè, Osteoarthritis and its management - Epidemiology,
36	422		nutritional aspects and environmental factors. Autoimmun Rev, 2018. 17(11): p. 1097-1104.
37 38	423	10.	Mobasheri, A., et al., <i>The role of metabolism in the pathogenesis of osteoarthritis.</i> Nat Rev
39	424		Rheumatol, 2017. <b>13</b> (5): p. 302-311.
40	425	11.	Chen-Xu, M., et al., Contemporary Prevalence of Gout and Hyperuricemia in the United
41 42	426		States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007-
43	427		<i>2016.</i> Arthritis Rheumatol, 2019. <b>71</b> (6): p. 991-999.
44 45	428	12.	Dalbeth, N., et al., Relationship between serum urate concentration and clinically evident
46	429		incident gout: an individual participant data analysis. Ann Rheum Dis, 2018. 77(7): p. 1048-
47 48	430		1052.
49	431	13.	Lioté, F. and T. Pascart, From hyperuricaemia to gout: what are the missing links? Nat Rev
50	432		Rheumatol, 2018. <b>14</b> (8): p. 448-449.
51 52	433	14.	Dalbeth, N. and L. Stamp, <i>Hyperuricaemia and gout: time for a new staging system?</i> Ann
53	434		Rheum Dis, 2014. <b>73</b> (9): p. 1598-600.
54 55	435	15.	Dalbeth, N., et al., <i>Gout</i> Lancet, 2021, <b>397</b> (10287); p. 1843-1855.
56			
57 58			
58 59			1

1 2

# BMJ Open

3 4	436	16.	Neogi, T., S. Krasnokutsky, and M.H. Pillinger, Urate and osteoarthritis: Evidence for a
5	437		reciprocal relationship. Joint Bone Spine, 2019. 86(5): p. 576-582.
6 7	438	17.	Roddy, E., W. Zhang, and M. Doherty, Are joints affected by gout also affected by
8	439		<i>osteoarthritis?</i> Ann Rheum Dis, 2007. <b>66</b> (10): p. 1374-7.
9	440	18.	Dalbeth, N., et al., Relationship between structural joint damage and urate deposition in
10 11	441		gout: a plain radiography and dual-energy CT study. Ann Rheum Dis, 2015. 74(6): p. 1030-
12	442		6.
13 14	443	19.	Yokose, C., et al., Gout and Osteoarthritis: Associations, Pathophysiology, and
15	444		Therapeutic Implications. Curr Rheumatol Rep. 2016. <b>18</b> (10): p. 65.
16 17	445	20.	Chhana, A., et al., The effects of monosodium urate monohydrate crystals on chondrocyte
17 18	446		viability and function; implications for development of cartilage damage in gout. J
19	447		Rheumatol 2013 <b>40</b> (12): p 2067-74
20 21	448	21	Chhana A et al Monosodium urate crystals reduce osteocyte viability and indirectly
22	449	21.	promote a shift in osteocyte function towards a proinflammatory and proresorptive state
23	450		Arthritis Dos Thor. 2018. 20(1): p. 208
24 25	450	22	Depekte A.E. et el. Uria gaid is a danger signal of ingressing rick for esteparthritis through
26	431	ZZ.	
27	452		inflammasome activation. Proc Natl Acad Sci U S A, 2011. <b>108</b> (5): p. 2088-93.
28 29	453	[datas	set] 23. Zhu, Z., et al., The Association between Retinopathy and Arthritis: Findings from a
30	454		<i>US National Survey 2005-2008.</i> Curr Eye Res, 2020. <b>45</b> (12): p. 1543-1549.
31 32	455	24.	March, L.M., et al., <i>Clinical validation of self-reported osteoarthritis</i> . Osteoarthritis Cartilage,
33	456		1998. <b>6</b> (2): p. 87-93.
34	457	25.	Martillo, M.A., L. Nazzal, and D.B. Crittenden, The crystallization of monosodium urate.
35 36	458		Curr Rheumatol Rep, 2014. <b>16</b> (2): p. 400.
37	459	26.	FitzGerald, J.D., et al., 2020 American College of Rheumatology Guideline for the
38	460		<i>Management of Gout.</i> Arthritis Care Res (Hoboken), 2020. <b>72</b> (6): p. 744-760.
39 40	461	27.	Plan and operation of the Third National Health and Nutrition Examination Survey, 1988-
41	462		<i>94. Series 1: programs and collection procedures.</i> Vital Health Stat 1, 1994(32): p. 1-407.
42 43	463	28.	Whelton, P.K., et al., 2017
44	464		ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the
45	465		Prevention. Detection. Evaluation. and Management of High Blood Pressure in Adults:
46 47	466		Executive Summary: A Report of the American College of Cardiology/American Heart
48	467		Association Task Force on Clinical Practice Guidelines Hypertension 2018 <b>71</b> (6): p
49 50	468		1260_1321
50 51	400	20	Korekee C et al. <i>Phaumateid arthritia and metabolia aundrame</i> Nat Pay Phaumatel
52	409	29.	
53 54	470		2014. 10(11): p. 691-6.
55	471	30.	DeBoer, M.D. and M.J. Gurka, Low sensitivity for the metabolic syndrome to detect uric
56	472		acid elevations in temales and non-Hispanic-black male adolescents: an analysis of
57 58			
59			2
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2			
3 4	473		<i>NHANES 1999-2006.</i> Atherosclerosis, 2012. <b>220</b> (2): p. 575-80.
5	474	31.	Chiou, A., et al., Coexistent Hyperuricemia and Gout in Rheumatoid Arthritis: Associations
6	475		With Comorbidities, Disease Activity, and Mortality. Arthritis Care Res (Hoboken), 2020.
8	476		<b>72</b> (7): p. 950-958.
9	477	32.	Tsuruta, N., S. Imafuku, and Y. Narisawa, Hyperuricemia is an independent risk factor for
10 11	478		<i>psoriatic arthritis in psoriatic patients.</i> J Dermatol, 2017. <b>44</b> (12): p. 1349-1352.
12	479	33.	Ho, H.H., et al., <i>Coexisting ankylosing spondylitis and gouty arthritis.</i> Clin Rheumatol, 2007.
13 14	480		<b>26</b> (10): p. 1655-61.
15	481	34.	Chen, D.P., et al., Activation of human fibroblast-like synoviocytes by uric acid crystals in
16 17	482		<i>rheumatoid arthritis.</i> Cell Mol Immunol, 2011. <b>8</b> (6): p. 469-78.
18	483	35.	Raucci, F., et al., IL-17A neutralizing antibody regulates monosodium urate crystal-induced
19 20	484		gouty inflammation. Pharmacol Res, 2019. <b>147</b> : p. 104351.
20	485	36.	Tripolino, C., et al., Hyperuricemia in Psoriatic Arthritis: Epidemiology, Pathophysiology,
22	486		and Clinical Implications. Front Med (Lausanne), 2021. 8: p. 737573.
23 24	487	37.	Zhu, J., et al., Monosodium urate crystal deposition associated with the progress of
25	488		radiographic grade at the sacroiliac joint in axial SpA: a dual-energy CT study. Arthritis Res
26 27	489		Ther, 2017. <b>19</b> (1): p. 83.
28	490	38.	Wang, S., et al., The association between asymptomatic hyperuricemia and knee
29 30	491		osteoarthritis: data from the third National Health and Nutrition Examination Survey.
31	492		Osteoarthritis Cartilage, 2019. <b>27</b> (9): p. 1301-1308.
32 33	493	39.	Xiao, L., S. Lin, and F. Zhan, The association between serum uric acid level and changes
34	494		of MRI findings in knee osteoarthritis: A retrospective study (A STROBE-compliant article).
35 36	495		Medicine (Baltimore), 2019. <b>98</b> (21): p. e15819.
37	496	40.	Joosten, L.A.B., et al., Asymptomatic hyperuricaemia: a silent activator of the innate
38	497		<i>immune system.</i> Nat Rev Rheumatol, 2020. <b>16</b> (2): p. 75-86.
39 40	498	41.	Zurita-Cruz, J., et al., <i>Resistin/Uric Acid Index as a Prognostic Factor in Adolescents with</i>
41	499		Obesity after Lifestyle Intervention. J Pediatr, 2020. 219: p. 38-42.e1.
42 43	500	42.	Musumeci, G., et al., Osteoarthritis in the XXIst century: risk factors and behaviours that
44	501		influence disease onset and progression. Int J Mol Sci, 2015. 16(3): p. 6093-112.
45 46	502	43.	Zhang, Y., et al., Low-dose aspirin use and recurrent gout attacks. Ann Rheum Dis, 2014.
47	503		<b>73</b> (2): p. 385-90.
48 49	504	44.	Krasnokutsky, S., et al., Serum Urate Levels Predict Joint Space Narrowing in Non-Gout
50	505		Patients With Medial Knee Osteoarthritis. Arthritis Rheumatol, 2017. 69(6): p. 1213-1220.
51 52	506	45.	Bardin, T. and P. Richette, Impact of comorbidities on gout and hyperuricaemia: an update
53	507		on prevalence and treatment options. BMC Med, 2017. 15(1): p. 123.
54 55	508	46.	Schett, G., et al., Why does the gout attack stop? A roadmap for the immune pathogenesis
56	509		<i>of gout.</i> RMD Open, 2015. <b>1</b> (Suppl 1): p. e000046.
57 58			
50 59			2
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 31

# BMJ Open

1			
2			
3 4	510	47.	Geng, Q., et al., Febuxostat mitigates IL-18-induced inflammatory response and reduction
5	511		<i>of extracellular matrix gene.</i> Am J Transl Res, 2021. <b>13</b> (3): p. 979-987.
6 7	512	48.	Nasi, S., et al., Xanthine Oxidoreductase Is Involved in Chondrocyte Mineralization and
8	513		Expressed in Osteoarthritic Damaged Cartilage. Front Cell Dev Biol, 2021. 9: p. 612440.
9	514	49.	Li, J., Z. Zhang, and X. Huang, I-Arginine and allopurinol supplementation attenuates
10 11	515		inflammatory mediators in human osteoblasts-osteoarthritis cells. Int J Biol Macromol, 2018.
12	516		<b>118</b> (Pt A): p. 716-721.
13	517	50.	Kiltz, U., et al., <i>Treat-to-target (T2T) recommendations for gout</i> . Ann Rheum Dis. 2017.
14	518		<b>76</b> (4): p. 632-638.
16	519	51.	Perez-Ruiz, E., et al., <i>Treat to target in gout</i> , Rheumatology (Oxford), 2018, <b>57</b> (suppl 1);
17 18	520	•	p. į20-į26.
19	521	52.	Miao, Z., et al., Dietary and lifestyle changes associated with high prevalence of
20 21	522	•	hyperuricemia and gout in the Shandong coastal cities of Eastern China. J Rheumatol.
22	523		2008 <b>35</b> (9): p 1859-64
23 24	524	53	Lin KC. HY Lin and P. Chou. The interaction between uric acid level and other risk
24 25	525	00.	factors on the development of gout among asymptomatic hyperuricemic men in a
26	525		prospective study.   Phoumatel 2000, <b>27</b> (6): p. 1501.5
27 28	520	E A	Hak A E and H.K. Chai. Mananawaa nastmananawaa harmana waa and aarum wia aaid
29	527	54.	Hak, A.E. and H.K. Choi, <i>Menopause, postmenopausa normone use and serum unc acid</i>
30	528		levels in US womenthe Third National Health and Nutrition Examination Survey. Arthritis
31 32	529		Res Ther, 2008. <b>10</b> (5): p. R116.
33	530	55.	Nicholls, A., M.L. Snaith, and J.T. Scott, <i>Effect of oestrogen therapy on plasma and urinary</i>
34 35	531		<i>levels of uric acid.</i> Br Med J, 1973. <b>1</b> (5851): p. 449-51.
36	532	56.	Ding, X., et al., The associations of serum uric acid level and hyperuricemia with knee
37	533		osteoarthritis. Rheumatol Int, 2016. 36(4): p. 567-73.
38 39	534	57.	Srikanth, V.K., et al., A meta-analysis of sex differences prevalence, incidence and severity
40	535		of osteoarthritis. Osteoarthritis Cartilage, 2005. <b>13</b> (9): p. 769-81.
41	536	58.	El Miedany, Y., et al., Incorporating patient reported outcome measures in clinical practice:
42 43	537		development and validation of a questionnaire for inflammatory arthritis. Clin Exp
44	538		Rheumatol, 2010. <b>28</b> (5): p. 734-44.
45 46	539	59.	Murphy, L.B., et al., Defining Arthritis for Public Health Surveillance: Methods and
40	540		Estimates in Four US Population Health Surveys. Arthritis Care Res (Hoboken), 2017.
48	541		<b>69</b> (3): p. 356-367.
49 50	542		
51			
52 52			
55 54			
55			
56 57			
58			
59			Ear peer review only - http://bmionon.hmi.com/sita/about/guidalings.yhtml
60			ror peer review only inter, / only openion j.com/site/about/guidelines.xittini

#### **Figure legends**

Figure 1. Flow chart of sample selection from the NHANES 2007–2018 

#### Supplemental appendix

- sTable 1. Characteristics of participants included in this study.
- **sTable 2.** Subgroup analysis of the association of arthritis subtype (RA, OA, other and
  - unspecified) and AH.

to peet terien only



Figure 1. Flow chart of sample selection from the NHANES 2007-2018

188x175mm (300 x 300 DPI)

# Supplementary materials

The association between asymptomatic hyperuricemia and risk of arthritis, findings from a US National Survey 2007-2018

# **Supplementary Tables**

sTable1. Characteristics of participants included in this study

**sTable2.** Subgroup analysis of the association of arthritis subtype (RA, OA, Other and Unspecified) and AH.

	2007-2008	2009-2010	2011-2012	2013-2014	2015-2016	2017-2018	р
N*	2330	2528	2229	2367	2067	2126	
Uricacid							0.43
NA	83.65(81.60,85.69)	84.50(82.38,86.62)	84.71(82.87,86.64)	83.55(81.95,85.15)	84.13(82.09,86.17)	83.61(80.70,86.53)	
AH	16.35(14.01,18.40)	15.50(13.38,17.62)	15.29(13.46,17.13)	16.45(14.85,18.05)	15.87(13.83,17.91)	16.39(13.47,19.30)	
Gender							0.279
Male	47.25(45.60,48.89)	45.56(43.56,47.55)	47.90(45.04,50.75)	47.69(45.61,49.77)	47.36(45.31,49.42)	48.09(44.95,51.22)	
Female	52.75(51.11,54.40)	54.44(52.45,56.44)	52.10(49.25,54.96)	52.31(50.23,54.39)	52.64(50.58,54.69)	51.91(48.78,55.05)	
Age							< 0.0
20-29	19.13(16.42,21.85)	19.35(16.80,21.90)	18.23(15.01,21.45)	18.40(15.73,21.08)	16.67(14.61,18.72)	19.86(16.81,22.90)	
30-39	18.20(15.96,20.43)	16.98(14.62,19.35)	18.53(15.67,21.39)	17.24(15.16,19.31)	15.59(14.04,17.15)	18.76(15.92,21.60)	
40-49	20.97(17.50,24.44)	21.50(19.52,23.49)	18.86(15.20,22.52)	19.43(16.80,22.07)	18.56(15.67,21.45)	15.71(13.13,18.28)	
50-59	19.29(16.77,21.80)	19.37(16.98,21.77)	19.08(17.07,21.08)	18.17(15.58,20.76)	18.81(17.09,20.54)	19.93(16.84,23.02)	
60-69	11.44(9.42,13.46)	11.18(9.90,12.46)	14.03(12.10,15.96)	14.71(12.03,17.38)	19.21(16.43,22.00)	14.81(11.45,18.16)	
70+	10.98(9.65,12.30)	11.60(10.10,13.10)	11.26(9.65,12.88)	12.05(10.37,13.73)	11.16(9.36,12.96)	10.95(8.93,12.97)	
Race/Ethnicity							< 0.0
Other Race	13.87(10.43,17.31)	16.55(11.72,21.38)	15.80(11.44,20.16)	16.88(12.75,21.02)	17.24(13.58,20.90)	19.91(16.40,23.42)	
Hispanic	5.09(2.60,7.58)	5.84(2.94,8.74)	6.74(3.84,9.64)	5.67(2.34,8.61)	6.74(3.88,9.59)	6.86(5.00,8.72)	
Non-Hispanic White	70.37(63.63,77.11)	66.91(60.23,73.59)	68.04(61.22,74.87)	67.07(60.01,74.13)	65.74(57.81,73.66)	61.96(57.22,66.69)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

Non-Hispanic Black	10.67(6.63,14.70)	10.70(8.67,12.72)	9.42(5.94,12.90)	10.37(7.68,13.07)	10.29(5.86,14.71)	11.27(7.61,14.93)	
Education Level							< 0.01
High school or below	43.02(37.88,48.16)	41.31(37.13,45.52)	37.42(31.97,42.87)	36.42(30.79,42.04)	36.46(30.23,42.68)	39.61(36.03,43.19)	
Some college	28.45(26.32,30.58)	29.63(26.71,32.56)	31.10(27.90,34.30)	32.90(29.91,35.90)	31.18(27.20,35.16)	29.91(25.07,34.76)	
College graduate or above	28.53(24.06,33.00)	29.05(25.76,32.33)	31.48(25.02,37.94)	30.68(26.29,35.07)	32.36(25.35,39.37)	30.47(24.72,36.23)	
BMI							< 0.01
Normal	33.39(31.60,35.19)	32.13(28.74,35.52)	31.68(27.63,35.73)	31.24(28.78,33.70)	27.17(23.38,30.96)	29.29(25.52,33.05)	
Overweight	35.11(32.97,37.26)	32.96(30.44,35.48)	33.36(31.12,35.60)	33.31(30.91,35.70)	32.66(31.03,34.28)	31.53(29.18,33.8)	
Obesity	31.49(28.61,34.37)	34.91(32.02,37.79)	34.96(31.50,38.42)	35.45(33.20,37.70)	40.17(36.34,44.00)	39.18(35.37,43.00)	
Blood pressure							< 0.01
Hypertension	40.92(37.47,44.37)	40.38(36.47,44.30)	45.82(41.97,49.68)	43.84(39.24,48.43)	44.44(40.49,48.40)	46.99(43.71,50.28)	
Normal	59.08(55.63,62.53)	59.62(55.70,63.53)	54.18(50.32,58.03)	56.16(51.57,60.76)	55.56(51.60,59.51)	53.01(49.72,56.29)	
PIR							< 0.01
Low income	19.38(16.16,22.61)	21.90(19.24,24.56)	24.29(20.21,28.38)	25.33(19.07,31.59)	19.64(16.45,22.82)	20.01(17.46,22.56)	
Middle income	33.99(30.47,37.52)	37.50(33.75,41.26)	35.70(31.24,40.17)	33.69(30.70,36.68)	37.50(34.14,40.87)	37.61(33.36,41.86)	
High income	46.62(41.80,51.44)	40.60(36.83,44.36)	40.00(33.29,46.72)	40.98(34.20,47.76)	42.86(37.83,47.88)	42.38(37.89,46.88)	
Somking							0.01
Current	21.61(18.39,24.83)	18.98(17.51,20.45)	20.06(16.75,23.36)	19.50(15.86,23.14)	18.73(15.50,21.97)	17.47(14.68,20.27)	
Before	24.99(22.25,27.73)	24.21(20.55,27.87)	23.04(20.16,25.92)	23.68(20.64,26.72)	26.46(22.62,30.31)	24.90(22.47,27.32)	
Never	53.40(49.73,57.07)	56.80(53.00,60.61)	56.90(53.76,60.05)	56.82(52.86,60.78)	54.81(50.57,59.04)	57.63(54.64,60.62)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

PAL							
Moderate activities	58.98(55.40,62.57)	62.32(59.17,65.48)	61.71(57.96,65.46)	62.05(59.40,64.70)	57.56(54.23,60.90)	52.20(49.94,54.47)	
Vigorous activities	41.02(37.43,44.60)	37.68(34.52,40.83)	38.29(34.54,42.04)	37.95(35.30,40.60)	42.44(39.10,45.77)	47.80(45.53,50.06)	
Diabetes							
Yes	10.17(8.32,12.03)	9.47(8.21,10.74)	10.20(8.31,12.09)	10.34(8.83,11.84)	12.25(9.95,14.55)	12.14(9.78,14.49)	
No	89.83(87.97,91.68)	90.53(89.26,91.79)	89.80(87.91,91.69)	89.66(88.16,91.17)	87.75(85.45,90.05)	87.86(85.51,90.22)	
With or without arthritis							
No arthritis	74.05(70.64,77.47)	74.90(72.43,77.38)	77.19(73.85,80.53)	75.09(72.40,77.78)	73.16(70.09,76.24)	74.47(70.56,78.38)	
Arthritis	25.95(22.53,29.36)	25.10(22.62,27.57)	22.81(19.47,26.15)	24.91(22.22,27.60)	26.84(23.76,29.91)	25.53(21.62,29.44)	
OA	8.70(6.56,10.85)	9.56(8.30,10.82)	11.30(8.92,13.68)	13.88(11.87,15.89)	12.92(10.99,14.86)	12.44(9.32,15.55)	
RA	3.57(2.87,4.27)	4.11(3.18,5.04)	3.90(2.78,5.02)	3.09(2.15,4.02)	3.59(2.53,4.64)	4.04(2.82,5.25)	
Other	3.54(2.56,4.52)	3.64(2.80,4.47)	2.88(1.39,4.37)	2.98(2.05,3.91)	3.33(1.66,5.01)	3.04(1.78,4.30)	
Unspecified	10.13(8.22,12.05)	7.79(6.41,9.17)	4.73(3.14,6.33)	4.96(4.03,5.89)	6.99(5.25,8.73)	6.02(4.66,7.37)	
Cholesterol(mg/dl)†	194.90±40.98	195.00±39.66	191.78±39.95	188.44±39.94	190.31±41.06	186.04±40.55	
LDL(mg/dl)†	115.60±35.83	116.32±34.82	114.41±34.74	111.74±35.10	112.89±35.82	110.72±35.69	
HDL(mg/dl)†	54.15±15.40	54.40±15.95	53.78±14.93	54.58±16.11	55.97±17.56	54.02±15.74	
Triglyceride(mg/dl)†	125.72±66.36	121.43±64.17	117.95±64.42	110.61±65.08	107.26±63.05	106.48±63.30	
Creatinine(mg/dl)†	123.56±74.93	124.01±74.60	125.83±78.25	119.58±74.02	126.23±77.54	136.33±83.94	
Albumin(mg/dl)†	58.18±663.81	33.09±182.80	37.78±211.82	40.30±250.06	51.49±338.92	56.01±379.49	

*N represents unweighted number, and the remaining values are weighted values using NHANES MEC examination weight.

 $\dagger$ Figures are expressed as mean  $\pm$  standard error, other figures are expressed as percent (95% confidence intervals).

BMI: body mass index; PIR: poverty income ratio; PAL: Physical activity level; LDL: Low-density lipoprotein; HDL: High-density lipoprotein; RA: Rheumatoid arthritis; OA: Osteoarthritis; AH: asymptomatic hyperuricemia (serum urate > 6.8 mg/dL with no gout); NA: no-hyperuricemia.

	OA (OR,95%, P)	RA (OR,95%, P)	Other (OR,95%, P)	Unspecified (OR,95%, P)
Gander				
Male	1	1	1	1
Female	1.35(1.14,1.60)0.00	1.08(0.83,1.41)0.59	1.00(0.78,1.29)1.00	0.99(0.82,1.20)0.96
Age				
20-29	1	T h	1	1
30-39	0.36(0.27,0.49)0.00	0.36(0.24,0.54)0.00	0.35(0.23,0.55)0.00	0.38(0.27,0.53)0.00
40-49	0.80(0.62,1.04)0.97	0.99(0.71,1.38)0.96	0.88(0.64,1.21)0.44	0.95(0.70,1.30)0.74
50-59	2.16(1.72,2.72)0.00	2.12(1.50,3.00)0.000	1.35(1.00,1.83)0.51	1.90(1.44,2.49)0.00
60-69	4.18(3.26,5.35)0.00	3.34(2.50,4.46)0.000	1.69(1.13,2.53)0.01	2.70(1.92,3.78)0.00
70+	5.50(4.18,7.22)0.00	4.57(3.40,6.15)0.000	1.51(0.99,2.33)0.06	4.24(3.16,5.69)0.00

Supplementary Table 2. Subgroup analysis of the association of arthritis subtype (RA, OA, Other and Unspecified) and AH

 All data were adjusted for gender, age, race, BMI, education level and poverty to income ratio, hypertension, ever cigarette smoking and diabetes.

# STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	( <i>a</i> ) Indicate the study's design with a commonly used term in the title or the	1-2
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	
		done and what was found	
Introduction			1
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	5
		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	5
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	5-6
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	-
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	5-6
		describe which groupings were chosen and why	<u> </u>
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	7
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, explain how loss to follow-up was addressed	
		( <u>e</u> ) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7-8
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	7-8
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	8, 13- 14

Main results	16	( <i>a</i> ) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	13- 14
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	14-
		analyses	15
Discussion			
Key results	18	Summarise key results with reference to study objectives	15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	17
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	17
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	17
		applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml