OMTN, Volume 35

Supplemental information

Engineering cGAS-agonistic

oligonucleotides as therapeutics

for cancer immunotherapy

Shurong Zhou, Ting Su, Furong Cheng, Janet Cole, Xiang Liu, Bei Zhang, Shaheer Alam, Jinze Liu, and Guizhi Zhu

Figure S1. **Screening for and characterization of Svg3 as a cGAS agonist.** A) IFN-I response in Raw-ISG cells after 24 h transfection with short hairpin DNAs with or without consecutive guanosine in the overhangs. B) IFN-I response in Raw-ISG cells after 24 h transfection with different G content in the overhangs of short hairpin DNAs. C) Comparison of IFN-I response in Raw-ISG cells of hairpin DNA containing consecutive guanosine or cytosine in the overhangs. D) Integrity of Svg3 after incubation in PBS or cell culture medium containing 10% FBS for 24 h verified by 2% agarose gel electrophoresis. E) IFN- β expression in Raw 264.7 cells after transfection of Svg3, circularized Svg3 or double-stranded Svg3 (with two open overhangs) respectively, for 24 h. F) IFN-I response in Raw-ISG cells after 24 h transfection of chemically modified Svg3.

Figure S2. Liposomes readily loaded Svg3 for efficient delivery and retention of Svg3 in tissues and cells. A) Characterization of the size, polydispersity index (PDI), zeta potential and encapsulation efficiency (EE%) of nanoparticles used in the study. B) Encapsulation efficiency of Svg3 liposomes evaluated by 2% agarose gel electrophoresis. C) Median Cy3 fluorescence intensity from Cy3-Svg3 loaded in liposomes. D) Confocal images of RAW 264.7 cells after incubated with liposomal Cy3-Svg3 for 5 h. E) IVIS imaging of 4T1 tumors after i.t. injection of liposomal IR800-Svg3. F) Fluorescence intensities of 4T1 tumors quantified from IVIS imaging results.

Figure S3. The transcript levels of *cGas* (A) and *Sting* (B) in the indicated three types of human cancers. Human transcript data were downloaded from cBioPortal.

Figure S4. Percentages of DC cells among CD45⁺ cells in as-treated 4T1 tumors.

Figure S5. Svg3 elicited different levels of IFN-I responses in three types of murine tumor cells, as shown by the IFN- β levels in the culture medium after Svg3 transfection (500 nM, 24 h).

Figure S6. Mouse body weights during the course of tumor therapy using the indicated treatments.

Figure S7. Flow cytometry gating trees for the analysis of CD4⁺ T cells, CD8⁺ T cells, DCs, and NK cells in 4T1 tumor microenvironment.

Figure S8. A) Flow cytometry gating strategy for regulatory T cells among CD4⁺ T cells in 4T1 tumor microenvironment analysis. **B)** Flow cytometry gating strategy for myeloid derived suppressor cells, M1-like macrophage and M2-like macrophage in 4T1 tumor microenvironment analysis.

Name	Sequence (5'-3')			
Svg3	CAG GGG GGA CCA CTC TTA AGC CTC AAG GGA AGC TGG GTT GAG			
	GCT TAA GAG TGG TCC CGG GT			
Svg3-PS stem	CAG GGG* G*G*A* C*C*A* C*T*C* T*T*A* A*G*C* C*T*C* A*AG			
	GGA AGC TGG G*T*T* G*A*G* G*C*T* T*A*A* G*A*G* T*G*G*			
	T*C*C* CGG GT			
Svg3-3dT	CAG GGG GGA CCA CTC TTA AGC CTC AAG GGA AGC TGG GTT GAG			
	GCT TAA GAG TGG TCC CGG GT /3InvdT/			
Svg3-PS stem-3dT	CAG GGG* G*G*A* C*C*A* C*T*C* T*T*A* A*G*C* C*T*C* A*AG			
	GGA AGC TGG G*T*T* G*A*G* G*C*T* T*A*A* G*A*G* T*G*G*			
	T*C*C* CGG GT/3InvdT/			
Svc3	CAC CCG GGA CCA CTC TTA AGC CTC AAC CCA AGC TCC GTT GAG			
	GCT TAA GAG TGG TCC CCC CT			
Svg2	CGGGGACCACTCTTAAGCCTCAAGCTGTTGAGGCTTAAGAGTGGTCCC			
	GT			
Svg(3)	GGGACCACTCTTAAGCCTCAAGGGAAGCTGGGTTGAGGCTTAAGAGT			
	GGTCCC			
Svg4	CAGGGGGACCACTCTTAAGCCTCAAGGAAGCTGGTTGAGGCTTAAGA			
	GTGGTCCCGGT			
ISD	5'-TACAGATCTACTAGTGATCTATGACTGATCTGTACATGATCTACA-3'			
(InvivoG	3'-ATGTCTAGATGATCACTAGATACTGACTAGACATGTACTAGATGT-5'			
en)				
DNA_10	TAC TCC AAG CAA GCC CGC TTG GAG TAG TCT TG			
bp				
DNA_14	GTT CTG TTG AGG ATT TAC GGA CAC AAC CGT AAA TCC TCA A			
bp				
DNA_18	GTT CTG TTG AGG ATT TAC GAG GTCAC ACA AGACC TCG TAA ATC			
bp	CTC AA			
DNA_20	GTT CTG TTG AGG ATT TAC GAG GTCGTAC ACA AACGACC TCG TAA			
bp	ATC CTC AA			
DNA_21	CAC CCC GGA CCA CTC TTA AGC CTC AAC CCA AGC TCC GTT GAG			
bp	GCT TAA GAG TGG TCC CCC CT			
DNA_22	GTT CTG CTTTG AGG ATT TAC GAG GTCGTAC ACA AACGACC TCG			
bp	TAA ATC CTC AAAG			
DNA_24	GTT CTG AGCTTTG AGG ATT TAC GAG GTCGTAC ACA AACGACC			
bp	TCG TAA ATC CTC AAAGCT			

Table S1. DNA sequences used for oligonucleotide engineering and screening.

Human genes	5'-3'		
<i>Gapdh</i> -Forward	GGAGCGAGATCCCTCCAAAAT		
Gapdh-Reverse	GGCTGTTGTCATACTTCTCATGG		
<i>lfna2</i> -Forward	GCTTGGGATGAGACCCTCCTA		
<i>Ifna2</i> -Reverse	CCCACCCCTGTATCACAC		
<i>lfnb</i> -Forward	ATGACCAACAAGTGTCTCCTCC		
Ifnb-Reverse	GGAATCCAAGCAAGTTGTAGCTC		
<i>ll6</i> -Forward	ACTCACCTCTTCAGAACGAATTG		
Il6-Reverse	CCATCTTTGGAAGGTTCAGGTTG		
<i>Cxcl10</i> -Forward	GTGGCATTCAAGGAGTACCTC		
Cxcl10-Reverse	TGATGGCCTTCGATTCTGGATT		
Mouse genes			
<i>Gapdh-</i> Forward	CTTTGTCAAGCTCATTTCCTGG		
Gapdh-Reverse	TCTTGCTCAGTGTCCTTGC		
<i>Tnfa</i> -Forward	GGTGCCTATGTCTCAGCCTCTT		
Tnfa-Reverse	GCCATAGAACTGATGAGAGGGAG		
<i>ll6</i> -Forward	GAGGATACCACTCCCAACAGACC		
Il6-Reverse	AAGTGCATCATCGTTGTTCATACA		
<i>Cxcl10</i> -Forward	ATCATCCCTGCGAGCCTATCCT		
Cxcl10-Reverse	GACCTTTTTTGGCTAAACGCTTTC		

Table S2. Primer sequences used for qPCR.

Targets	Fluorochrome	Clone	Vendor	Catalogue #
CD45	Brilliant Violet 421	30-F11	BioLegend	103133
CD11c	Alexa Fluor 594	N418	BioLegend	117346
CD11b	FITC	M1/70	BioLegend	101205
CD8a	APC/Cy7	53-6.7	BioLegend	100713
CD4	PerCP/Cy5.5	GK1.5	BioLegend	100433
CD103	Brilliant Violet 605	2.00E+07	BioLegend	121433
CD205	PE/Cy7	NLDC-145	BioLegend	138209
F4/80	APC/Cy7	BM8	BioLegend	123117
CD11b	PE/Cy5	M1/70	BioLegend	101209
NK1.1	APC	S17016D	BioLegend	156505
CD3	PerCP/Cy5.5	17A2	BioLegend	100217
CD44	PE/Cy5	IM7	BioLegend	103009
CD62L	FITC	MEL-14	BioLegend	104405
CD25	FITC	3C7	BioLegend	101907
FoxP3	Alexa Fluor 647	MF-14	BioLegend	126407
CD279 (PD-1)	N/A	RMP1-14-CP162	Bio X Cell	CP162

Table S3. Details of antibodies used in this study.