Supporting Information for

Synthesis of an Indazole/Indazolium Phosphine Ligand Scaffold and its Application in Gold(I) Catalysis

Asima Munawar,^a Logan T. Maltz,^a Wei-Chun Liu,^a and François P. Gabbaï*,^a

^aDepartment of Chemistry, Texas A&M University, College Station, Texas 77843, United States *Email: francois@tamu.edu

Table of Contents

Experimental3
Synthesis of 24
Crystal Structure of 25
NMR Spectra of 26
Synthesis of 39
NMR Spectra of 310
Synthesis of [4][OTf]13
NMR Spectra of [4][OTf]14
Catalytic Studies
Procedure for Propargyl Amide Cyclization Studies18
Stacked Spectra for Propargyl Amide Cyclization Studies19
Procedure for Enyne Cyclization Studies24
Stacked Spectra for Enyne Cyclization Studies25
References

Experimental

General considerations

4-Bromo-1-methyl-1*H*-indazole¹ **1** and (tht)AuCl (tht = tetrahydrothiophene)² were prepared by following literature methods. All other chemicals were purchased from commercial chemical suppliers and used as received. Solvents were dried by refluxing under N₂ over Na/K (THF) or CaH₂ (DCM and acetonitrile) and being stored over molecular sieves in the glovebox. All other solvents were ACS reagent grade and used as received. ¹H and ³¹P NMR spectra were recorded on a Bruker Avance 400 spectrometer at 298.0 K (400.20 MHz for ¹H; 162.00 MHz for ³¹P{¹H}) and ¹H and ¹³C spectra were recorded on a Bruker Avance 500 NMR spectrometer at 305.0 K (500.13 MHz for ¹H; 125.77 MHz for ¹³C{¹H}) equipped with an automated tuning 5 mm ¹H/¹³C/¹⁵N cold probe. Chemical shifts are given in ppm and are referenced to residual solvent signals ¹H (CHCl₃: 7.26 ppm; CHD₂CN: 1.94 ppm) or ¹³C (CDCl₃: 77.16 ppm; CD₃CN: 1.32 ppm) or external 85% H₃PO₄ (³¹P). Elemental analyses were performed at Atlantic Microlab (Norcross, GA).

Crystallographic measurements

Crystallographic measurements were made on Bruker D8 QUEST diffractometer at 110 K using a Bruker D8 QUEST diffractometer (Mo-K α radiation, = 0.71073 Å) equipped with a Photon III detector. A suitable single crystal was selected and mounted onto a nylon loop in each case. Integrated intensity information for each reflection was obtained by reducing the data frames with the program APEX4.³ The semiempirical method SADABS was used for absorption corrections.⁴ The structures were solved by intrinsic phasing (ShelXT)⁵ and refined by the full-matrix least-square technique against F² with anisotropic temperature-dependent parameters for all non-hydrogen atoms (ShelXL)¹³ using the Olex2-1.5 interface.⁶ All hydrogen atoms were geometrically placed and refined using the riding atom model. Diamond4 was employed for the final data presentation and structure plots. The data has been deposited with the Cambridge Structural Database. CCDC 2288242-2288244 contain the supplementary crystallographic data for this paper.

Synthesis of 2

n-Butyllithium (3.22 mL, 8.1 mmol, 2.5 M in hexanes) was added to a solution of 4-bromo-1-methyl-1Hindazole 1 (1.7010 g, 8.0593 mmol) in THF (50 mL) at -78 °C, leading to a color change from pale yellow to bright orange. The resulting solution was stirred at that temperature for 30 minutes at which point chlorodiphenylphosphine (1.7778 g, 8.0576 mmol) was added dropwise with continuous stirring. The reaction mixture was warmed to room temperature and stirred overnight, then guenched by adding a saturated aqueous ammonium chloride solution (40 mL). After removing the THF via rotary evaporation, the remaining aqueous phase was extracted with CH_2Cl_2 (3 × 30 mL). The organic fractions were combined, dried over MgSO₄, and removed in vacuo to give a yellow oil. This oil was triturated with hexanes, producing a pale-yellow powder which was collected by filtration and dried to afford 2 (1.9060 g, 6.0252 mmol, 75% yield). Single crystals of 2 were obtained as colorless plates by the slow diffusion of hexanes into a CH₂Cl₂ solution of the compound. ¹H NMR (500.13 MHz, CD₃CN, 305.0 K) δ (ppm) 7.62 (s, 1H, indazole-N=CH), 7.53 (d, J = 8.5 Hz, 1H, indazole-H), 7.41-7.32 (m, 11H, 10 from Ph-H and 1 from indazole-H), 6.82 (t, J = 13.9 Hz, 1H, indazole-H), 4.02 (s, 3H, N-CH₃). ¹³C{¹H} NMR (125.77 MHz, CD₃CN, 305.0 K) δ (ppm) 140.44 (d, J = 6.9 Hz, N-ipso-indazole-C), 137.09 (d, J = 10.4 Hz, indazole-C), 134.77 (d, J = 20.4 Hz, o-Ph-C), 132.74 (d, J = 8.0 Hz, indazole-N=CH), 131.70 (d, J = 14.1 Hz, ipso-indazole-C), 130.19 (s, p-Ph-C), 129.72 (d, J = 7.2 Hz, m-Ph-C), 127.20 (d, J = 21.8 Hz, ipso-Ph-C), 126.95 (d, J = 4.0 Hz, indazole-C), 126.45 (d, J = 9.1 Hz, indazole-C), 111.28 (s, indazole-C), 36.21 (s, N-CH₃).³¹P{¹H} NMR (161.95 MHz, CD₃CN, 298.0 K) δ (ppm) -11.84 (s). Elemental Analysis: C₂₀H₁₇N₂P: Calculated: C, 75.94; H, 5.42; N, 8.86; Found: C, 76.07; H, 5.31; N, 8.89.

Crystal Structure of 2

Figure S1. Crystal structure of **2**. Hydrogen atoms omitted for clarity. Thermal ellipsoids drawn at 50% probability, and phenyl groups drawn as thin lines (gray: C, blue: N, magenta: P).

Figure S2. ¹H NMR (500.13 MHz, CD₃CN) spectrum of 2.

Figure S3. ¹³C{¹H} NMR (125.77 MHz, CD₃CN) spectrum of 2.

Figure S4. ${}^{31}P{}^{1}H$ NMR (161.95 MHz, CD₃CN) spectrum of 2.

Synthesis of 3

(tht)AuCl (0.6256 g, 1.951 mmol) was added to a solution of **2** (0.6010 g, 1.900 mmol) in DCM (15 mL) at room temperature. The resulting solution was stirred for 30 minutes and then triturated with hexanes followed by filtration and drying to afford **3** as a white powder (0.9075 g, 1.654 mmol, 87% yield). Single crystals of **3** were obtained as colorless plates by the slow diffusion of hexanes into a CH₂Cl₂ solution of the compound. ¹H NMR (400.20 MHz, CD₃CN, 298.0 K) δ (ppm) 7.83 (s, 1H, indazole-N=CH), 7.77 (dd, *J* = 8.6, 2.4 Hz, 1H, indazole-*H*), 7.67 – 7.62 (m, 6 H, Ph-*H*), 7.57 – 7.53 (m, 4H, Ph-*H*), 7.46 (m, 1H, indazole-*H*), 6.98 (dd, *J* = 14.5, 7.0 Hz, 1H, indazole-*H*), 4.08 (s, 3H, N-CH₃). ¹³C[¹H} NMR (125.77 MHz, CD₃CN, 305.0 K) δ (ppm) 140.81 (d, *J* = 10.9 Hz, *N-ipso*-indazole-*C*), 135.39 (d, *J* = 14.1 Hz, *o*-Ph-*C*), 133.49 (d, *J* = 2.7 Hz, *p*-Ph-*C*), 131.94 (d, *J* = 6.0 Hz, indazole-N=CH), 130.54 (d, *J* = 12.0 Hz, *m*-Ph-*C*), 128.74 (d, *J* = 63.8 Hz, *ipso*-Ph-*C*), 128.36 (d, *J* = 9.1 Hz, indazole-*C*), 126.82 (d, *J* = 11.7 Hz, indazole-*C*), 125.23 (d, *J* = 13.7 Hz, indazole-*C*), 122.17 (d, *J* = 62.3 Hz, *ipso*-indazole-*C*), 115.02 (d, *J* = 2.7 Hz, indazole-*C*), 36.48 (s, N-CH₃). ³¹P{¹H} NMR (162.00 MHz, CD₃CN, 298.0 K) δ (ppm) 26.06 (s). Elemental Analysis: C₂₀H₁₇AuClN₂P: Calculated: C, 43.78; H, 3.12; N, 5.10; Found: C, 43.67; H, 3.31; N, 5.01.

Figure S5. ¹H NMR (400.20 MHz, CD₃CN) spectrum of **3**.

Figure S6. ¹³C{¹H} NMR (125.77 MHz, CD₃CN) spectrum of 3.

150 130 110 50 -50 31P (ppm) -70 -25 90 70 30 10 -10 -30 -90 -110 -130 -150 -170 -190 -210 -230

Figure S7. ³¹P{¹H} NMR (162.00 MHz, CD₃CN) spectrum of **3**.

Synthesis of [4][OTf]

In a glove box, 3 (0.5120 g, 0.9330 mmol) was dissolved in dry DCM (2 mL) and methyl trifluoromethanesulfonate (0.1686 g, 1.027 mmol) was added dropwise with continuous stirring. The resulting mixture was stirred overnight at room temperature. The resulting solution was combined with hexanes (5 mL), resulting in the precipitation of [4][OTf] as a pale-yellow powder (0.5223 g, 0.7327 mmol, 79% yield). The powder was collected by filtration and further washed with Et₂O and hexanes. Colorless single crystals of [4][OTf] were obtained by slow diffusion of Et_2O into a concentrated solution of CH_3CN . ¹**H NMR** (500.13 MHz, CD₃CN, 305.0 K) δ (ppm) 8.70 (s, 1H, indazole-N=CH), 7.97 (d, J = 8.9 Hz, 1H, indazole-H), 7.86 – 7.83 (m, 1H, indazole-H), 7.71 – 7.65 (m, 6H, Ph-H), 7.62 – 7.58 (m, 4H, Ph-H), 7.18 (dd, J = 13.7, 7.0 Hz, 1H, indazole-H), 4.19 (s, 6H, N-CH₃). ¹³C{¹H} NMR (125.77 MHz, CD₃CN, 305.0 K) δ (ppm) 141.70 (d, J = 10.0 Hz, N-ipso-indazole-C), 135.78 (d, J = 14.6 Hz, o-Ph-C), 134.16 (d, J = 2.6 Hz, p-Ph-C), 133.80 (d, J = 10.4 Hz, indazole-C), 132.95 (d, J = 5.8 Hz, indazole-C), 132.15 (d, J = 6.5 Hz, indazole-N=CH), 130.87 (d, J = 12.3 Hz, m-Ph-C), 127.03 (d, J = 64.9 Hz, ipso-Ph-C), 125.57 (d, J = 59.6 Hz, ipso-indazole-C), 120.46 (d, J = 14.1 Hz, indazole-C), 116.02 (d, J = 2.6 Hz indazole-C), 39.24 (s, N-CH₃), 34.72 (s, N-CH₃). ³¹P{¹H} NMR (162.00 MHz, CD₃CN, 298.0 K) δ (ppm) 24.97 (s). ¹⁹F NMR (376.42 MHz, CD₃CN, 298.0 K) δ (ppm) -79.32 (s) Elemental Analysis: C22H20AuClF3N2O3PS: Calculated: C, 37.07; H, 2.83; N, 3.93; Found: C, 36.80; H, 2.75; N, 3.76.

Figure S8. ¹H NMR (500.13 MHz, CD₃CN) spectrum of [4][OTf].

Figure S9. ¹³C{¹H} NMR (125.77 MHz, CD₃CN) spectrum of [4][OTf].

Figure S10. ³¹P{¹H} NMR (162.00 MHz, CD₃CN) spectrum of [4][OTf].

Figure S11. ¹⁹F NMR (376.42 MHz, CD₃CN) spectrum of [4][OTf].

Catalytic Studies

Procedure for Propargyl Amide Cyclization Studies

For the catalytic studies of propargyl amide cyclization, *N*-propargyl-4-fluorobenzamide (42.5 mg, 0.240 mmol) was added to a 20 mL vial with 2 mol% of crystallized catalyst. A solution of CDCl₃ (0.660 mL) and HFIP (60.0 μ L) were then added to the 20 mL vial to dissolve the reaction mixture. An aliquot of 0.600 mL of this mixture was then added to an NMR tube, and the reaction progress was monitored *in situ* via ¹H NMR. Spectra were recorded every 20 minutes. Final conversion of the reaction was measured based on the integrated ¹H NMR spectra. The same procedure was followed for the trials without HFIP, but the volume of CDCl₃ was adjusted to 0.720 mL to maintain the same reaction concentration. ¹H NMR (500.13 MHz, CDCl₃, 305.0 K) δ (ppm) 7.97 (dd, *J* = 8.8, 5.3 Hz, 2H, Ar-H), 7.15 (t, *J* = 17.3 Hz, 2H, Ar-H), 4.91 (q, J = 3.3 Hz, 1H, =CH₂), 4.60 (t, *J* = 6.0 Hz, 2H, CH₂), 4.47 (q, *J* = 2.9 Hz, 1H, =CH₂). The results of these catalyses are presented in **Table 1** in the main text.

Stacked Spectra for Propargyl Amide Cyclization Studies

Figure S12. Stacked ¹H NMR spectra (500.13 MHz, CDCl₃, 305.0 K) collected in situ during the reaction corresponding to Entry 1 in **Table 1** of the main text. Starting material (**5**): blue circle; Product (**6**): red circle

Figure S13. Stacked ¹H NMR spectra (500.13 MHz, $CDCl_3$, 305.0 K) collected in situ during the reaction corresponding to Entry 2 in **Table 1** of the main text. Starting material (**5**): blue circle; Product (**6**): red circle

Figure S14. Stacked ¹H NMR spectra (500.13 MHz, CDCl₃, 305.0 K) collected in situ during the reaction corresponding to Entry 3 in **Table 1** of the main text. Starting material (**5**): blue circle; Product (**6**): red circle

Figure S15. Stacked ¹H NMR spectra (500.13 MHz, CDCl₃, 305.0 K) collected in situ during the reaction corresponding to Entry 4 in **Table 1** of the main text. Starting material (**5**): blue circle

Figure S16. Stacked ¹H NMR spectra (500.13 MHz, CDCl₃, 305.0 K) collected in situ during the reaction corresponding to Entry 5 in **Table 1** of the main text. Starting material (**5**): blue circle; Product (**6**): red circle

Procedure for Enyne Cyclization Studies

For the catalytic studies of enyne cyclization, 2-allyl-2-(2-propynyl)malonate (71.5 mg, 0.300 mmol) was added to a 20 mL vial with 5 mol% of crystallized catalyst. A solution of CDCl₃ (0.600 mL) and HFIP (0.300 mL) were then added to the 20 mL vial to dissolve the reaction mixture. An aliquot of 0.600 mL of this mixture was then added to an NMR tube, and the reaction progress was monitored *in situ* via ¹H NMR. Spectra were recorded every 20 minutes. Final conversion of the reaction was measured based on the integrated ¹H NMR spectra. The same procedure was followed for the trials without HFIP, but the volume of CDCl₃ was adjusted to 0.900 mL to maintain the same reaction concentration. **8a:** ¹H NMR (500.13 MHz, CDCl₃, 305.0 K) δ (ppm) 6.15 (d, J = 9.9 Hz, 1H), 5.77 – 5.73 (m, 1H), 4.94 (d, J = 14.0 Hz, 2H), 4.20 (m, 4H), 2.84 (t, J = 1.6 Hz, 2H), 2.64 (dd, J = 4.4, 2.1 Hz, 2H), 1.26 (m, 6H). **8b:** ¹H NMR (500.13 MHz, CDCl₃, 305.0 K) δ (ppm) 6.48 (dd, J = 17.5, 10.8 Hz, 1H), 5.60 (t, J = 2.4 Hz, 1H), 5.15 – 5.12 (m, 2H), 4.22 (m, 4H), 3.11 – 3.08 (d, J = 13.4 Hz, 4H), 1.27 (m, 6H).

Stacked Spectra for Enyne Cyclization Studies

Figure S17. Stacked ¹H NMR spectra (500.13 MHz, CDCl₃, 305.0 K) collected in situ during the reaction corresponding to Entry 1 in **Table 2** of the main text. Starting material (**7**): blue circle

Figure S18. Stacked ¹H NMR spectra (500.13 MHz, $CDCl_3$, 305.0 K) collected in situ during the reaction corresponding to Entry 2 in **Table 2** of the main text. Starting material (**7**): blue circle

Figure S19. Stacked ¹H NMR spectra (500.13 MHz, CDCl₃, 305.0 K) collected in situ during the reaction corresponding to Entry 3 in **Table 2** of the main text. Starting material (**7**): blue circle; Product (**8a**): red circle; Product (**8b**): purple circle

Figure S20. Stacked ¹H NMR spectra (500.13 MHz, $CDCl_3$, 305.0 K) collected in situ during the reaction corresponding to Entry 4 in **Table 2** of the main text. Starting material (**7**): blue circle

Figure S21. Stacked ¹H NMR spectra (500.13 MHz, $CDCl_3$, 305.0 K) collected in situ during the reaction corresponding to Entry 5 in **Table 2** of the main text. Starting material (**7**): blue circle

References

- 1. Carreras, J.; Pereira, A.; Zanini, M.; Echavarren, A. M., Variations on the Theme of JohnPhos Gold(I) Catalysts: Arsine and Carbene Complexes with Similar Architectures. *Organometallics* **2018**, *37*, 3588-3597.
- 2. Uson, R.; Laguna, A.; Laguna, M., Tetrahydrothiophene gold(I) or gold(III) complexes. *Inorganic Syntheses* **1989**, *26*, 85-91.
- 3. APEX4; Bruker AXS Inc.: Madison, Wisconsin, USA. 2021.
- 4. Sheldrick, G. M., SADABS, Version 2007/4, Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA. 2007.
- 5. Sheldrick, G. M., SHELXT integrated space-group and crystal-structure determination. *Acta Crystallographica Section A* **2015**, *71*, 3-8.
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *Journal of Applied Crystallography* 2009, 42, 339-341.