## **Supplemental Material**

Table S1. Effect of model pretraining on RV ejection fraction prediction from MSH dataset.

|                     |                    | Pretrained model | Non-pretrained model |
|---------------------|--------------------|------------------|----------------------|
| Regression task     | MAE                | 7.8              | 8.5                  |
| metrics             | R <sup>2</sup>     | 0.36             | 0.29                 |
|                     | CCC                | 0.57             | 0.52                 |
|                     | BA mean difference | -0.4             | 0.5                  |
|                     | BA 95% upper LOA   | 19.7             | 21.9                 |
|                     | BA 95% lower LOA   | -20.4            | -21.8                |
| Classification task | AUROC              | 0.81             | 0.78                 |
| metrics             | AUPRC              | 0.59             | 0.54                 |

Table S2. Effect of model pretraining on RV end diastolic volume prediction from MSH dataset.

|                     |                    | Pretrained model | Non-pretrained |
|---------------------|--------------------|------------------|----------------|
|                     |                    |                  | model          |
| Regression task     | MAE                | 17.6             | 20.5           |
| metrics             | R <sup>2</sup>     | 0.25             | 0.15           |
|                     | CCC                | 0.43             | 0.38           |
|                     | BA mean difference | -2.2             | -0.25          |
|                     | BA 95% upper LOA   | 45               | 53             |
|                     | BA 95% lower LOA   | -50              | -54            |
| Classification task | AUROC              | 0.81             | 0.65           |
| metrics             | AUPRC              | 0.35             | 0.28           |

MAE: mean absolute error; CCC: Lin's concordance correlation coefficient; BA: Bland Altman; LOA: limit of agreement; AUROC: Area under the receiver operating curve, AUPRC: area under the precision recall curve

| Table S3. | Comparison | of UK | Biobanks | and MSH | test sets. |
|-----------|------------|-------|----------|---------|------------|
|           |            |       |          |         |            |

|                            | UKBB          | MSH <sub>original</sub> | р      |
|----------------------------|---------------|-------------------------|--------|
|                            | Test set      | Test set                |        |
|                            | (n=8,588)     | (n=604)                 |        |
| Mean Age (SD)              | 64.7 (7.7)    | 55.9 (17.0)             | <0.001 |
| Sex, Female (%)            | 4,535 (53.8%) | 209 (36.3%)             | <0.001 |
| Race:                      |               |                         |        |
| White                      | 8,284 (96.5%) | 258 (42.7%)             | <0.001 |
| Black                      | 57 (0.7%)     | 101 (16.7%)             |        |
| Other/Unknown              | 247 (2.9%)    | 245 (40.6%)             |        |
| Mean body Surface Area,    | 1.89 (0.23)   | 1.96 (0.27)             | <0.001 |
| m <sup>2</sup> (SD)        |               |                         |        |
| Right Ventricular Ejection | 84 (1.0%)     | 109 (18.0%)             | <0.001 |
| Fraction <40%              |               |                         |        |
| Right Ventricular End      | 153 (1.8%)    | 62 (10.6%)              | <0.001 |
| Diastolic Volume >120      |               |                         |        |

| Table S4. | Comparison of | AIC for surv | vival model v | variable | selection. |
|-----------|---------------|--------------|---------------|----------|------------|
|           |               |              |               |          |            |

| Model covariates                                          | AIC   |
|-----------------------------------------------------------|-------|
| LVEF                                                      | 706.4 |
| LVEF+ age                                                 | 695.1 |
| LVEF+ age+ hospitalized status                            | 691.7 |
| LVEF+ age+ hospitalized status + race                     | 695.6 |
| LVEF+ age+ hospitalized status + BMI>30                   | 695.2 |
| LVEF+ age+ hospitalized status + normal sinus rhythm      | 695.0 |
| LVEF+ age+ hospitalized status + sex                      | 694.1 |
| LVEF+ age+ hospitalized status + cardiomyopathy diagnosis | 693.0 |
| All the above                                             | 709.3 |

## Table S5. Addition of MRI versus ECG-predicted RVEF to base survival model.

|                                                           | AIC   | Model C-statistic |
|-----------------------------------------------------------|-------|-------------------|
| Base Model: LVEF + age+ hospitalized                      | 691.8 | .690              |
| Model 1 : LVEF+ MRI-quantified RVEF+ age+<br>hospitalized | 681.4 | .724              |
| Model 2: LVEF+ ECG-predicted RVEF+ age+<br>hospitalized   | 689.2 | .699              |

| Model Variable       | HR [95%CI]       | р      |
|----------------------|------------------|--------|
| MRI RVEF (every      | 1.55 [1.22-1.99] | <0.001 |
| 10% decrease)        |                  |        |
| MRI LVEF (every      | 0.88 [0.72-1.06] | 0.19   |
| 10% decrease)        |                  |        |
| Age <u>&gt;</u> 60   | 3.10 [1.8-5.3]   | <0.001 |
| Hospitalized at cMRI | 1.94 [1.14-3.29] | 0.014  |

 Table S6. Cox multivariable model for survival including MRI-quantified RVEF.



Figure S1. Bland-Altman analysis of manual versus automated contouring methods.

Bland-Altman plot comparison between automatic versus manual contouring of (a) RV ejection fraction and (b) BSA-indexed RV end diastolic volume





Martingale Residual plots for analysis of linear risk assumption of continuous variables for Cox Proportional Hazards Models. Visual inspection of mean smoother line suggests linear risk in LVEF (a) and ECG-predicted RVEF (b) variables. However, age (c) is nonlinearly related to risk with an increase in risk suggested after age 60 years.