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1. Complimentary R-package 

 SVDFunctions – a complimentary R-package consists of a collection of functions and 

utilities to be used on the local machine with case cohort for fast and reproducible preprocessing 

of the local genetic data for further control selection with SCoRe online platform. Specifically, we 

provide utilities to read VCF files, impute missing genotypes for performing SVD-based analyses 

and generation of the shareable non-individual level data in a form of a single YAML-file that can 

be uploaded to the dnascore.net for control selection. 

1.1. Control selection algorithm 

1.1.1. Genotype matrix generation 

SVDFunctions implies local availability of case cohort genotypes in the form of VCF file. 

We provide the function genotypeMatrixVCF() that reads a raw or compressed (GZ or BGZ) VCF 

file and creates a matrix of genotypes for a prespecified set of variants. We provide two 

recommended sets of the LD-pruned common autosomal variants for each control exome dataset 

used in the study through the objects in the SVDFunctions package - publicExomesDataset and 

finSwedDataset. 

Genotypes are encoded as 0, 1, 2 (HomRef, Het, HomAlt, respectively). Optionally, we 

provide control over quality filtering – DP and GQ metrics for genotypes, as well as 

allowed rate of missing values per variant.  

The function filterGmatrix() is used to post-process the original genotype matrices and 

filter them using the sample and variant call rate filters as needed for a particular usage scenario. 

1.1.2. Genotype imputation  

 Conventional approach to PCA in genetics replaces missing genotypes with mean 

genotypes for a given variant to ensure the completeness of the genotype matrix. In the presence 

of samples from multiple sequencing platforms in the same dataset, there are several distinct 

patterns of missing values that would suffer from systematic bias in case of applying the traditional 

solution for missing values imputation. Therefore, we developed a predictive model for imputing 

the missing genotypes that can learn such patterns from the given dataset itself. The imputation 

method does not use reference LD panels and is aimed to be a lightweight high-throughput 

replacement or in case when no good quality reference panel is available. 
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To eliminate missing genotypes, we use a modification of the Random Forest regressor. 

The process of imputation is completed at the time of reading a VCF file. For each variant in the 

file, genotypes of individuals with non-missing genotypes for this variant for the 100 nearest 

variants in the maximum window of 250kb, are used as sample features. The predictor for missing 

genotypes is built once for a variant and by default consists of 16 decision trees. Each tree is 

constructed after performing the sample bagging. At the time of training of the model, splits are 

performed on features with maximum information gain.  

 At the first step, a complete sample emerged as a result of bagging, consisting of pairs 

(sample, weight), enters the process of construction of a decision tree. The weight of each sample 

is set to 1.0 at this step. Then each feature and each splitting point is tested for being a maximum 

cut in terms of the information gain. Then samples are divided into two smaller bags depending 

on the selected split condition. In the case of missing value of the splitting feature for a specific 

sample, it appears in both bags with weights proportional to the frequency of each possible value 

calculated on the known values of the original bag. The procedure is repeated for each 

constructed node of the decision tree until either all samples reaching the node have the same 

value for the prediction feature, or there is no split available. 

For each node we calculate the expected squared error in case of sampling from posterior 

multinomial distribution with Jeffrey’s priors. Post pruning of the trees is performed using the 

errors. If such error in the node is smaller than the one expected if the split persists, then the left 

and right subtrees can be cut off. 

The process of prediction starts from the root node of each decision tree. The descending 

in the tree is performed by following the conditions at each node. The solution is returned when 

the process reaches the leaf node. Weighted mean value of the samples at the node is returned. 

If the process of traversing reaches the node where the value of the splitting feature is not 

available for the predicting sample then the process splits into two. Returned values from the 

subtrees are mixed proportionally to the frequencies of the known values in the training sample 

that reached the node.  

Therefore, we construct an entire genotype matrix with no missing values, keeping the 

information about which genotypes were imputed in a separate boolean matrix. 

Unlike other solutions used to overcome the problem of the missing values in PCA/SVD, 

which use mean genotypes for a variant as a substitute for the missing genotypes, our approach 

delivers more accurate imputation quality that is critical for the downstream steps of case-control 

matching. 
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To evaluate the quality of the genotype imputation algorithm, we used 1000 Genomes 

OMNI array genotyping data for 2318, downloaded from 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/ALL.ch

ip.omni_broad_sanger_combined.20140818.snps.genotypes.vcf.gz  . The imputation of missing 

genotypes at variants that could be used for control selection in SVDFunctions package (N=4,116 

after intersecting with variants available in the 1000 genomes) was performed using 

genotypeMatrixVCF() . As a control experiment we used the conventional approach of replacing 

missing genotypes with a variant mean. 

 

We performed 5-fold cross validation and estimated mean squared error. We divided all 

the samples from the dataset randomly into five equally sized buckets. Training the model on the 

four out of five buckets we tested the model on the remaining one. Each bucket has been used 

as a test cohort exactly one time implying five runs of the train-test procedure forcing each sample 

to be weighted equivalently in the resulting error. The setting with zero decision trees has been 

added as a control method. The control method predictor returns the mean value of the genotype 

per variant (Supplementary Figure 1).  

 
Supplementary Figure 1. Performance analysis of the SVDFunctions imputation tool. Log 

scaled mean squared error for the prediction of genotypes in 5-fold cross validation for the 

known good quality variants. First bar depicts the predictor with no decision trees and returning 

mean value, similar to the approach used in conventional PCA of genotype matrices. 16 
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decision trees is sufficient for producing good quality predictions in reasonable time, which is 

more practical when imputation is performed on a personal computer with few cores available. 

Central line represents median, upper and lower horizontal lines represent upper and lower 

quartile values.  

 

The described above procedure of reading the VCF file is performed with 

genotypeMatrixVCF() function and imputation of the genotypes and creation of the genotype 

matrix are activated by default setting impute=TRUE. 

As a result, the function produces a list of two matrices – a genotype matrix with imputed 

values and a boolean matrix indicating which of the genotypes were imputed. Additionally, the 

function returns summary details on the VCF reading and imputation process. 

 

1.1.3. Harmonizing the genotype matrices of case and control pool  

In case if not all variants from the control pool offered for ancestry matching are found in 

the case cohort, the following procedure is used to reconcile the case and control pool samples 

to the same basis.  Original matrix 𝑈!" generated from the control pool is used to construct a 

matrix 𝑈!""  through the row elimination. The rows that should be eliminated correspond to the 

variants that are missing in the case cohort. Next, the coordinates of eigenvectors of case 

genotype vector projections in the basis 𝑈!""  should be obtained. This is achieved through inverting 

the matrix  𝑈!"" . Throughout the manuscript we use 𝑈!", implying that the same logic applies to  

𝑈!""  if the basis harmonization procedure has been used. For better performance of the matching 

process and avoidance of possible computational errors due to close to singular matrix input after 

reduction, we require that at least 500 variants are available for the matching process in the local 

case cohort.  

1.1.4. Subsampling control set using simulated annealing 

Minimization of the BHEP statistic during the process of control sampling is achieved using 

a simulated annealing algorithm. A subset of a control cohort could be represented as a binary 

vector of the size of a complete control cohort with 0 indicating absence from the subset and 1 

indicating presence in the subset. For a fixed subset size the number of 1s in the vector must be 

equal to the subset size. Neighboring solutions are selected in a way that two positions with 

different values in a vector are inverted keeping the number of ones and zeros the same. 
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 The fitness of the control subset data points in the 𝑈!" to the case distribution is assessed 

with BHEP statistic. Simulated annealing is one of the conventional meta-heuristic algorithms for 

optimization of functions, including the ones with binary features (subset vector). As a result, the 

optimization algorithm returns a binary vector (subset) attempting to maximize BHEP statistic. 

Simulated annealing can be interpreted as a hill climbing algorithm with a modification that 

enables preference of non-improving solutions with probability 𝑝	 = 	 𝑒#$%/', where 𝛥𝐸 is the 

difference in optimizing function value and parameter T is referred to as “temperature”, that 

decreases throughout the process. For our implementation we have selected the annealing 

schedule as follows: the temperature at the iteration 𝑖 + 1 is defined by the equation 𝑇()! 	= 	𝑐𝑇(. 

By definition, the value of the BHEP statistic is ranged between 0 and 1, therefore it is possible to 

set initial and final temperatures such, that the only parameter of the algorithm is left - a number 

of iterations 𝑁. We implemented this step by setting the Initial temperature 𝑇" to satisfy the 

condition of two subsets with maximal difference in BHEP statistics to be accepted with probability 
!
*
. Maximal difference of BHEP statistics according to definition is 1, and given the probability of 

½ we can estimate T0 as: 𝑇" = − $%
+,	.

= !
+,	*

 . On the other hand, final temperature 𝑇/ is chosen so 

that difference in function values of size of machine precision (ε) would be accepted with 

probability !
*
, meaning 𝑇, 	= − $%

+,	.
= 0

+,	*
. Parameter 𝑐 is then calculated using 𝑇", 𝑇/ and number 

of steps 𝑁, leaving 𝑁 as a single parameter of the algorithm.  

Now, using this parameter, we can establish a complete process of optimization of the 

target value which is the BHEP statistic for a fixed subset size. For a fixed control cohort, the 

number of iterations is the only parameter that determines the running time of the algorithm. In 

our R-package function selectControls the parameter is called ‘iterations' and by default is equal 

to 105. 

 

1.2. Framework and tools for control selection protocol 

1.2.1. Outlier detection and cohort PCA-normalization 

 

 As in any association study involving shared genotypes, outliers should be identified and 

removed from the analysis and the case cohort entering the analysis should represent relatively 

homogeneous ancestry. Although these steps could be performed manually before using our 
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algorithm, we developed a data preprocessing protocol that performs these steps in a situation 

where control genotypes are not available.  

First, on the local machine, PCA is performed only on the cohort of cases. To remove 

outliers, we first run the k-nearest neighbors anomaly detection algorithm. The number of samples 

to be removed could be predefined based on visual peculiarities of principal components picked 

up by a user on a local machine. Then, we use the approach similar to the subsampling process 

implemented during control set selection to get the distribution of case data points closer to 

Gaussian. We fix both  𝜇1 and 𝐾 (Methods, Shareable Data Generation) and run simulated 

annealing to select a subset of the size of 95% of the original case cohort with minimized BHEP 

statistic. This step is optional and could be used to increase the size of the selected control cohort 

at the cost of decreasing the size of the case cohort (Supplementary Figure 2). 

We illustrate the outlier removal protocol with a cohort of 244 breast cancer samples of 

European descent (dbGAP accession id: phs000822.v1.p1).  

 The cohort includes individuals with early onset (<35 y.o.) breast cancer. Patient went 

through the preliminary screening of previously known risk germline variants in BRCA1 and 

BRCA2. All individuals were sequenced using Agilent exome capture  

 First, a VCF file with 251 samples was converted to a genotype matrix containing 

genotypes for variants from the list provided by the package SVDFunctions and missing 

genotypes imputed using Random Forest (Genotype Imputation). Then, the variants and 

samples in the genotype matrix were subjected to quality filtration using filterGmatrix function with 

minimum variant call rate set to 0.95 and minimum sample call rate set to 0.9. Then PCA matrix 

was constructed using gmatrixPCA() function from the R package with the control pool basis 

obtained from the SVDFunctions object publicExomesDataset. 

 Second, outliers were removed internally by calling the function prepareInstance that is 

used to generate shareable data that later could be uploaded to the SCoRe server. Each cluster 

is processed with a two-step outlier elimination algorithm. First, outliers are detected using K-

nearest neighbors (KNN) anomaly detection algorithm. Next, we estimate the parameters of 

multivariate normal distribution for cases by running maximum-likelihood estimator (MLE) on the 

case coordinates, producing mean and covariance. Next, the multivariate normal distribution filter 

is applied, which eliminates outliers based on maximization of the BHEP statistics. BHEP statistics 

assesses similarity between observed case distribution and the fitted multivariate normal 

distribution. The maximization process is implemented through the simulated annealing algorithm, 

similarly to the control selection process (Subsampling control set using simulated 
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annealing). A user can provide the share of samples to be eliminated by each outlier detection 

algorithm by passing values to parameters knn_drop and normalize_drop. 
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Supplementary Figure 2. Outlier elimination algorithm applied with different thresholds. 
(a) - (c) KNN removal is fixed at the rate 0.05, while MVN subsampling is set to 0.05, 0.15, 0.3 

correspondingly. (d) - (f) –- MVN subsampling rate is set to 0.05, while KNN dropout rate is set 

to 0.05, 0.15, 0.3 correspondingly. 

1.2.2. Multiple ancestry clusters 

The single Gaussian model can be easily extended to the Gaussian mixture model, 

supporting the presence of several population clusters. To keep for the downstream association 

studies as large case clusters as possible, we use hierarchical Gaussian clustering. It represents 

clustering of the case cohort as a binary tree, where each node, including internal ones, 

represents a parametrized multivariate normal distribution. The control selection process is then 

performed for each node independently. If it is possible to select controls for the larger case 

cluster, represented as a parental node, then both subtrees could be excluded from the return 

results. We set a specific set of rules of multi-cluster selection of controls to form the returnable 

results to ensure that no overlapping sample will be used for the association study and the 

selected control dataset has optimal quality 
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In the presence of multiple ancestry clusters in the case cohort, the MClust package is 

used to perform hierarchical clustering on coordinates of case samples in the basis 

𝑈!" (Supplementary Figure 3a).  

Each node in the clustering object, including internal ones, corresponds to a subset of 

case samples. At each node the outlier elimination step is performed independently (Outlier 
detection and cohort PCA-normalization). Then, shareable data is created for every cluster 

and could be sent to the remote control pool. On the remote server, for each case subset the 

control selection process returns an appropriate subset of control samples. Note, the same control 

sample can be present in more than one of such subsets (Supplementary Figure 3b). 

We developed a procedure ensuring that the returned control subset, when used for 

association testing on the local machine, participates in the analysis only with non-overlapping 

sets of samples. First, control subsets could not be returned along with control subsets for cluster-

descendants (i.e. control set for case cluster 1U2 could not be returned along with control set for 

clusters 1 or 2). Second, we provide information on genotype counts for all permitted for return 

clusters and for sample overlaps between them (i.e. in case if control sets are returned for case 

clusters 1U2 and 3, genotype count file will include the data on each of these subsets and the 

overlap between control set for case cluster 1U2 and case cluster 3). 

From each subtree the pairs of non-overlapping case cohorts and corresponding matched 

control sets forming association tests with inflation factor below soft threshold with maximum 

number of used samples from control pool is returned. It can be set by using parameter 

mergeCoef of the function selectControlsHier that it is favorable to consider merged case clusters 

as case cohort even if the matched control set is smaller than union of control sets for individual 

clusters by constant factor. If some of the case clusters do not participate in one of such pairs 

then control set below hard threshold is returned for this cluster. If two pairs contain the same 

case cluster then the one with minimal inflation factor is returned (Supplementary Figure 3c). 
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Supplementary Figure 3. Selecting controls in multiple ancestry clusters setting. Figure 
(a) describes the hierarchical structure of given three clusters, figure (b) depicts the procedure 

at which the best control set is selected. Finally, figure (c) shows what data are precomputed for 
each cluster and for the merged clusters and for what data the controls selection routine is run. 
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1.2.3. Shareable data structure (YAML file) 

 

SVDFunctions package contains tools for building a YAML file that is used as an effective 

structured framework for transmission of shareable data needed for control selection to a remote 

server. First, it contains a subset of variants found in cases from the list of variants available for 

matching supplied through SVDFunctions. Second, the population structure of the case cohort is 

stored as a tree. And, finally, each node cluster, including internal ones has a separate record in 

the file, containing genotype counts of each variant and cluster distribution parameters under the 

assumption of multivariate normality of sample coordinates in control pool basis within clusters. 

Importantly, our algorithm assumes that a case cohort should be represented by a 

relatively homogenous ancestral cluster, which is a common scenario in genotype sharing 

association studies as well. Therefore, if multiple ancestries are present in the case cohort it is 

important to separate them and generate shareable data for each cluster. We implemented a 

hierarchical clustering function estimateCaseClusters() that detects clusters in case cohort PCA 

space. It uses MClust library with hierarchical Gaussian mixture model based on Bayesian 

information criterion (BIC) to detect an optimal number of clusters. 

For each case cluster SVD is performed on a genotype matrix with imputed values. 

Additionally, summary genotype counts are estimated from the genotype matrix with missing 

values, to ensure that imputation does not introduce bias into the allele frequencies. 

The process of generation of shareable data for the entire case cohort was automated 

with function prepareInstance(). It takes as an input both genotype matrices with and without 

imputed genotypes for the case cohort and clustering object returned by estimateCaseClusters(). 

Eigenvectors of the matrix constructed from the projected vectors of genotype matrix into U10 

basis corresponding to a cluster of cases and summary genotype counts for each cluster are 

formatted into a YAML file in concordance with cluster hierarchy, so that it could be recovered on 

the control server. Further, the generated YAML file could be directly uploaded to dnascore.net 

as input for control selection. 

 

1.2.4. Control data access and control set genotype counts generation 

VCF files with thousands of samples could not be efficiently accessed for summary 

allele frequency calculations in a high-throughput manner. Therefore, we developed a 

binary format for fast query of genotype counts. VCF files for Public Exomes and Nordic 
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dataset control samples were converted into binary databases with scanVCF() function, 

allowing genotype and variant quality filters. Such binary database could be 

efficiently accessed from the cloud environment by multiple workers to maintain queries 

from several users at the same time with no notable slow down. 

Selected control set (Supplementary Figure 3) is used to query binary database with 

scanBinaryFile() function to obtain summary genotype counts using user-provided 

genotype quality filters. When using control selection for multi-cluster input it is possible 

that control sets for some clusters will overlap (i.e. some control samples will fit in more 

than one cluster control set). Therefore, in case of selecting 3 control sets as optimal 

(Supplementary Figure 3, Control sets for cluster #1, cluster #2, cluster #3), for output from the 

control 

database will contain information about summary genotype counts for each independent 

cluster and all possible overlaps: #1∩#2, #1∩#3, #2∩#3, #1∩#2∩#3. 

Information about overlapping samples could be used in two ways. First, counts 

for overlapping samples could be simply subtracted from counts for individual clusters 

control sets. In this way independent, non-overlapping control sets will be obtained. 

Second, it is feasible to use association test strategies for overlapping control samples4,5. 

1.2.5. SCoRe server design 

SVD-based Control Repository (SCoRe) is implemented using R Shiny package6 and 

could be accessed at http://dnascore.net . SCoRe is hosted at Google Cloud environment 

providing users with access to two control datasets described in the main text – Global 

Populations and Nordic exomes.  

To use the platform, user needs to install R-package “SVDFunctions” from 

https://github.com/alexloboda/SVDFunctions  and create a genotype matrix for the set of variants 

provided for matching for each of the two datasets, starting from the case VCF file 

(genotypeMatrixVCF() function), perform genotype matrix quality filtration to eliminate poorly 

covered samples or variants (filterGmatrix() function) and prepare the YAML file with shareable 

data (Shareable data structure (YAML file)) . Resulting YAML file could be directly uploaded to  

http://dnascore.net .  

SCoRe will select the control set, generate the QQ plots for each cluster (and cluster 

compositions), and report genomic inflation estimated on the variants that were used for matching. 
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If a file with either a list of variants or gene names for which information from the control set should 

be returned is provided – SCoRe will also provide a link to download control genotype count data.  

Each session has a unique ID and the user will be notified over the e-mail about the status 

of the job. Session could be revisited using the link from the e-mail.  

Additional security precautions were implemented to exclude possibility of individual 

genotype disclosure, by finding two control sets, different by only one sample. We set a hard 

threshold on a minimal number of selected controls (100 samples) to deliver allele frequencies to 

the user. Also, we clustered controls in the PCA space into clusters of 16 samples(using ELKI1 

same-size k-means clustering algorithm) and fixed them, so that the minimal difference between 

any two control sets would be 1 indivisible cluster (16 fixed samples), so the individual level 

genotypes could not be uncovered in any way.  

DP, GQ parameters for controls genotype quality could be specified to match case dataset 

QC standards. We provide users with an option to specify desired matching accuracy (λ, genomic 

inflation).  

Queries to the database could be asking for variant based frequencies or cumulative 

counts of rare variants per gene. For variant based queries we provide summary allele counts for 

any variant except singletons in chosen control set. Instead, singletons could be obtained in the 

form of summary per gene. To ensure there is no bias in inclusion of variants into the rare variant 

association tests, we provide an option to specify MAF threshold using publicly released allele 

frequencies from gnomAD, in this way, MAF is not biased by number of samples in case or control 

set.  

Illustrated tutorial and test data are available within the “Tutorial” section at 

http://dnascore.net .  

 

2. Datasets available through SCoRe 

2.1. Exome dataset details 
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Supplementary Table 1. Samples available for control matching through SCoRe platform Global Populations dataset 
Project Sample 

Count 
Access Majorly 

Represented 
Ancestries 

Ascertainment Sequencing 
Depth 

1000 Genomes 1544 https://www.internationalge
nome.org/data/ 

AFR, AMR, 
EAS, EUR, 
SAS 

- 37.5X 

Myocardial Infarction 
Genetics Exome Sequencing 
Consortium: Italian 
Atherosclerosis Thrombosis 
and 
Vascular Biology 

3438 phs000814.v1.p1 
(dbGAP) 

EUR healthy subjects 
without a history 
of 
thromboembolic 
disease. They 
were enrolled 
from among the 
blood donors or 
staff of the 
participating 
hospitals.  

32X 

Autism_Daly_NIMH/NHGRI(A
RRA)  
WholeExome 

216 - EUR No ASD 45.5X 

NHLBI Exome Sequencing 
Project 

4387 http://evs.gs.washington.ed
u/EVS/ 

EUR, AFR https://www.ncbi.
nlm.nih.gov/proje
cts/gap/cgi-
bin/study.cgi?stu
dy_id=phs00040
0.v3.p1 

34.3X 

NHGRI_Autism_Daly 151 - EUR No ASD 45X 
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Myocardial Infarction 
Genetics Exome Sequencing 
Consortium:  
Ottawa Heart Study 

999 phs000806.v1.p1 
(dbGAP) 

EUR Asymptomatic for 
cardiovascular 
disease elderly 
persons without 
cardiovascular 
disease history 
were selected as 
controls (>=65 
years of age for 
males, >=70 
years of age for 
females) and 
recruited by an 
advertising 
campaign in the 
Ottawa 
community. 

32.9X 

T2Genes study 5797 phs001552.v1.p1 (dbGAP) AFR, AMR, 
EAS, EUR, 
SAS 

Controls were 
participants who 
had no prior 
history of type-2 
diabetes, had 
normal glucose 
levels or HbA1c 
levels < 6.0% 

32.6X 

Total 16532     
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Supplementary Table 2. Samples available for control matching through SCoRe platform Finnish and Swedish exomes 
dataset. 
 
Project Sample 

Count 
Access Ancestries Ascertainment Mean 

Sequencing 
Depth 

1000 
Genomes 

49 https://www.internationalgenome.org/data/  FIN - 40.1X 

AD FINRISK 204 https://www.ncbi.nlm.nih.gov/pubmed/29165699  FIN No Alzheimer’s 
disease 

38.4X 

AD Twins 
Sistonen 

325 https://thl.fi/en/web/thl-biobank/for-
researchers/sample-collections  

FIN No Alzheimer’s 
disease 

36.7X 

Controls 
Holtman 

6037 https://thl.fi/en/web/thl-biobank/for-
researchers/sample-collections  

SWE - 38.1X 

Controls 
NFBC 

745 https://thl.fi/en/web/thl-biobank/for-
researchers/sample-collections  

FIN - 54.6X 

FINRISK 8994 https://www.ncbi.nlm.nih.gov/pubmed/29165699  FIN - 35X 
Health 2000 1673 https://thl.fi/en/web/thl-biobank/for-

researchers/sample-collections  
FIN - 52.8X 

IBD Finrisk 
(controls) 

662 http://www.type2diabetesgenetics.org/projects/t2
dGenes 

FIN No IBD 35.1X 

T2D Fusion 806 http://www.type2diabetesgenetics.org/projects/t2
dGenes 

FIN No T2D 41.7X 

T2D 921 http://www.type2diabetesgenetics.org/projects/t2
dGenes 

FIN No T2D 34X 

T2D Metsim 952 http://www.type2diabetesgenetics.org/projects/t2
dGenes 

FIN No T2D 35.3X 

UK10K 1572 https://www.uk10k.org/data_access.html  FIN - 38.2X 
Total 22940    38.3X 
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2.2. Exome sequencing data QC 

Both Global Populations and Finnish&Swedish exome datasets were subjected to per 

sample and per variant quality filtration with further construction of genotype matrix for common 

autosomal LD-pruned variants. Genotype matrices were further used for SVD and case-control 

matching experiments. SVDFunctions R-package provides all functionality needed for running 

this workflow. 

 
Supplementary Figure 4. Exome sequencing data QC. 
 
 

3. Performance evaluation 

 

3.1. Method cross-validation 
 
 We evaluated the performance of the algorithm in selecting the controls from the 
appropriate ancestry through the series of cross-validation experiments. First, using Public 
Exomes dataset, random 500 samples from each continental ancestry were set aside as a case 
cohort with the rest becoming a pool of controls. The control selection algorithm was then applied 
to the simulated cohort of cases and resulting control sets were evaluated for proportion of 
samples from the same continental ancestry (true positive) and other ancestries (false positives). 
In this experiment, soft threshold genomic inflation was varied from 1 to 10 with 1 corresponding 
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to the targeted “ideal” case-control matching and 10 corresponding to selection of the entire 
control pool as a matched control dataset (Supplementary Figure 5a). 
 Additionally, parameter sensitivity for the size of the case dataset was tested 
(Supplementary Figures 5b, 5c). 
 

 
Supplementary Figure 5. ROC analysis for ancestry selection and sensitivity to the size of 
a case cohort. 
(A) Area under the ROC curve. True positive – selection of the control sample from the same 
continental ancestry as case cohort. Estimates are based on 10 random case cohort selections 
for each value of genomic inflation – 1, 1.02, 1.05, 1.1, 1.2, 1.3, 1.5, 1.7, 2, 5, 50; (B) True positive 
rate is generally increasing or remaining the same as the case cohort size increases; (C) False 
positive rate is low, ensuring no samples of other than target ancestry are not selected for the 
control set. TPR and FPR calculated based on target genomic inflation of 1.05 in 10 random case 
groups. Points in the figure represent mean of 10 simulations and whiskers represent standard 
deviation. 
 
 

3.2. Fine-scale ancestries matching in independent dataset 

Next, we evaluated the ability of our approach to select controls for fine-scale ancestries 
and discriminate the situations when no controls from the specific fine-scale ancestry are available 
in the control pool. 

As a case cohort we used 1708 unrelated samples from the 1000 Genomes, genotyped 
using the OMNI microarray. Such a scenario represents both the fine-scale ancestry control 
selection challenge and the selection of controls for the datasets that were not jointly processed, 
and even were generated using two different genotype discovery techniques. 

Supplementary Figure 6 represents results of the control selection for each fine-scale 

ancestry from 1000 genomes. Bottom panel highlights the cohorts for which the selection of 

controls is impossible within the defined hard threshold (λ≤1.05). 
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We confirmed that such a result is consistent with absence of the control candidates in 
Public Exomes dataset from the local subpopulations that would not be returning the results using 
our algorithm. Conventional PCA shows no control candidates aligning the case cohort genotypes 
(Supplementary Figure 6). 

 
Supplementary Figure 6. Fine-scale ancestry matching using 1000 Genomes microarray-
based data as dummy case dataset. Top: Summary of control selection exercise for fine-scale 
ancestries present in 1000 Genomes data.  Some 1000 Genomes samples are also present in 
the control pool (Public Exomes dataset). Bottom: Control candidates for some of the fine-scale 
ancestries are not available in the control pool resulting in inability to select matched control 
delivering 
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Supplementary Figure 7. Joint PCA of the simulated case cohorts from each subpopulation 
from 1000 Genomes with a pool of controls. 

3.3. Selecting controls for case cohorts with internal structure of 

subpopulations 

 Next, we illustrate the selection of controls for a cohort of European population, containing 
samples from multiple local subpopulations and different genotype discovery technique from the 
control pool. We used the 1000 genomes European cohort for this experiment. First, the VCF file 
for 1000 Genomes OMNI array genotyping data was downloaded from 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/ ). 
Related individuals with PI_HAT>0.2 were excluded from the dataset (only one sample of the 
related cluster was kept). The resulting dataset with 459 European samples was converted to 
genotype matrix. Clusters within the case dataset were identified using estimateCaseClusters 
function and outliers were removed by running prepareInstance with default parameters. Public 
Exomes dataset was used as a pool of controls. Results of control selection for the multi-cluster 
input are presented in Supplementary Figure 8. 
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Supplementary Figure 8. 1000 Genomes European case cohort clustering and 

hierarchical control selection. (a) Composition of fine-scale ancestries in European 
continental ancestry cohort of 1000 Genomes data; (b) PCA in the space of case cohort and 
clustering highlights with clustering performed in basis of control PCA space; (c) Bayesian 

information criterion used in underlying Mclust clustering algorithm; (d) Case cluster hierarchy; 
(e) Cluster composition with respect to local European ancestries; (f) Control selection results 

for each cluster. Cluster 2, composed primarily of Finnish-descent samples has only few 
adequately selected controls as they are almost absent in the control pool; (g-i) QQ-plots for 

association tests with the selected control cohorts for each fine-scale ancestry cluster. 
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3.4. Cross-sequencing platforms control selection 
 

 
 

Supplementary Figure 9. Sequencing platform complexity. (A) Sequencing platform 
composition and (B) Conventional, genotype-based PCA of Finnish and Swedish exome dataset 

(N=22,940). 
 
We performed a test showing capability of the method to produce high-quality results for 

usage scenarios when case and control cohorts were sequenced using different exome captures. 
First, as a case cohort was constructed from all NEXTERA samples from the Nordic dataset were 
selected (Supplementary Figure 10a-b). Genotypes then were filtered using 0.9 as variant and 
sample call rate thresholds. Then the 𝑈!" basis was constructed based on the genotypes of the 
remaining dataset which was used as a pool of controls.   

After default filtering routines performed 2454 case samples were left and proceeded to 
the control matching step (Supplementary Figure 9c). With no clustering within the case cohort 
control set of 1507 samples were matched. Among these samples only 62 are reported as 
Swedish (Supplementary Figure 9d).  Resulting association study (Supplementary Figure 9e) 
shows desirable level of inflation of QQ plot showing the evidence of importance of quality control 
protocols. 

a b 
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Supplementary Figure 10. Multi-platform association study using SCORE platform. (a) 
Platform composition of the Nordic dataset. (b)  Principal component analysis for case and 
control cohorts in U10 basis of controls. (c) Number of matched controls compared to the 

number of cases and control pool across all sequencing captures. (d) Populational composition 
of case cohort, matched controls and control pool based on self-reported populational affiliation. 

(e) Association study conducted on the variants used for matching. (f-h) Gene-based rare 
synonymous variants association study (minor allele count in controls = 1, <=2, <=3). In panels 
(e-h) solid line represents a diagonal, dashed lines indicate 95% confidence interval, two-sided 

Fisher’s exact test was used. 
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To perform this case study, we have selected the Finnish samples from 1000 Genomes 
that are a part of public exomes dataset (Supplementary Figure 11a). All the samples were 
sequenced using AGILENT exome capture. Then we have selected the Nordic dataset and 
removed all AGILENT samples from the control pool. PrepareInstance function from our R-
package was used to perform variant quality control, no samples were removed by outlier 
detection algorithm due to small sample size of the case cohort. Then the control set for the case 
cohort was matched (Supplementary Figure 11b-d). All sequencing platforms from the Nordic 
dataset are present as a part of the control set (Supplementary Figure 11e).  

 
Supplementary Figure 11. Case study: cross-platform association study. (a) Principal 

component analysis performed on both case and controls cohorts showing projections of the 
samples in the U10 matrix constructed for the nordic dataset. (b) Populational stratification in 

both cohorts based on self-reported metadata. (c) QQ-plot of test statistics of association 
studies performed on synonymous variants that were not used in matching process - solid line 
represents a diagonal, dashed lines indicate 95% confidence interval, two-sided Fisher’s exact 

test. Raw, unadjusted p-values reported; (d) Population stratification of selected controls 
showing self-reported population affiliation of samples. (e) Sample counts of each sequencing 

capture to be found in case cohort and matched controls. 
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3.5. Selection of control samples from the specific sequencing 
platform 
 We provide the tools for simple construction of the call rate matrices from the VCF files 
and the file with sequencing intervals.  The function callRateMatrixVCF() builds a matrix of call 
rates per sample per region, given a set of genomic regions. For each region provided, all the 
variants within the range are scanned and the missing genotype rate is computed for each 
sample. The resulting matrix consists of rows corresponding to regions and columns – to samples. 
An entry value represents the call rate for a sample in a particular genomic region, given the DP 
and GQ filter thresholds. Usually, the regions could be taken from the exome capture BED-file. 

 
Supplementary Figure 12.Gaussian model fitting and parameter sensitivity for platform 
selection workflow. (A) Distribution of residual vector norms in Nextera “cases” experiment, 

colored with respect to Gaussian clusters identified by Mclust algorithm. (B-D) True positive and 
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false positive proportions in 100 simulation runs for selecting Nextera control candidates. (F) 
Distribution of residual vector norms in Agilent “cases” experiment, colored with respect to 

Gaussian clusters identified by Mclust algorithm. (G-H) True positive proportions in 100 
simulation runs for selecting Agilent control candidates. In the figure, points represent mean of 

100 simulations and whiskers represent standard deviation. 
 
 

4. Case study. Breast cancer association study using SCoRe 
platform. 

 4.1. Description of the dataset 

 

Test dataset of individuals with breast cancer was obtained from dbGAP (access ID: 

phs000822.v1.p1). Original cohort included individuals with early onset breast cancer  (<35 

years), pre-screened for known risk variants in breast cancer susceptibility genes. The cohort 

included individuals of European ancestry. Agilent v6 exome capture was used with mean 

coverage across the cohort 38X. 
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4.2. Rare variants with different thresholds 

 
Supplementary Figure 13. Rare variant analysis for BRCA dataset with different minor allele 
frequency thresholds: (a) 10-3, (b) – 10-4, (c) – 10-5. Solid line represents a diagonal, dashed 

lines indicate 95% confidence interval. Two-sided Fisher’s exact test was used. Raw, 
unadjusted p-values reported 
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4.3. Matching controls with shared genotypes  

 Shared-genotypes PCA was performed on a joint dataset of breast cancer cohort and 
Public Exomes dataset. Controls were matched through subsampling of the control pool to 
match the observed distributions of PC1-PC4 (Supplementary Figure 14). 

 
Supplementary Figure 14. Manual selection of controls from the Public Exomes dataset 

for the breast cancer dataset with shared genotypes. 
(A) PCA for case cohort and control candidates; (B) counts of samples in each cohort; (C) PCA 

for case cohort and selected controls; (D) Alignment of PC distributions between cases and 
control candidate cohorts; (E) Alignment of PC distributions between cases and selected control 

cohorts; (F) QQ-plot for common synonymous variation association testing (linear regression, 
two-sided) in case cohort and control candidates cohort; (G) QQ-plot for common synonymous 
variation association testing (linear regression, two-sided) in case and selected control cohorts. 

Solid line represents a diagonal, dashed lines indicate 95% confidence interval. 

a b c 

d e 

f g 
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4.4. Power calculations  

 
Supplementary Figure 15. BRCA power estimates. (a) Power estimates for fisher’s exact 

test. (b) Comparison of statistical power of case-control cohort assembled by SCoRe server. 

 

5. Case Study. TCGA African-American cohort pan-cancer 
association study. 

We used the dataset of TCGA germline exome sequencing, assembled as described in 
Artomov et al2. Using principal component analysis, a cluster of African-American individuals, 
N=471. Using the SVDFunctions package, shareable data was prepared for Public Exomes 
control pool and controls were selected using online SCoRe platform (Supplementary Figure 
16A). The local cohort included three ancestral clusters (Supplementary Figure 16B). SCoRe 
returned 700, 128 controls with l=1.00, 1.03 for clusters 1 and 2, respectively. No controls within 
l=0.9-1.3 were found for cluster 3. We focused downstream analyses on the largest case cluster 
- 1. Supplementary Figures 16C-D illustrate great matching quality for the variants that were 
used for matching and common (MAF>1%) synonymous variants that were not used in control-
matching process. Supplementary Figure 16E shows gene-based Fisher-exact test for rare 

a 

b 



 31 

(MAF < 1%) synonymous variants confirming adequate quality of fine-scale ancestry matching. 
Finally, Supplementary Figure 16F shows common (MAF>1%) missense and protein-truncating 
variants association with rs71214816 in PRIM2 being the top-association. 

 
We have further analyzed the clusters in the case cohort to assess the effectiveness of 

our approach. Cluster 1 aligned with ASW/ACB fine-scale ancestries from 1000 genomes, 
indicating the predominant presence of African-American descent individuals. Cluster 2 contained 
admixed individuals (mostly European and African-American admixture). Cluster 3 consists of the 
individuals which were PCA outliers and were not classified to neither cluster 1 or 2. 

Selection of control cohorts for both cluster 1 and 2 indicate that our method is agnostic 
of the ancestry and works well for both homogenous cohorts and admixed cohorts. The only 
requirement that our method has is that the data can be shaped into approximately Gaussian 
form and we provide a specific functionality to do so. 
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Supplementary Figure 16. Pan-cancer TCGA association study in African-American cohort 
without individual-level data sharing using SCoRe. 
(A) Data processing scheme; (B) Clusters identified in case cohort; (C) Clustering of the case 
cohort; (D) QQ-plot for DNA variants used for control selection for cluster 1; (E) Common 
(MAF>1%) synonymous variants association for cluster 1; (F) Singleton gene-based synonymous 
variants association for cluster 1. Only genes with at least 5 singletons in cases shown; (G) 
common (MAF>1%) missense and PTV association study. In panels (D-G) solid line represents 
a diagonal, dashed lines indicate 95% confidence interval. Two-sided Fisher’s exact test was 
used. Raw, unadjusted p-values reported. 
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 As a control experiment, we then shared the genotypes between case and control cohorts 
and performed a conventional association study using joint PCA-based control matching, which 
resulted in selection of 1,706 controls for case cluster 1 and association study results that 
confirmed the findings made with SCoRe (Supplementary Figure 17). 

 
Supplementary Figure 17. Conventional genotype-sharing pan-cancer TCGA association 
study in African-American cohort. 
(A) Joint PCA; (B) selected controls and case-cohort; (C) QQ-plot for common (MAF>1%) 
variants. Solid line represents a diagonal, dashed lines indicate 95% confidence interval. Two-
sided Fisher’s exact test was used. Raw, unadjusted p-values reported 

6. Case Study. Focal Segmental Glomerulosclerosis African-
American cohort association study. 

 We used a cohort of gene panel-sequencing focal segmental glomerulosclerosis (FSGS) 
assembled as described in Yu et al3.  A cluster of African-American individuals (N=130) was 
identified using PCA. Importantly, the panel sequencing approach significantly limits the number 
of LD-independent variants that could be used for the populations structure identification, which 
limits the ability to use default settings of the SCoRe platform. However, it is feasible to create 
multiple reference basis involving variants commonly present in clinical panels to serve multiple 
types of data. In this case, we created a control basis space for the 724 variants that were 
observed in the FSGS gene panel and performed control subject selection without individual-level 
data sharing, consistently with the approach described for other case studies (Supplementary 
Figure 18A-B). We were able to obtain 700 controls with genomic inflation 1.00 (Supplementary 
Figure 18C). Both variants used for matching and common synonymous variants were found to 
be well-calibrated between case and control cohorts (Supplementary Figure 18D). Finally 
common (MAF > 5%) variants association study, replicated association of rs73885319 in APOL1 
(p= 3.13x10-4) that is a known risk factor for FSGS in African-American population 
(Supplementary Figure 18D). 
 

a b c 
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Supplementary Figure 18. Case study of FSGS in African-American population. 
(A) Processing scheme for an association study without individual-level data sharing; (B) Joint 
PCA of FSGS cohort and control pool illustrating African-American cluster of FSGS cases; (C) 
QQ-plot for variants used for control selection; (D) Common (MAF>5%) synonymous QQ-plot; 
(E) Common (MAF>5%) missense and PTV QQ-plot showing a top association of rs73885319 
in APOL1. In panels (C-E) solid line represents a diagonal, dashed lines indicate 95% 
confidence interval. Two-sided Fisher’s exact test was used. Raw, unadjusted p-values 
reported. 
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