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Supplementary Figures 

 

 
Figure S1. Head-to-head comparisons of the top 5L long-range mean absolute distance errors (MAE) between 

DeepMSA2 and (A) BLAST, (B) PSIBLAST, (C) MMseqs2, (D) HHblits, and (E) HMMER, calculated on 271 

monomer protein domains from CASP13-15. Points below the diagonal indicate better performance by DeepMSA2 

relative to each control. This analysis has excluded 22 domains from protein complexes (for example, H1137, which 

forms an interwound alpha-helix barrel, see Figure 6B), for which the contact/distance maps for each of the domains 

are irrelevant for DeepPotential predictions. 

 

  



 

 
Figure S2. Comparisons of MSAs generated by DeepMSA2 and five control methods on 293 CASP monomer protein 

domains. (A) The number of the effective sequences (Neff); (B) the average sequence identity (SeqId) between the 

query and the homologous sequences in the MSAs; (C) the average alignment coverage (cov) between the query and 

the homologous sequences in the MSAs on FM, TBM, and all CASP monomer proteins. For the ‘All’ column, n=293 

monomer domains from CASP13-15; for the ‘TBM’ column, n=161 template-based modeling (TBM) monomer 

domains from CASP13-15; for the ‘FM’ column, n=132 free modeling (FM) monomer domains from CASP13-15. 

The height of each bar indicates the mean value and error bar depicts the 95% confidence interval for each variable 

using Student’s t-distribution. 

 

 

  



 

 

Figure S3. An illustration of (A) evolutionary information and (B) co-evolutionary information contained in multiple 

sequence alignments. 

 

  



 

 

Figure S4. Case studies on domains from CASP13, CASP14, and CASP15, where the TM-scores of DMFold 

models (Right) have improved by more than 0.3 over those obtained using AlphaFold2 (Left). 

  



 
Figure S5. Structural comparisons between DMFold models and AlphaFold2 DB models on 1,934 human proteins 

for which the DMFold creates high-quality models with pLDDT≥0.7, while AlphaFold2 DB models have a 

confidence score of pLDDT<0.7. The histogram shows the distribution of TM-scores between DMFold and 

AlphaFold2 DB on each target. There are 385 of 1,934 targets, where two methods generate similar modes with TM-

scores between two methods’ models of ≥0.6, where the rest of 1549 (80%) have TM-score <0.6. 

 
  



 
Figure S6.  A head-to-head comparison between TM-score and pLDDT for final models by DMFold on 48 human 

proteins that have recently solved experimental structures, testing the performance of pLDDT as a binary classifier 

for whether a model is correctly folded (using pLDDT≥0.7 as the model-based prediction, and TM-score between the 

model and the experimental structure >0.5 as the ground truth). ‘TP’ means the number of true positive models, where 

DMFold models are predicted as foldable with a pLDDT ≥0.7, and are also actually foldable with a TM-score ≥0.5. 

‘FP’ means the number of false positive models, where DMFold models are predicted as foldable with a pLDDT ≥0.7, 

but are actually non-foldable with a TM-score <0.5. ‘TN’ means the number of true negative models, where DMFold 

models are predicted as non-foldable with a pLDDT <0.7, and are also actually non-foldable with a TM-score <0.5. 

‘FN’ means the number of false positive models, where DMFold models are predicted as non-foldable with a pLDDT 

<0.7, but are actually foldable with a TM-score ≥0.5. 

 



 
Figure S7. Illustrative examples of H1140, H1141, and H1144 in the CASP15 Multimeric Modeling Section, which 

are all nanobody-antigen complexes. The first column shows the experimentally solved structures, while the second 

and third columns are the predicted models by AlphaFold2-Multimer and DMFold-Multimer, respectively. ‘TM’ 

means TM-score of the complex models. ‘F1’ represents the Interface Contact Score (ICS), or F1 score, which is 

defined as 2*TP/(2*TP+FP+FN), where TP is the number of correctly predicted interface contacts, FP is the number 

of wrongly predicted interface contacts from the model which are not contacts in the experimental structure, and FN 

is the number of Interface contacts present in the experimental structure but predicted as non-contacts in the model. 

  

  



 
Figure S8. Case study of Target H1144 from the CASP15 Multimeric Modeling Section, which is a nanobody-antigen 

complex. (A) 3D scatter plot for TM-score, predicted TM-score, and Neff of paired MSAs on DMFold-Multimer 

decoys. Here, the predicted TM-score is defined by pTMS=0.2*pTM+0.8*ipTM, where pTM and ipTM are predicted 

TM-scores for monomer and interface models, respectively, following AlphaFold2 modeling. The larger-sized cyan 

points are 3D points, representing DMFold-Multimer decoys with different TM-scores, predicted TM-scores, and Neff 

of paired MSAs, where the red point refers to the 3D point corresponding to the decoy with the highest predicted TM-

score. The smaller-sized black points represent the projection of 3D cyan points on the 2D planes, where the yellow 

points indicate the projection of the 3D red point on each of the 2D planes. Here, some DMFold-Multimer decoys 

have very high TM-scores as well as high predicted TM-scores, so they can be correctly selected as the final model 

based on the highest predicted TM-score. (B) The residue-residue distance map (heat map) for the model with the 

highest predicted TM-score from DMFold-Multimer (upper triangle) compared to that calculated from the 

experimental structure (lower triangle). (C) Top 100 species contributing to the paired MSA for H1144 ranked by the 

number of paired sequences. (D) Same as in panel ‘A’, but modeled with AlphaFold2-Multimer. Note that the panel 

‘D’ has the same number of points (decoys) as panel ‘A’, but most of points overlap, and no high-quality models are 

generated. (E) Same as in panel ‘B’, but modeled with AlphaFold2-Multimer.  

  



 

 
Figure S9. Case study of target H1142 from the CASP15 Multimeric Modeling Section, which is a nanobody-antigen 

complex. (A) The experimental structure and the DMFold-Multimer model for H1142. (B) The 3D scatter plot for 

TM-score, predicted TM-score, and Neff of paired MSAs on DMFold-Multimer decoys of H1142. The larger-sized 

cyan points are 3D points, representing DMFold-Multimer decoys with different TM-score, predicted TM-score, and 

Neff of paired MSAs, where the red point is the 3D point corresponding to the decoy with the highest predicted TM-

score. The smaller-sized black points represent the projection of 3D cyan points on each 2D plane, where the yellow 

points indicate the projection of the 3D red point on each of the 2D planes. (C) The residue-residue distance map (heat 

map) for the model with the highest predicted TM-score from DMFold-Multimer (upper triangle) versus that 

calculated from the experimental structure (lower triangle) for H1142. 

 
  



 
Figure S10. TM-score of DMFold models versus (A) the Neff of DeepMSA2 MSAs, and (B) the alignment coverage 

between the query and homologous sequences of the DeepMSA2 MSAs on 62 CASP13-15 ‘FM’ monomer protein 

domains. The ‘FM’ domains that came from protein complex are excluded in this analysis due to possible interference 

from binding partners. The red line indicates the average TM-score in each Neff bin. Two approximate thresholds, 

Neff=20 and Neff=24, are plotted by blue dashed lines. The average TM-scores with Neff lower than 20, between 20 and 

24, and higher than 24 are roughly below 0.70, approximate 0.85, and higher than 0.90, respectively. If a domain does 

not have any homologous sequence in the MSA, we define the coverage as 0. 

  



 

 
Figure S11. An illustration of the process used to generate paired MSAs in DeepMSA2-Multimer for a homomeric 

A3 complex (i.e., a homotrimer). (A) DeepMSA2-Monomer is used to generate a set of up to ten MSAs for the 

monomer protein sequence. After pLDDT score ranking, ten multimer MSAs are created by concatenating each of the 

monomer MSAs three times side-by-side. (B) The multimeric MSA is generated by concatenating the same monomer 

MSAs side-by-side an appropriate number of times. 

 

  



 
 
Figure S12. An illustration of the process used to generate paired MSAs in DeepMSA2-Multimer for an A2B2C1 

heteromeric complex. (A) For each unique sequence chain, DeepMSA2-Monomer is first used to generate and rank 

up to ten candidate MSAs. Up to 64 complex MSAs are then generated by enumerating and linking all top monomer 

MSAs ordered by DeepMSA2-Monomer, i.e., 111, 112, 113, 114, 121, 122, 123, …. (B) The final multimeric MSAs 

are created by a two-step process: First, the sequences in each monomer MSA are grouped based on the UniProt 

annotated species and ranked based on the sequence identity to the query sequence. Second, the sequences within the 

same group are concatenated based on the ranking order by the minimum number of sequences from any of the 

component monomeric MSAs, where the red ‘x’ in figure means deleting the extra sequences. 

 

  



 

Figure S13. Architecture of DeepPotential networks for protein contact and distance map prediction (see Methods 

section in the main text and references cited therein for additional detail). 

 

  



Supplementary Tables 

 
Table S1. Benchmark results for the first threading template of HHsearch based on DeepMSA2’s MSAs or the 

indicated third-party methods’ MSAs on 287 CASP13, CASP14, and CASP15 monomer domains (six domains are 

excluded from all 293 CASP domains because HHsearch failed in generating results with some of the MSAs). P-

values were calculated between TM-scores from DeepMSA2 and other third-party methods by paired one-sided 

Student’s t-tests. The bold fonts highlight the best performance in each category. 

 

Domain type Method TM-score P-value 

All 

DeepMSA2 0.492 - 

BLAST 0.454 6.35E-14 

PSIBLAST 0.448 5.12E-19 

MMseqs2 0.469 2.72E-08 

HHblits 0.463 8.60E-14 

HMMER 0.448 1.09E-16 

FM 

DeepMSA2 0.286 - 

BLAST 0.245 9.41E-08 

PSIBLAST 0.247 3.41E-08 

MMseqs2 0.261 2.36E-04 

HHblits 0.264 1.16E-06 

HMMER 0.238 8.64E-10 

TBM 

DeepMSA2 0.668 - 

BLAST 0.632 7.94E-08 

PSIBLAST 0.619 5.44E-13 

MMseqs2 0.645 1.74E-05 

HHblits 0.633 5.96E-09 

HMMER 0.627 8.81E-09 

 

  



Table S2. Long-range contact prediction precision by DeepPotential using MSAs from DeepMSA2 and the five 

control methods on CASP13, CASP14, and CASP15 monomer protein domains. Here, the long-range contacts are 

defined as contacts (i.e., distance<8Å) with sequence separation |i-j|≥24. P-values were calculated between the results 

from DeepPotential using DeepMSA2 MSA and third-party methods by paired one-sided Student’s t-tests. The 

analysis has excluded the 22 domains from all 293 CASP domains because (i) DeepPotential failed in generating 

results for some of the MSAs (for example, HMMER MSA that contains too many sequences), or (ii) the target is 

from the hard protein complexes for DeepPotential to make a prediction (for example, domains from a protein complex 

H1137, which are interwind helices with few long-range contacts in individual chains). The bold fonts highlight the 

best performance in each category. 

 

Domain Type 
Method Long range 

 L/5 P-value L/2 P-value L P-value 

All 

DeepMSA2 0.831 - 0.737 - 0.601 - 

BLAST 0.734 2.06E-13 0.635 2.06E-18 0.514 1.61E-21 

PSIBLAST 0.790 5.47E-06 0.698 5.71E-07 0.566 3.99E-09 

MMseqs2 0.790 4.14E-06 0.699 4.66E-06 0.568 6.57E-07 

HHblits 0.788 1.23E-05 0.694 4.22E-06 0.559 1.23E-07 

HMMER 0.740 1.37E-10 0.655 1.53E-11 0.538 4.57E-12 

FM 

DeepMSA2 0.721 - 0.608 - 0.473 - 

BLAST 0.592 4.53E-09 0.487 2.17E-10 0.376 2.28E-11 

PSIBLAST 0.656 5.02E-05 0.552 1.48E-05 0.424 4.33E-07 

MMseqs2 0.653 5.83E-05 0.554 1.74E-04 0.428 5.63E-05 

HHblits 0.676 1.14E-03 0.576 5.44E-03 0.451 1.26E-02 

HMMER 0.576 8.77E-09 0.485 1.88E-09 0.381 2.37E-09 

TBM 

DeepMSA2 0.926 - 0.849 - 0.711 - 

BLAST 0.855 4.29E-06 0.763 7.57E-10 0.631 6.37E-12 

PSIBLAST 0.904 1.63E-02 0.823 4.55E-03 0.688 8.46E-04 

MMseqs2 0.908 1.10E-02 0.824 4.45E-03 0.689 1.79E-03 

HHblits 0.883 1.77E-03 0.794 1.33E-04 0.652 1.16E-06 

HMMER 0.881 1.21E-03 0.801 4.26E-04 0.672 1.29E-04 

 

  



Table S3. Top 5L long-range mean absolute distance error (MAE) on CASP13, CASP14, and CASP15 monomer 

protein domains. The analysis has excluded the 22 domains from all 293 CASP domains because (i) DeepPotential 

failed in generating results for some of the MSAs (for example, HMMER MSA that contains too many sequences), or 

(ii) the target is from the hard protein complexes for DeepPotential to make a prediction (for example, domains from 

a protein complex H1137, which are interwind helices with few long-range contacts in individual chains).The residue-

residue distances were predicted by DeepPotential with MSAs from DeepMSA2 and the five control methods. P-

values were calculated between MAEs from DeepMSA2 and other five control methods by paired one-sided Student’s 

t-tests. The bold fonts highlight the best performance in each category. 

 

Domain Type Method MAE P-value 

All 

DeepMSA2 2.22 - 

BLAST 3.09 1.62E-22 

PSIBLAST 2.70 5.79E-12 

MMseqs2 2.68 1.03E-07 

HHblits 2.74 1.26E-09 

HMMER 2.98 4.80E-13 

FM 

DeepMSA2 3.42 - 

BLAST 4.44 1.55E-10 

PSIBLAST 4.11 2.16E-07 

MMseqs2 4.07 3.92E-04 

HHblits 3.74 1.31E-04 

HMMER 4.49 8.83E-08 

TBM 

DeepMSA2 1.20 - 

BLAST 1.94 3.88E-15 

PSIBLAST 1.49 8.83E-07 

MMseqs2 1.48 1.37E-05 

HHblits 1.89 6.70E-07 

HMMER 1.69 2.08E-07 



Table S4. Summary of the MSAs produced by DeepMSA2, BLAST, PSIBLAST, MMseqs2, HHblits, and HMMER 

on 293 CASP13, CASP14, and CASP15 monomer proteins. ‘Nseq’ is the number of the sequences in the MSA, and 

‘Neff’ is the number of effective sequences in the MSA; the mean across each set of considered cases is shown. P-

values were calculated between measures from DeepMSA2 and the control methods using paired one-sided Student’s 

t-tests. 

  

Domain 

Type 
Method Nseq P-value Neff P-value 

Sequence 

Identity 
P-value Coverage P-value 

All 

DeepMSA2 8642.2 - 415.3 - 0.223 - 0.770 - 

BLAST 3795.4 1.40E-25 120.9 2.12E-32 0.354 9.99E-01 0.712 4.15E-03 

PSIBLAST 50243.8 9.99E-01 858.4 9.92E-01 0.281 9.99E-01 0.744 3.85E-01 

MMseqs2 3367.9 3.34E-14 172.4 1.44E-15 0.326 9.99E-01 0.739 3.46E-03 

HHblits 9309.4 9.78E-01 444.9 8.86E-01 0.198 2.57E-13 0.703 1.10E-19 

HMMER 100649.8 9.99E-01 3377.3 9.99E-01 0.169 7.64E-21 0.597 3.88E-39 

FM 

DeepMSA2 2279.3 - 93.7 - 0.259 - 0.768 - 

BLAST 1082.9 4.03E-17 21.5 7.90E-18 0.414 9.99E-01 0.753 8.52E-01 

PSIBLAST 9059.9 9.99E-01 135.8 9.74E-05 0.340 9.99E-01 0.769 9.90E-01 

MMseqs2 1497.4 2.36E-04 65.5 5.43E-06 0.374 9.99E-01 0.761 2.76E-01 

HHblits 4318.0 9.44E-01 188.7 9.72E-01 0.240 1.77E-03 0.731 2.14E-04 

HMMER 27459.9 9.99E-01 851.7 9.99E-01 0.190 1.20E-09 0.591 3.34E-17 

TBM 

DeepMSA2 13859.0 - 678.9 - 0.194 - 0.771 - 

BLAST 6019.2 5.91E-13 202.4 6.21E-18 0.305 9.99E-01 0.677 1.24E-05 

PSIBLAST 84009.4 9.99E-01 1450.9 9.99E-01 0.232 9.99E-01 0.723 7.86E-03 

MMseqs2 4901.5 6.29E-12 260.0 5.81E-12 0.287 9.99E-01 0.721 1.10E-03 

HHblits 13401.7 7.58E-01 655.0 4.63E-01 0.164 5.38E-13 0.681 6.94E-18 

HMMER 160656.4 9.99E-01 5448.0 9.99E-01 0.153 1.01E-13 0.602 5.48E-24 

 

  



Table S5. The average values of the number of effective sequences (Neff), number of homologous sequences (Nseq), 

and TM-scores of final models by three different programs on 132 FM domains in CASP13, CASP14 and CASP15. 

‘DMFold-noh’ refers to the program using MSAs from DeepMSA2 but without using the three in-house metagenome 

databases (TaraDB, MetaSourceDB, and JGIclust). P-values were calculated between TM-scores of DMFold and 

other programs using paired one-sided Student’s t-tests.  

 

Method Neff 𝑁𝑠𝑒𝑞  TM-score P-value 

DMFold 93.7 2279 0.8207 - 

AlphaFold2 84.5 2724 0.7807 1.82E-04 

DMFold-noh 85.3 2160 0.8034 1.65E-05 

 

 

 

Table S6. The average TM-score of final models produced by DMFold and AlphaFold2 DB on 48 human proteome 

proteins that have low AlphaFold2 DB pLDDT scores and recently solved experimental structures. P-value was 

calculated between TM-scores of DMFold and AlphaFold2 using a paired one-sided Student’s t-test.  

 

Method TM-score P-value 

DMFold 0.679 - 

AlphaFold2 DB 0.630 1.46E-04 

  



Table S7. The set of protein structures comprising our protein complex dataset, including 14 heteromer complexes 

and 40 homomer complexes from CASP13 and CASP14. 

 

Target Stoichiometry CASP Target Stoichiometry CASP 

H0953 A3B1 CASP13 T0991o A2 CASP13 

H0957 A1B1 CASP13 T0995o A8 CASP13 

H0968 A2B2 CASP13 T0997o A2 CASP13 

H0974 A1B1 CASP13 T0998o A2 CASP13 

H0980 A2B2 CASP13 T1000o A2 CASP13 

H0986 A1B1 CASP13 T1001o A2 CASP13 

H1015 A1B1 CASP13 T1003o A2 CASP13 

H1017 A1B1 CASP13 T1004o A3 CASP13 

H1019 A1B1 CASP13 T1006o A2 CASP13 

H1045 A1B1 CASP14 T1009o A2 CASP13 

H1047 A1B1 CASP14 T1010o A2 CASP13 

H1065 A1B1 CASP14 T1016o A2 CASP13 

H1072 A2B2 CASP14 T1018o A2 CASP13 

H1097 A1B1C1D1E1 CASP14 T1020o A3 CASP13 

T0960o A3 CASP13 T1032o A2 CASP14 

T0961o A4 CASP13 T1034o A4 CASP14 

T0963o A3 CASP13 T1038o A2 CASP14 

T0966o A2 CASP13 T1048o A4 CASP14 

T0970o A2 CASP13 T1054o A2 CASP14 

T0973o A2 CASP13 T1061o A3 CASP14 

T0976o A2 CASP13 T1062o A3 CASP14 

T0977o A3 CASP13 T1070o A3 CASP14 

T0979o A3 CASP13 T1073o A4 CASP14 

T0981o A3 CASP13 T1080o A3 CASP14 

T0984o A2 CASP13 T1083o A2 CASP14 

T0988o A3 CASP13 T1084o A2 CASP14 

T0989o A3 CASP13 T1087o A2 CASP14 

 

  



Table S8. The structure prediction ability of DMFold-Multimer and AlphaFold2-Multimer on 14 heteromer and 40 

homomer complex targets collected from CASP13 and CASP14 (see main text for details). P-values were calculated 

between TM-scores for DMFold-Multimer and AlphaFold2-Multimer models using paired one-sided Student’s t-tests. 

#{TM≥0.5} is the number of targets with a TM-score ≥0.5.   

 

Method Target Type TM-score P-value #{TM≥0.5} 

DMFold-Multimer 

All 0.8344 - 50 

Heteromer 0.9295 - 14 

Homomer 0.8010 - 36 

AlphaFold2-Multimer 

All 0.7434 2.44E-04 45 

Heteromer 0.8953 3.92E-02 14 

Homomer 0.6902 1.20E-03 31 

 

  



Table S9. Summary of the protein complex modeling results for all 87 participant groups in the CASP15 experiment. 

The ranking of the groups is based on the sum of Z-score with threshold >0.0 with data taken from the official CASP15 

website (https://predictioncenter.org/casp15/zscores_multimer.cgi). Here, DMFold-Multimer was registered as 

‘Zheng’, and the standard version AlphaFold2-Multimer (operated by the Elofsson lab) was registered as ‘NBIS-AF2-

multimer’. Following the CASP Assessors’ formula, Z-score=Z-score (ICS) + Z-score (IPS) + Z-score (LDDT) + Z-

score (TM-score). TM-score and LDDT score are measures that are used for qualifying the global fold of the model, 

and Interface Contact Score (ICS) and Interface Patch Score (IPS) are scoring function that are used to evaluate the 

interface of the model. ICS is the F1 score calculated from the contacts derived from model and experimental structures, 

respectively, and IPS is the Jaccard index of the contact residues derived from model and experimental structures. 

 

Ranking Group Names Sum Z-score (>0.0) Ranking Group Names Sum Z-score (>0.0) 

1 Zheng (DMFold-Multimer) 35.30 45 GinobiFold-SER 6.78 
2 Venclovas 29.15 46 GuijunLab-DeepDA 6.45 

3 Wallner 28.14 47 TRFold 6.13 

4 Yang-Multimer 24.69 48 Zou 6.12 

5 Yang 24.17 49 GinobiFold 5.55 

6 Kiharalab 21.82 50 Manifold-X 5.44 
7 MULTICOM_human 20.72 51 WL_team 5.31 

8 Manifold 20.29 52 DELCLAB 5.27 

9 McGuffin 19.89 53 Agemo_mix 5.12 

10 MULTICOM 19.65 54 Kozakov-Vajda 5.02 
11 Manifold-E 18.86 55 UNRES 4.89 

12 MULTICOM_qa 18.35 56 Dfolding 4.85 

13 PEZYFoldings 17.95 57 ShanghaiTech-TS-SER 4.72 

14 Dfolding-server 17.01 58 FoldEver-Hybrid 4.64 

15 MULTICOM_deep 16.29 59 FoldEver 4.32 
16 CoDock 16.26 60 Manifold-LC-E 4.05 

17 BAKER 15.91 61 bio3d 3.84 

18 UltraFold 15.78 62 Fernandez-Recio 3.82 

19 BeijingAIProtein 15.72 63 ChaePred 3.47 

20 UltraFold_Server 15.71 64 OpenFold 2.83 
21 Elofsson 15.69 65 OpenFold-SingleSeq 2.83 

22 Takeda-Shitaka_Lab 15.63 66 Aichemy_LIG3 2.74 

23 MultiFOLD 15.24 67 Aichemy_LIG 2.71 

24 MUFold_H 15.10 68 Aichemy_LIG2 2.71 

25 colabfold_human 14.34 69 ddquest 2.27 
26 MUFold 14.09 70 KORP-PL 2.19 

27 Pierce 14.04 71 Convex-PL-R 2.03 

28 Kiharalab_Server 13.52 72 zax 2.00 

29 ColabFold 12.77 73 UTMB 1.92 

30 NBIS-AF2-multimer 12.27 74 Convex-PL 1.72 
31 RaptorX-Multimer 11.92 75 TB_model_prediction 1.31 

32 Grudinin 11.89 76 XRC_VU 1.15 

33 DMP 11.42 77 Graphen_Medical 0.94 

34 Yang-Server 10.50 78 ESM-single-sequence 0.89 

35 SHT 10.20 79 Gonglab-THU 0.53 
36 Dfolding-refine 9.33 80 Cerebra 0.53 

37 ShanghaiTech 9.28 81 noxelis 0.41 

38 ClusPro 9.04 82 TensorLab 0.36 

39 GuijunLab-Human 8.86 83 Panlab 0.35 

40 Coqualia 8.66 84 GuijunLab-Meta 0.34 
41 GuijunLab-Assembly 8.60 85 FALCON2 0.00 

42 FTBiot0119 7.67 86 FALCON0 0.00 

43 Shen-CAPRI 7.59 87 wuqi 0.00 

44 trComplex 7.44    

  

https://predictioncenter.org/casp15/zscores_multimer.cgi


Table S10. Comparison of the TM-score, LDDT, Interface Contact Score (ICS), and Interface Patch Score (IPS) 

results between DMFold-Multimer and AlphaFold2-Multimer in the CASP15 experiment. Here, DMFold-Multimer 

was registered as ‘Zheng’, and the standard version AlphaFold2-Multimer (operated by the Elofsson lab) was 

registered as ‘NBIS-AF2-multimer’. TM-score and LDDT score are measures that are used for qualifying the global 

fold of the model, and Interface Contact Score (ICS) and Interface Patch Score (IPS) are scoring function that are used 

to qualify the interface of the model. ICS is the F1 score calculated from the contacts derived from model and 

experimental structures, and IPS is the Jaccard index of the contact residues derived from the model and experimental 

structures. P-values were calculated between methods by DMFold-Multimer and AlphaFold2-Multimer using paired 

one-sided Student’s t-tests.  

 

Method TM-score P-value LDDT P-value ICS P-value IPS P-value 

DMFold-Multimer 0.830 - 0.789 - 0.598 - 0.641 - 

AlphaFold2-Multimer 0.719 8.23E-04 0.719 3.07E-03 0.469 2.23E-04 0.538 1.86E-04 

  



Table S11. The monomer protein dataset used in our benchmark tests, including 48 free modeling (FM) domains and 

64 template-based modeling (TBM) domains from CASP13, 37 FM domains and 50 TBM domains from CASP14, as 

well as 47 FM domains and 47 TBM domains from CASP15.  

 

CASP 
Domain 

Type 
Domains 

CASP13 

TBM 

T0954-D1,T0957s1-D2,T0959-D1,T0960-D3,T0960-D5,T0961-D1,T0963-D3, 

T0963-D5,T0964-D1,T0965-D1,T0966-D1,T0973-D1,T0974s1-D1,T0976-D1, 

T0976-D2,T0977-D1,T0977-D2,T0979-D1,T0981-D1,T0981-D4,T0981-D5, 

T0983-D1,T0984-D1,T0984-D2,T0985-D1,T0993s1-D1,T0993s2-D1,T0995-D1, 

T0996-D1,T0996-D2,T0996-D3,T0996-D4,T0996-D5,T0996-D6,T0999-D1, 

T0999-D2,T0999-D3,T0999-D4,T0999-D5,T1000-D1,T1002-D1,T1002-D2, 

T1002-D3,T1003-D1,T1004-D1,T1004-D2,T1004-D3,T1006-D1,T1009-D1, 

T1011-D1,T1011-D2,T1013-D1,T1014-D1,T1014-D2,T1015s2-D1,T1016-D1, 

T1017s1-D1,T1018-D1,T1019s2-D1,T1020-D1,T1021s1-D1,T1021s2-D1, 

T1022s1-D2,T1022s2-D1 

FM 

T0949-D1,T0953s1-D1,T0953s2-D1,T0953s2-D2,T0953s2-D3,T0955-D1, 

T0957s1-D1,T0957s2-D1,T0958-D1,T0960-D1,T0960-D2,T0960-D4,T0963-D1, 

T0963-D2,T0963-D4,T0968s1-D1,T0968s2-D1,T0969-D1,T0970-D1,T0975-D1, 

T0980s1-D1,T0980s2-D1,T0981-D2,T0981-D3,T0986s1-D1,T0986s2-D1,T0987-D1, 

T0987-D2,T0989-D1,T0989-D2,T0990-D1,T0990-D2,T0990-D3,T0991-D1, 

T0992-D1,T0997-D1,T0998-D1,T1000-D2,T1001-D1,T1005-D1,T1008-D1, 

T1010-D1,T1015s1-D1,T1017s2-D1,T1019s1-D1,T1021s3-D1,T1021s3-D2, 

T1022s1-D1 

CASP14 

TBM 

T1024-D1,T1024-D2,T1026-D1,T1030-D1,T1030-D2,T1032-D1,T1034-D1, 

T1045s2-D1,T1046s2-D1,T1047s2-D2,T1050-D1,T1050-D2,T1050-D3,T1052-D1, 

T1052-D2,T1054-D1,T1056-D1,T1057-D1,T1058-D2,T1060s2-D1,T1060s3-D1, 

T1061-D3,T1065s1-D1,T1067-D1,T1068-D1,T1070-D2,T1070-D3,T1070-D4, 

T1073-D1,T1076-D1,T1078-D1,T1079-D1,T1083-D1,T1084-D1,T1087-D1, 

T1089-D1,T1091-D1,T1091-D2,T1091-D3,T1091-D4,T1092-D1,T1092-D2, 

T1093-D2,T1094-D1,T1095-D1,T1099-D1,T1100-D1,T1100-D2,T1101-D1, 

T1101-D2 

FM 

T1027-D1,T1029-D1,T1031-D1,T1033-D1,T1035-D1,T1037-D1,T1038-D1, 

T1038-D2,T1039-D1,T1040-D1,T1041-D1,T1042-D1,T1043-D1,T1046s1-D1, 

T1047s1-D1,T1047s2-D1,T1047s2-D3,T1049-D1,T1052-D3,T1053-D1,T1053-D2, 

T1055-D1,T1058-D1,T1061-D1,T1061-D2,T1064-D1,T1065s2-D1,T1070-D1, 

T1074-D1,T1080-D1,T1082-D1,T1090-D1,T1093-D1,T1093-D3,T1094-D2, 

T1096-D1,T1096-D2 

CASP15 

TBM 

T1106s2-D1, T1109-D1, T1110-D1, T1114s2-D1, T1114s3-D1, T1119-D1,  

T1121-D2, T1124-D1, T1125-D3, T1127-D1, T1132-D1, T1133-D1, T1134s1-D1,  

T1137s1-D1, T1137s2-D1, T1137s3-D1, T1137s4-D1, T1137s5-D1, T1137s6-D1,  

T1137s7-D1, T1137s8-D1, T1137s9-D1, T1139-D1, T1145-D1, T1146-D1,  

T1147-D1, T1152-D1, T1153-D1, T1157s1-D1, T1157s2-D1, T1157s2-D2,  

T1157s2-D3, T1158-D1, T1158-D2, T1160-D1, T1161-D1, T1162-D1, T1163-D1, 

T1169-D3, T1170-D1, T1170-D2, T1173-D1, T1174-D2, T1175-D1, T1180-D1,  

T1183-D1, T1188-D1 

FM 

T1104-D1, T1106s1-D1, T1112-D1, T1113-D1, T1114s1-D1, T1120-D1, T1120-D2,  

T1121-D1, T1122-D1, T1123-D1, T1125-D1, T1125-D2, T1125-D4, T1125-D5,  

T1125-D6, T1129s2-D1, T1130-D1, T1131-D1, T1134s2-D1, T1137s1-D2,  

T1137s2-D2, T1137s3-D2, T1137s4-D2, T1137s4-D3, T1137s5-D2, T1137s6-D2,  

T1145-D2, T1150-D1, T1151s2-D1, T1154-D1, T1154-D2, T1155-D1, T1159-D1,  

T1169-D1, T1169-D2, T1169-D4, T1173-D2, T1174-D1, T1177-D1, T1178-D1,  

T1179-D1, T1181-D1, T1181-D2, T1182-D1, T1184-D1, T1187-D1, T1194-D1 

  



Table S12. Summary of genomic and metagenomics databases used in DeepMSA2.   

  

Program Database Database Type Sequence Type Number of 

Sequences 

dMSA Uniclust30 Hidden Markov Model database Genome 124 million 

dMSA/qMSA Uniref90 Sequence database Genome 109 million 

dMSA Metaclust Sequence database Metagenome 712 million 

qMSA UniRef30 Hidden Markov Model database Genome 231 million 

qMSA BFD Hidden Markov Model database Metagenome 2.2 billion 

qMSA Mgnify Sequence database Metagenome 305 million 

mMSA TaraDB Sequence database Metagenome 121 million 

mMSA MetaSourceDB Sequence database Metagenome 19.1 billion 

mMSA JGIclust Sequence database Metagenome 16.4 billion 

 

 

  



Table S13. Impacts of BLAST filtering on the MSA generation step of the dMSA pipeline. We ran DMFold using 

only the dMSA stage, either with or without the BLAST filter, on 87 monomer protein domains from CASP14. P-

values were calculated between TM-scores by DMFold utilizing dMSA with or without BLAST filter using paired 

one-sided Student’s t-tests. #{TM≥0.5} is the number of domains with a TM-score ≥0.5.   

 

Method Domain Type TM-score P-value #{TM≥0.5} 

dMSA with BLAST filter 

All 0.8632 - 83 

TBM 0.9137 - 50 

FM 0.7949 - 33 

dMSA without BLAST filter 

All 0.8545 4.67E-02 82 

TBM 0.9043 3.78E-02 49 

FM 0.7872 1.99E-01 33 

 

  



Supplement Texts 

 

Text S1. DeepMSA2 provides balanced MSAs for monomer fold-recognition and spatial 

restraint prediction 
We chose five methodologies for generating multiple sequence alignments (MSAs), for use as control 

approaches compared with DeepMSA2. These include BLAST1, HHblits2, HMMER3, MMseqs24, and 

PSIBLAST5. The commonly used approach employed by BLAST and PSIBLAST for MSA generation 

primarily involves searching the “NR” genomic sequence database5 sourced from NCBI. Conversely, 

HHblits typically relies on either the Uniclust30 or UniRef30 genome sequence database to construct the 

MSA6. However, it should be noted that this exclusive reliance on genome databases during the MSA 

generation process disregards the wealth of diverse sequence information in the metagenome databases 

which have been used by DeepMSA2. Thus, to make a fair comparison with DeepMSA2, for BLAST, 

HMMER, MMseqs2, and PSIBLAST, we utilized a combined database of Uniref907 and ColabFold-env8, 

which covers all of the third-party genomics/metagenomics datasets (including UniProt7, Metaclust9, BFD9, 

and Mgnify10) used in DeepMSA2. For HHblits, which requires a pre-built Hidden Markov Model (HMM) 

formatted database, the UniRef306 and BFD HHblits-style databases were downloaded directly from the 

HHblits website and utilized to generate MSAs.  

For MMseqs2, the default pipeline was the ColabFold8 MMseqs2 pipeline (“colabfold_search seq.fasta 

$db”). For the other four control methods (BLAST, HHblits, HMMER, and PSIBLAST), the following 

commands were employed: “blastall -p blastp -b 100000 -e 0.001 –I seq.fasta -d $db” for BLAST, “hhblits3 

-I seq.fasta -d $db -id 99 -cov 50 -n 3 -diff inf -e 1” for HHblits, “jackhammer -N 3 -E 1e-4 –incE 1e-4 

seq.fasta $db” for HMMER, and “blastpgp -b 100000 -j 3 -e 0.001 -h 0.001 -d $db -I seq.fasta”. In these 

commands, “$db” represents the path to the databases that combine Uniref90 and ColabFold-env. 

The resultant MSAs were utilized to calculate various metrics, including the number of effective 

sequences (Neff), average sequence identity (SeqId), and alignment coverage (cov). Additionally, to 

evaluate their ability to capture evolutionary and co-evolutionary information, we further examined the 

performance of the MSAs in template recognition and deep-learning spatial restraint prediction tests. For 

the template recognition test, HHsearch11 is employed, utilizing the profile Hidden Markov Model (HMM) 

derived from the six sets of MSAs as input. The PDB70 template library that was built before May 1, 2022, 

was used for HHsearch. Thus, for CASP15 domains, none of the solved experimental structure were 

included in this template library. For CASP13 and CASP14 domains, to remove the effect of experimental 

structure and close homologous structure, all homologous templates with a sequence identity >30% to the 

target were excluded. For the deep learning spatial restraint prediction test, we employed the DeepPotential 

program12, utilizing the six sets of MSAs directly as input, and calculate both precision of the top L long-

range contacts and MAE of the top 5L long-range distances as measures for comparison between MSA 

generation methods. 

In Figs 2 and S2, we show the above characteristics of the MSAs provided by DeepMSA2 and the five 

control pipelines: BLAST1, HHblits2, HMMER3, MMseqs24, and PSIBLAST5. In Fig S2A-C, we first list 

the comparison results on the number of effective sequences (Neff, defined by Eq. 1 in Methods of main 

text), the average sequence identity (SeqId), and alignment coverage (cov) between the query and 

homologous sequences of the MSAs, for the 293 domains from the CASP13-15 experiments. We note that 

from this set of domains, 161 are template-based modeling (TBM) and 132 sequences are free modeling 

(FM) domains, where the former have homologous templates in the PDB but the latter do not. The mean 

Neff of the MSAs obtained using DeepMSA2 (415.3) is considerably higher than those from BLAST (120.9) 

and MMseqs2 (172.4), indicating a reasonable ability of DeepMSA2 to detect sequence homologies. 

However, the Neff of DeepMSA2 is lower (or significantly lower) than those of HHblits (444.9), 

PSIBLAST (858.4) and HMMER (3377.3). A closer look at the data shows that the sequence alignments 

from these three control methods (especially HMMER) have a much lower cov, probably because they are 

mainly built on local sequence alignments that do not fully cover the query. In addition, we noticed that 

MSAs obtained using BLAST, MMseqs2, and PSIBLAST have a much higher SeqId than those of 



DeepMSA2, HHblits, and HMMER, showing that the former group of methods tend to pick up more similar 

sequences to the query and therefore produce less diverse MSAs (Table S4). 

Nevertheless, the parameters considered above (Neff, SeqId, cov) only measure general aspects of the 

alignment information of the MSAs, and do not necessarily reflect the inherent evolutionary and co-

evolutionary information contained in the MSAs (Fig S3), which are critical to deep learning-based protein 

structure predictions. As a more direct test of the ability of each MSA generation method to capture 

evolutionary and co-evolutionary information, we further examine the performance of the MSAs in 

assisting template recognition and deep learning spatial restraint prediction. In Fig 2A, we list the average 

TM-scores of the structure templates recognized by HHsearch based on the profile HMMs constructed from 

the six different MSAs. It is shown that the templates detected using the DeepMSA2 MSA have the highest 

TM-score for both FM and TBM domains. The average TM-score for all CASP domains obtained using 

the MSA from DeepMSA2 (0.492) is also higher than those using the MSAs from BLAST (0.454), 

MMseqs2 (0.469), HHblits (0.463), HMMER (0.448), or PSIBLAST (0.448), all with p-values <2.72E-08 

by one-sided Student’s t-test (Table S1). 

In Fig 2B, we present the precision of the top L long-range contact predictions made by the deep neural-

network program DeepPotential12, using co-evolutionary features derived from the six different MSAs 

(where L is the query sequence length, and “long-range” represents a sequence separation |𝑖 − 𝑗| ≥ 24 

residues for the contacts between residues i and j, which are then ranked by the DeepPotential contact 

probability). Again, utilizing the DeepMSA2 MSA results in a higher precision of top L long-range contacts 

(=0.601) predicted by DeepPotential, compared to those obtained while using the MSAs from BLAST 

(=0.514), MMseqs2 (0.568), HHblits (0.559), HMMER (0.538), or PSIBLAST (0.566) as inputs for 

DeepPotential. A similar tendency can be seen for top L/5 and L/2 predictions as detailed in Table S2, 

where p-values are below 1.23E-05 for all the comparisons when all domains in our evaluation set are 

considered. 

In Fig 2C, we further display the mean absolute distance error (MAE; see Eq. 6 in Methods of main 

text) of the top 5L long-range distances predicted by DeepPotential, where the use of the MSA from 

DeepMSA2 results in an MAE=2.22Å, which is significantly lower than those from the other five MSA 

programs, i.e., 3.09Å (p-value=1.62E-22) for BLAST, 2.70Å (p-value=5.79E-12) for PSIBLAST, 2.68Å 

(p-value=1.03E-07) for MMseqs2, 2.74Å (p-value=1.26E-09) for HHblits, and 2.98Å (p-value=4.80E-13) 

for HMMER (Table S3). In Fig S1, we also display a head-to-head comparison of the MAE between 

DeepMSA2 and the five control methods, where DeepMSA2 has lower MAE values than the other MSA 

methods for a dominant fraction of the domains; this accounts for the major reason for the significant 

improvements observed with DeepMSA2. Overall, these data show that the balanced and highly 

informative MSA construction provided by DeepMSA2 might have encoded more relevant co-evolutionary 

features and help guide accurate template recognition and spatial restraint predictions; this ability is also 

important for the subsequent deep learning-based tertiary structure prediction. 

 

Text S2. Cases analyses of the CASP15 nanobody-antigen complexes 

Nanobodies are single-domain antibodies that initiate critical immune reactions by interacting with 

antigens13. In Fig S7, we show three illustrative examples from targets H1140, H1141, and H1144, which 

represent three typical interaction modes of nanobodies with the same mouse CNPase. As illustrated in Fig 

S7, the complex models generated by AlphaFold2-Multimer (from the Elofsson lab’s ‘NBIS-AF2-multimer’ 

group) exhibit relatively low TM-scores below 0.7. In contrast, DMFold-Multimer has demonstrated 

exceptional predictive capabilities, achieving TM-scores of 0.92, 0.95, and 0.99, respectively. 

Consequently, the ICS F1 scores associated with the DMFold-Multimer models (0.51, 0.79, and 0.74) far 

surpass those of AlphaFold2-multimer (0.02, 0.06, and 0.09). This observation indicates the correct 

construction of the DeepMSA2 multimer MSAs contributes to the substantial enhancement in the modeling 

of quaternary chain interactions in these immune protein-antigen complex targets. 

In Fig S8, we take Target H1144 as an example to further examine the possible reason for the successful 

modeling by DMFold-Multimer compared to AlphaFold2-Multimer on the nanobody-antigen complexes. 

First, Fig S8A shows a 3D scatter plot of the TM-score, predicted TM-score, and Neff of paired MSAs for 



the structural decoys by DMFold-Multimer. Here, DMFold-Multimer utilized 25 paired MSAs created by 

DeepMSA2 which have Neffs ranging from 1.8 to 16.3 and created 625 decoy conformations in which 13.6% 

have high quality with TM-score above 0.8. Importantly, there is a decent correlation between the actual 

TM-score and predicted TM-score in the high TM-score region (see the top-right area of the 2D TM-score 

vs predicted TM-score plane of Fig S8A), which allows DMFold-Multimer to select a correct model with 

TM-score 0.99 based on the predicted TM-score. It is notable that this best model comes from the MSA 

with the highest Neff (=16.3) that contains more abundant and relevant co-evolutionary information for 

quaternary structure modeling.  

Here, we note that although the nanobody and the antigen came from different species (i.e., alpaca and 

mouse) and there may not be evolutionary signals in the inter-species complexes, clear co-evolutionary 

signal could still be obtained in the DeepMSA2 paired MSAs, since the paired sequences of component 

MSAs are selected from the same species, which could be used to assist nanobody-antigen complex 

structure predictions (see “DeepMSA2-Multimer pipeline for multimeric MSA construction” section of 

the Methods in the main text). Indeed, we found that even though the nanobody itself is the product of 

adaptive immune molecule maturation, the DeepMSA2 MSAs provided information on how Ig-like folds 

can interact with folds resembling the target protein in other species, contributing to the quality of the 

resulting model. For the case of H1144, DeepMSA2 identified 413 paired homologous sequences that came 

from 172 common species (Fig S8C), where the co-evolution information contained in the paired sequences 

helps the deep learning networks learn the inter-chain distance restraints, resulting in an accurate predicted 

distance map (Fig S8B). 

As a comparison, Fig S8D displays the 3D scattering plot for the decoys by re-running AlphaFold2-

Multimer, which utilized a single MSA with Neff=8.1 and generated no models with TM-score above 0.8. 

In Figs S8B and 8E, we compare the distance map restraints for the models with the highest predicted TM-

scores by DMFold-Multimer and AlphaFold2-Multimer, respectively. Although both programs have 

correct distance predictions for the intra-chain residues, only DMFold-Multimer has a correct distance map 

between the inter-chain residues (with a low MAE=0.61 Å, compared to 4.35 Å by AlphaFold2-Multimer), 

which is essential for correct quaternary structure modeling. This example highlights the advantage of 

DMFold-Multimer in utilizing a multiple MSA pairing strategy and linking sequences from the common 

species to extract diverse co-evolutionary information, which covers a more extensive quaternary 

conformational space. In the presence of that improved co-evolutionary information, we observe that the 

positive TM-score and predicted-TM-score correlation allows for the selection of correct complex models. 

Nevertheless, DMFold-Multimer could not fold all the nanobody-antigen complexes in CASP15. In Fig 

S9, we present the modeling result on Target H1142, the only case out of the five nanobody-antigen targets 

in CASP15 for which DMFold-Multimer had a predicted model with a TM-score below 0.90 (Fig S9A). 

The TM-score of DMFold-Multimer model is 0.98 for H1143 which was not shown in Fig S7; see 

https://www.predictioncenter.org/casp15/multimer_results.cgi?target=H1143. Although DMFold-

Multimer also uses multiple paired MSAs with Neff ranging from 2.0 to 17.0 for this target (Fig S9B), none 

of the MSAs contains correct inter-chain co-evolutionary information or created correct inter-chain distance 

maps as shown in Fig S9C. As a result, all the created conformational decoys have low quaternary TM-

scores (Fig S9B), and the final model selected using predicted TM-score has thus a completely incorrect 

inter-chain orientation with a poor TM-score 0.614, despite the correct tertiary folding in the individual 

chains (Fig S9A). Interestingly, the maximum of predicted TM-scores for H1142 (pTMSmax=0.75) is 

considerably lower than that of all other successfully folded nanobody-antigen complexes, i.e., 

pTMSmax=0.82, 0.88, 0.90 and 0.90 for H1140, H1141, H1143, and H1144, respectively, suggesting that 

the pTMSmax may be used as a potential indicator for estimating the quality of the DMFold-Multimer models 

in blind prediction experiments. 

 
  

https://www.predictioncenter.org/casp15/multimer_results.cgi?target=H1143
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