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‘ Decision Letter, initial version:

Dear Dr. Zhang,

Your Article, "Improving deep learning protein monomer and complex structure prediction using
DeepMSA2 with huge metagenomics data", has now been seen by 2 reviewers. As you will see from
their comments below, although the reviewers find your work of considerable potential interest, they
have raised a number of concerns. We are interested in the possibility of publishing your paper in
Nature Methods, but would like to consider your response to these concerns before we reach a final
decision on publication.

We therefore invite you to revise your manuscript to address these concerns. We would like to see more
suitable and fairer comparisons between the tested methods, as recommended by reviewer #1.
Additionally, as both reviewers mention, some of the claims related to the method and performance
should be suitably toned down.

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact
us if there are specific requests from the reviewers that you believe are technically impossible or
unlikely to yield a meaningful outcome.

When revising your paper:

* include a point-by-point response to the reviewers and to any editorial suggestions
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* please underline/highlight any additions to the text or areas with other significant changes to facilitate
review of the revised manuscript

* address the points listed described below to conform to our open science requirements

* ensure it complies with our general format requirements as set out in our guide to authors at
www.nature.com/naturemethods

* resubmit all the necessary files electronically by using the link below to access your home page
[Redacted] This URL links to your confidential home page and associated information about manuscripts

you may have submitted, or that you are reviewing for us. If you wish to forward this email to co-
authors, please delete the link to your homepage.

We hope to receive your revised paper within 8 weeks. If you cannot send it within this time, please let
us know. In this event, we will still be happy to reconsider your paper at a later date so long as nothing
similar has been accepted for publication at Nature Methods or published elsewhere.

OPEN SCIENCE REQUIREMENTS

REPORTING SUMMARY AND EDITORIAL POLICY CHECKLISTS
When revising your manuscript, please update your reporting summary and editorial policy checklists.

Reporting summary: https://www.nature.com/documents/nr-reporting-summary.zip
Editorial policy checklist: https://www.nature.com/documents/nr-editorial-policy-checklist.zip

If your paper includes custom software, we also ask you to complete a supplemental reporting
summary.

Software supplement: https://www.nature.com/documents/nr-software-policy.pdf
Please submit these with your revised manuscript. They will be available to reviewers to aid in their

evaluation if the paper is re-reviewed. If you have any questions about the checklist, please see
http://www.nature.com/authors/policies/availability.html or contact me.
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Please note that these forms are dynamic ‘smart pdfs’ and must therefore be downloaded and
completed in Adobe Reader. We will then flatten them for ease of use by the reviewers. If you would
like to reference the guidance text as you complete the template, please access these flattened versions
at http://www.nature.com/authors/policies/availability.html.

DATA AVAILABILITY

We strongly encourage you to deposit all new data associated with the paper in a persistent repository
where they can be freely and enduringly accessed. We recommend submitting the data to discipline-
specific and community-recognized repositories; a list of repositories is provided here:
http://www.nature.com/sdata/policies/repositories

All novel DNA and RNA sequencing data, protein sequences, genetic polymorphisms, linked genotype
and phenotype data, gene expression data, macromolecular structures, and proteomics data must be
deposited in a publicly accessible database, and accession codes and associated hyperlinks must be
provided in the “Data Availability” section.

Refer to our data policies here: https://www.nature.com/nature-research/editorial-policies/reporting-
standards#availability-of-data

To further increase transparency, we encourage you to provide, in tabular form, the data underlying the
graphical representations used in your figures. This is in addition to our data-deposition policy for
specific types of experiments and large datasets. For readers, the source data will be made accessible
directly from the figure legend. Spreadsheets can be submitted in .xls, .xIsx or .csv formats. Only one (1)
file per figure is permitted: thus if there is a multi-paneled figure the source data for each panel should
be clearly labeled in the csv/Excel file; alternately the data for a figure can be included in multiple,
clearly labeled sheets in an Excel file. File sizes of up to 30 MB are permitted. When submitting source
data files with your manuscript please select the Source Data file type and use the Title field in the File
Description tab to indicate which figure the source data pertains to.

Please include a “Data availability” subsection in the Online Methods. This section should inform readers
about the availability of the data used to support the conclusions of your study, including accession
codes to public repositories, references to source data that may be published alongside the paper,
unique identifiers such as URLs to data repository entries, or data set DOIs, and any other statement
about data availability. At a minimum, you should include the following statement: “The data that
support the findings of this study are available from the corresponding author upon request”, describing
which data is available upon request and mentioning any restrictions on availability. If DOIs are
provided, please include these in the Reference list (authors, title, publisher (repository name),
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identifier, year). For more guidance on how to write this section please see:
http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf

CODE AVAILABILITY

Please include a “Code Availability” subsection in the Online Methods which details how your custom
code is made available. Only in rare cases (where code is not central to the main conclusions of the
paper) is the statement “available upon request” allowed (and reasons should be specified).

We request that you deposit code in a DOI-minting repository such as Zenodo, Gigantum or Code Ocean
and cite the DOI in the Reference list. We also request that you use code versioning and provide a
license.

For more information on our code sharing policy and requirements, please see:
https://www.nature.com/nature-research/editorial-policies/reporting-standards#availability-of-
computer-code

MATERIALS AVAILABILITY
As a condition of publication in Nature Methods, authors are required to make unique materials
promptly available to others without undue qualifications.

Authors reporting new chemical compounds must provide chemical structure, synthesis and
characterization details. Authors reporting mutant strains and cell lines are strongly encouraged to use
established public repositories.

More details about our materials availability policy can be found at https://www.nature.com/nature-
portfolio/editorial-policies/reporting-standards#availability-of-materials

SUPPLEMENTARY PROTOCOL

To help facilitate reproducibility and uptake of your method, we ask you to prepare a step-by-step
Supplementary Protocol for the method described in this paper. We <a
href="https://www.nature.com/nature-research/editorial-policies/reporting-standards#protocols"
target="new">encourage authors to share their step-by-step experimental protocols</a> on a protocol
sharing platform of their choice and report the protocol DOI in the reference list. Nature Portfolio 's
Protocol Exchange is a free-to-use and open resource for protocols; protocols deposited in Protocol
Exchange are citable and can be linked from the published article. More details can found at <a
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href="https://www.nature.com/protocolexchange/about"
target="new">www.nature.com/protocolexchange/about</a>.

ORCID

Nature Methods is committed to improving transparency in authorship. As part of our efforts in this
direction, we are now requesting that all authors identified as ‘corresponding author’ on published
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on
the Manuscript Tracking System (MTS), prior to acceptance. This applies to primary research papers
only. ORCID helps the scientific community achieve unambiguous attribution of all scholarly
contributions. You can create and link your ORCID from the home page of the MTS by clicking on
‘Modify my Springer Nature account’. For more information please visit please visit <a
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>.

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions
further. We look forward to seeing the revised manuscript and thank you for the opportunity to
consider your work.

Sincerely,
Arunima

Arunima Singh, Ph.D.
Senior Editor
Nature Methods

Reviewers' Comments:

Reviewer #1:

Remarks to the Author:

Summary:

AlphaFold have significantly improved the accuracy of protein structure prediction. However, it critically
depends on having a large and sufficiently diverse set of multiply aligned homologous proteins, not
readily available for all queries. AlphaFold performance in predicting the structure of protein complexes
is even harder, in particular for hetero-oligomers. This is mostly because construction of multiple
sequence alignment (MSA) requires proper linking of the relevant homologues for each of the different
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monomers in the complex. Zhang and coworkers introduce DeepMSA2, an advanced pipeline for
improving MSA construction, and a related pipeline DMFold that uses this improved MSA and the
AlphaFold algorithm for structure prediction of protein monomers and complexes.

Opinion:

According to the manuscript MSAs constructed using DeepMSA2 are deeper and more balanced
compare to the leading alternatives, and DMFold produce model structures that are even more accurate
than those of AlphaFold. | listed a few issues to be addressed in order to convince me that this is really
the case. For now, | am convinced about the improvement with protein complexes (Figure 5) but not
necessarily with monomers.

Major issues:

1. “Overall, DeepMSA2 demonstrates a balanced ability to detect diverse homologous sequences with a
high alighnment coverage, which likely contributes to the improved ability of DeepMSA2 MSAs to support
protein structure prediction”: This sentence summarizes the results presented in Figure 2. However, my
own interpretation of that data is that DeepMSA2 is comparable to HHblitz and MMsecs2. To my
surprise even the good old PSI-BLAST is roughly in this range. Taking into account that these methods
were examined on different settings in terms of databases, etc, to the settings they were designed with,
i.e., presumably sub-optimal, the differences appear marginal.

2. Table S2. Indeed, DeepMSA2 managed to find a template with better TM-score compared to the rest
of the MSAs. However, the score itself is only slightly better than the next one (by HHblitz). (And | do not
see the p-values that the table legend refers to.) On the same subject, Fig. 2D that is argued to show
better template selection with DeepMSA2 compared to HHsearch, does not support this statement. Or
maybe | do not know how to view it properly.

3. “In Fig 2F, we further display the mean absolute distance error (MAE, see Eq 5) of the top 5L long-
range distance map prediction by DeepPotential, where the use of the MSA from DeepMSA2 results in
an MAE=2.41A that is significantly lower than those from the other five MSA programs, i.e., 3.32A for
BLAST, 2.78A for PSIBLAST, 2.73A for MMseqs2, 2.78A for HHblits, and 3.03A for HMMER, all with a p-
value<0.05 by one-sided Student’s t-test”: Again, to me the distributions look very similar. | wonder how
the minor differences are statistically significant after all.

4. “Thus, thanks to the balanced, high-information MSAs that it provides, DeepMSA2 can help guide
more accurate template recognition and spatial restraint predictions, which are critical for the
prediction of protein tertiary structure”: Again, | disagree with this summary statement. Maybe there is
a bit of improvement, but it is anticipated, given the sub-optimal setting for the competitor’s MSAs.

5. Figure 3A. The vast majority of datapoints are in the upper right corner. They appear right along the
diagonal, which would mean that DMFold is as good as AlphaFold. The main text says that MDFold is
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better, | guess this statement refers to the 20 or so other datapoints, most of which are above the
diagonal. I'd revise the text to explain that. Same comment also regarding Fig. 5A.

6. “Since the major difference between DMFold and AlphaFold2 is in MSA generation, the large
improvement in TM-score indicates that the quality of the MSAs has a profound impact on the structural
models that are ultimately generated.”: This sentence refers to the minor improvements presented in
Fig. 3. It should be tuned down.

7. Fig. S2: In the upper left example the DMFold and AlphaFold models look very similar to each other
(and to the experimental structure). Maybe TM-score difference of 0.1 is not high enough to show
diversity? Maybe try 0.2? And, of course, tune down the statement about improvements over
AlphaFold?

8. Figure 4 convincingly shows that in spite of my reservations above DeepMSA2 managed to produce
significantly better MSAs that enabled accurate prediction of nearly 2000 human proteins for which
AlphaFold models were not trustworthy. To further understand this apparent conflict, | explored a bit
further. Indeed, the examples shown in the manuscript are very convincing. However, | clicked around in
the database of ~5000 human proteins and in most cases the protein core, as predicted by DeepMSA2,
seemed very similar to that of the AlphaFold model. | encourage the authors to highlight all the ~2000
models that they consider better than the corresponding AlphaFold models.

9. Further on this: Having the per-residue measures that AlphaFold provide may have helped convincing
me to the contrary.

10. | encourage the authors to include the per-residue pLDDT score in the database because it provides
also local indications on structure quality, allowing to figure out which parts of the structure are more
reliable.

11. And | am also missing the predicted aligned errors (PAE), i.e., the expected positional error at residue
x if the predicted and actual structures are aligned on residue vy.

12. Figure 6. Since the structures are known it is trivial to superimpose them on the models. Thus, it
makes sense to measure RMSD, which more accurately shows similarity.

13. Methodology: Just to clarify, AlphaFold was retrained within the context of the improved MSA
pipeline, right? Or maybe used as is?

14. When predicting the structure of a multimer, | take it that in the current implementation the
stoichiometry is provided. | wonder however if it is possible to deduce it from the coevolution signal. In
particular for homo-oligomers.

Reviewer #2:

Remarks to the Author:

Two main messages of the paper are that deeper and better constructed MSAs improve protein
structure prediction and that this enhancement can push model accuracy beyond the 'vanilla'
AlphaFold2 version (both standard and multimer), in many cases generating much better models. The
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method was tested in CASP15 and was recognized as one of the best performers. The study is well
thought-through, the message is appropriately substantiated with the data, examples are illustrative
and well picked, and the paper is overall well written.

Comments below.
ABSTRACT

'An integrated pipeline with DeepMSA2 participated in the most recent CASP15 experiment and created
high quality complex models with mean Z-scores 3-times higher than the AlphaFold2-Multimer server.'

Even though technically correct, this statement may mislead readers to think that the reported method
is 3 times better than AF2-Multimer. First and foremost, it is not an apple-to-apple comparison as the
databases are different. | guess that if the available AF2-M method was simply retrained with the 'huge
metagenomics data' (without any other changes), it would show comparable performance. This was
demonstrated on monomeric CASP15 targets with an updated AF2 version 2.3.0 released in the end of
2022. | suggest the authors tone down this statement (here and in the Discussion).

INTRODUCTION

lines 57-59: These lines are formulated cautiously (which is good), however an unexperienced reader
may still downplay a very important word 'some' in the phrase 'on some orphan sequences for which
detectable homologous sequences do not exist'. While in the next paragraph the authors do emphasize
that language models in CASP15 were in fact inferior to the state-of-the-art methods, it is not clear
whether the methods mentioned here are among those discussed further on. As an easy fix, | would
suggest substituting 'proved to be capable of generating' with 'can generate'.

62-65: Indeed, in CASP14, results in assembly prediction were not as excited as those in tertiary

structure prediction. However, this changed in CASP15, and the authors are surely aware of it and
should adjust their text accordingly.

METHODS
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485-488: CASP assessment is usually done on domains (evaluation units), and not targets (some targets
can contain domains of different homology-based categories). Please clarify that the numbers provided
here (and in figures) are for domains. Also, typically CASP domain classification includes an overlap
TBM/FM difficulty category. No mentioning of that here. Checking Table S9 | can see that TBM/FM
domains were included as a subclass of a broader FM category. Please clarify in the text.

486-487: 'the effect of DeepMSA2 on monomer protein structure folding'. Protein folding does not
depend on MSAs. It has its own rules and pathways, often unknown. However, it does seem like
modern-day protein structure prediction depends on MSAs.

498-505: Do not understand arithmetic here. 13,838 + 6,757 = 20,595. This is more than 20,389 proteins
mentioned as the Human Proteome dataset in your paper (including the 2-residue peptide). Where does
the discrepancy come from?

507-513: There are many different Neff definitions and protocols to calculate them. It would be nice if
the authors can help their readers to understand the Neff definition provided here. Practically all Neffs
in the main text are discussed from the comparative analysis perspective, i.e., this method recovers
more diverse sequences than the other, and thus is better. But what about the absolute values? What
Neff values according to the provided definition indicate a diverse enough MSA and a useful for the
prediction purposes evolutionary signal? 1, 2, 5, 10? Or in other words, how many diverse sequences
(below 0.8 cutoff) are needed in a MSA for, say, 100- or 300-residue long protein? What about the
coverage of the query sequence?

Figure 6: recommend swapping names of panels (A <-> B) in the figure and the caption. It was confusing
for the reviewer that the upper left panel in the Figure was B and not A.

773-775: Do not like 3 things: 1) the 'DMFold-Multmer' typo, 2) text in the 1st parenthesis, and 3) the
fact that it is not clarified that the AF2-Multimer results are from the March 2022 edition of a public
server. Suggest correcting to: (B) Sum of Z-scores on 43 multimeric targets for 87 CASP15 assembly
groups. DMFold-Multimer (registered as ‘Zheng’) and the public March-2022 version of the AlphaFold2-
Multimer server (registered as 'NBIS-AF2-multimer') are marked in red and yellow, correspondingly.

RESULTS

96-97: 'The optimal multimer MSAs are then selected based on a combined score of the depth of the
MSAs and folding score of the monomer chains'. Did not see it in the Methods where the 'folding score'
of monomer chains is defined or used.
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98: There is no 'Methods' section (line 482 lists 'ONLINE METHODS', adjust either here or there).

133: Well, TM=0.483 is not considerably higher than 0.469 or 0.477. They are all rather very similar. So
nothing to brag about here.

135, 140, Figure 2: What does the 'top L long-range contacts' mean? Is L defined anywhere that |
missed? And the phrase 'top 5L long-range distance map' is simply confusing.

138-139: What are the numbers in parentheses defining accuracy of a contact map?
139: 'A similar tendency can be seen FOR short- and ...'

135-146: When | look at graphs in Fig. 2 (in particular, E and F) | cannot see anything SIGNIFICANTLY
better than the rest (as the authors continuously emphasize). In the graphs, BLAST is always provided
second after the DeepMSA?2 and it gives an impression of a sizeable improvement. But BLAST results are
expected to be poorer (as BLAST is a conceptually different and simpler method), and if one removes
BLAST's violin in the lineup of methods (or moves it to the very right), then the 'significantly better'
impression disappears. It is better to move to a quantitative language in the text.

152: There were no that many FM targets in CASP13 + CASP14. | guess that the 85 FM mentioned in the
text is for a wider target set including slightly easier FM/TBM domains.

188-191: Please reformulate - hard to read.
198-199: have a confidence score (pLDDT<0.7) -> have a confidence score of pLDDT<0.7.

204: Please explain also in the Figure 4 caption what is the '1,934' number shown there (it points in the
y-axis direction, which shows pLDDT). Also, explain (in addition to the main text) that the '5042 difficult
targets' mentioned there are those specifically selected by you where AF2's pLDDT was <0.7, as by
quickly looking at the histogram it may seem that AF2 is unable to generate models in excess of 0.7. In
general, | think that the panel A may be confusing for a reader, and | would recommend (but not insist)
to delete the AF2 histogram as it delivers no useful message in itself in the discussed context.

195-210:

1)Have any predicted structures from the human proteome been solved experimentally recently?
Especially from the 5,0427? It would be interesting to compare the results to known answers.

2) Also, it is nice that in 1,943 cases the pLDDT score jumped over 0.7. However, | am curious, in how
many cases these are true positives (i.e., represent better predictive ability of DMFold) compared to

10
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false positives (e.g., the target is largely disordered and low AF2's pLDDT scores are genuinely indicating
that). But | guess it is impossible to check this without the experimental structural data, or?

296-297: content: 'where the former two measure the global fold quantity' [?]
and grammar: and the latter two for assessing protein interface modeling quality of protein complexes.

297-298: 'The standard version of AlphaFold2-Multimer also participated in the CASP15 with registered
name of ‘NBIS-AF2-multimer’ as operated by the Elofsson lab.'

Despite your explanations, it still sounds like DeepMind participated in CASP15, which is not true.

| guess the sentence in question can be deleted and then you can say:

Overall, DMFold-Multimer achieved a cumulative Z-score of 35.43, which is nearly 3 times higher than
that of the ‘NBIS-AF2-multimer’ group (i.e., the public AlphaFold2-Multimer server run by the Elofsson
Lab on CASP15 targets) (12.30), and 18.3% higher than the second-best performing group (29.95).

299-300: Please make sure your numbers are updated to reflect those provided at the link in line 293.

301-310: Talking about the immune complexes. Can you explain why these three were modeled very
well, while others that are similar (e.g., H1142) were not?

A QUESTION related to the subject of the paper, but not directly to the material discussed in the paper:
The paper proves that deep learning methods can generate good structure models when evolutionary
information is abundant (deep MSAs). How do the authors see perspectives of deep learning methods
for the RNA structure prediction, where structural data are much sparser?

Noticed grammar issues: lines 95, 516-517, 538, 595, 645-646, 691-692, 185, 235-236

‘ Author Rebuttal to Initial comments

11
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Response to Editor

We very much appreciate the suggestions from the Editor, which are very helpful to guide our
manuscript revision. More specifically, the Editor suggested:

We therefore invite you te revise your manuscript to address these concerns. We would like to see
mare suitable and fairer comparisons between the tested methods, as recommended by reviewer
#1. Additionally, as both reviewers mention, some of the claims related te the method and
perforimance should be suitably foned down.

We appreciate the opportunity the Editor gave us to revise our manuscript and address the
Reviewers’ concems.

One of the major concemns of Reviewer #1 is on the relative marginal improvement of DeepMSA2
on some of the MSA characteristics compared to other methods. We found that some of the
presented parameters (Neff. SeqlD, cov) in our previous comparisons do not closely reflect the
ability of MSAs for extracting essential charactenistics of evolutionary and co-evolutionary
information, and therefore reorgamzed the manuscript by focusing discussions on the qualihies
which are more closely associated to its ability to assist deep-leaming protein structure prediction,
where consistent and significant improvements were found in all these qualities in the enlarged
testing dataset (see our Response to Pomt 3 of Reviewer #1).

Meanwhile, we included a new set of 94 protein domaimns from CASP13 in our test dataset to
enhance the statistics of our benchmark tests. Especially because the structures of these proteins
were solved afier the AlphaFold? was released during CASP14 and can therefore avoid over-
tramming of the algorithms, the mclusion of these new protein targets helps to facilitate a more
objective comparison between AlphaFold? and our pipeline (see our Response to Point 4 of
Reviewer #1)

Furthermore, to address the concemn of Reviewer #2 on the lack of expennmenial validation of the
DMFold models on the human proteome structures, we have identified 48 newly solved structures
of protemns from this set, and carefully exammned the model accuracy relative to the experimental
structures. The results demonstrated additional evidence on the imporiance of effective MSA
constructions by DeepMSA?Z? on high-accuracy structure predictions of unknown protemns (see our
Response to Point 21 of Reviewer #2).

Finally, we have toned down some of the potentially aggressive statements related to our method
and performance, followmng the suggestion of the Editor and the Reviewers (see our Responses to
Point 5 and 6 of Reviewer #1 and Point 2 of Reviewer #2).
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Response to Reviewer #1

We very much appreciate the comments and suggestions from the Reviewer, which we found very
helpful for improving the quality of both the manusenpt and the online servers. One of the major
concems of the Reviewer is the relative marginal improvement of DeepMSA? on some of the
MSA charactenistics compared to other methods. We found that some of the presented parameters
(Neff, SeqlD, cov) do not closely reflect the ability of MSAs for extracting essential charactenstics
of evolutionary and co-evolutionary information, and therefore reorganized the manuscript by
focusing discussions on the qualities which are more closely associated to its ability to assist deep-
learning protein structure prediction rather than on superficial parameters that do not directly
contrnibute to the structure prediction aim. The second major concem of the Reviewer 1s on the
improvement of DMFold on monomer protemns. To address this 1ssue, we have added additional
tests on the new CASP15 targets, which reinforced the statistics and demonstrated significant
advancements of DMFold over leading altematives in multiple aspects of structure prediction.
Additionally, we made sigmificant changes on the manuscript to carefully address other concemns
of the Reviewer on the resulis of human proteome structure prediction, webserver library,
confidence score presentation (per-residue pLDDT and PAE), and stoichiometry of complex
structure prediction. We have also turn down several statements according to the Reviewer’'s
suggestion. In the text below, we mnclude pomi-by-pomt replies to the comments of the Reviewer,
where all changes have been highlighted m yellow m the manuscript.

1. The Reviewer commented:

Summary:

AlphaFold have significantly improved the accuracy of protein structure prediction. However, it
crifically depends on having a large and sufficiently diverse set of multiply aligned homologous
proteins, not readily available for all queries. AlphaFold performance in predicting the structure
of protein complexes is even harder, in particular for hetero-eligomers. This is mostly because
construction of multiple sequence alignment (MSA) requires proper linking of the relevant
homologues for each of the different monomers in the complex. Zhang and coworkers introduce
DeepMSA2, an advanced pipeline for improving MSA construction, and a related pipeline
DMFold that uses this improved MSA and the AlphaFold algorithm for structure prediction of
protein monomers and complexes.

We appreciate the nice summary and positive comments from the Reviewer on the work.

2. The Reviewer commented:

Opinion:

According to the manuscript MSAs constructed using DeepMSAZ2 are deeper and more balanced
compuare te the leading alternafives, and DMFold produce model structures that are even more
accurate than these of AlphaFold. I listed a few issues fo be addressed in order to convince me
that this is really the case. For now, I am convinced about the imprevement with protein
complexes (Figure 5) but not necessarily with monomers.

Thank you for the comments. We are happy to know that the Reviewer 1s convinced that DMFold
outperforms AlphaFold?, one of the leading approaches of the field, 1 protein complex structure
prediction. In fact, the advancements of DMFold over AlphaFold? in both monomer and complex
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structure predictions are equally significant based on both benchmarking and blind CASP test
results. Specifically for monomers, our analysis was previously based on CASP13 and CASP14
targets. Since AlphaFold? was developed during CASP14, some of these targets may have been
well-optinnzed by Alphabold?. Thus, we added a new test set of protemns from the CASP15
expennment 1 the revised manuscript, which were released after the AlphaFold? traming The
results showed again the advancement of our pipeline over AlphaFold? on the new monomer
benchmark dataset. More detailed discussion on the monomer protein structure prediction of
DMFold and AlphaFold? are explained below (see Pomts 4. 6, 7, and 8).

3. The Reviewer commented:

Major issues:

1. “Overall, DeepM5.A42 demonstrates a balanced ability te detect diverse homelogous sequences
with a high alignment coverage, which likely contributes fo the improved ability of DeepMSA42
MSAs to suppert protein structure prediction”: This sentence summarizes the results presented
in Figure 2. However, my own interpretation of that data is that DeepMSA2 is comparable to
HHblity and MMsecs2. To my surprise even the good old PSI-BLAST is roughly in this range.
Taking into account that these methods were examined on different settings in terms of databases,
efc, to the settings they were designed with, Le., presumably sub-optimal, the differences appear
marginal.

2. Table §2. Indeed, DeepMS5A2 managed to find a femplate with better TM-score compared to
the rest of the MSAs. However, the score itself is only slightly better than the next one (by
HHblitz). (And I de not see the p-values that the table legend refers to.) On the same subject, Fig.
2D that is argued to show better template selection with DeepMSA2 compared fo HHsearch, does
not support this statement. Or maybe I do not know how te view it properly.

3. “In Fig 2F, we further display the mean abselute distance error (MAE, see Eq 5) af the top 5L
long-range distance map prediction by DeepPotential, where the use af the MSA from DeepMSA42
results in an MAE=2.414 that is significantly lower than those from the other five MSA
programs, i.e., 3.324 for BLAST, 2.784 for PSIBLAST, 2.73.4 for MMseqs2, 2.78.4 for HHblits,
and 3.034 for HMMER, all with a p-value<0.05 by one-sided Student’s t-test”: Again, to me the
distributions leok very similar. I wonder how the minor differences are statistically significant
after all.

4. “Thus, thanks to the balanced, high-information MSAs that if provides, DeepMSA2 can help
guide more accurate template recognition and spatial restraint predictions, which are critical for
the prediction of protein tertiary structure”™: Again, I disagree with this summary statement.
Maybe there is a bit of improvement, but it is anticipated, given the sub-optimal setting for the
competitor’s MSAs.

We thank the Reviewer for the comments, which raised several important issues on the

significance of the improvement brought by DeepMSA?2 compared o the control methods; these
concemns are all related to the data in Figure 2.

First, we would like to point out that the former comparison data in the original Figures 2A-2C
on the number of effective sequence (Neff). sequence identity (Seqld) and alignment coverage
(cov), on which DeepMSA? had the output value in the mmddle of the control methods, can be
misleading, because these parameters only account for a few geometrical aspects of the MSAs and
do not necessarily reflect their ability to encode evolutionary/co-evolutionary features that are
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critical to deep-leaming model tramning. In fact, many of the studies have shown a weak (or none)
correlation between the accuracy of deep-learming models and Neff (or Segld and cov) of MSAs
(see, e.g, Jumper et al, Nature 696: 583, 2021; Li et al, Bioinformatics, 35: 4647, 2019; Buchan
et al, Protems, 86:78, 2018). To avoid confusion, we have moved the onginal Figures 2A-2C of
(Neff, Seqld and cov) to the Supplementary Information. Accordingly, we only kept a bnef
discussion of these parameters, given that these discussions can help vs to understand the general
shape and overall balance property of MSA construction process of different programs.

Second and most importantly, we have the discussions in the Section focused more on the TM-
score of template recognitions and accuracy of contact/distance map predictions, which are more
directly related to the evolutionary and co-evolutionary information of MSAs. Following the
Reviewer's suggestion and fo assess the statistical significance of the compansons more
quantitatively, we added P-values to Tables S2-4 companng DeepMSA? and the control methods.
The results showed that the P-values are below 0.05 in all the categories of compansons, imcluding
both FM and TBM domains. If we count for all the 293 domamns from CASP13-13, the P-values
are all below 1.0E-07, showing that the improvements brought by DeepMSA?2 are indeed highly
statistically sigmificant. The reason for the gh significance P-values 1s because the improvements
are consistent, 1.e., there are far more targets mn which DeepMSA? aclueved an improvement than
the targets i which DeepMSA?2 did not (see. e.g.. the head-to-head companson in Figure S3),
although the difference on average may not be very large. Meanwhile, as mentioned above we
have included more targets from CASP135, which help increase number of the analyses and stability
of the statistics.
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Figure S53. Head-to-head comparisons of top 5L long-range mean absclute distance error (MAE)
between DeepMSA? and (A) BLAST, (B) PSIBLAST, (C) MMseqs2, (D) HHblits, and (E) HMMER
on 287 monomer protein domains from CASP13-15. Points below the diagomal indicate better
performance by DeepMSAZ2 relative to each control. This analysis has excluded six chains from a
protein complex H1137, which form an interwound alpha-helix barrel (see Figure 6B) and therefore
the contact/distance maps for each of the long alpha-helix chains are irrelevant for DeepPotential

predictions.
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Furthermore, we have redrawn Figure 2 and converted the violin plots to bar-plots, which help
better highlight the performance difference between different methods. Again, the data shows that
DeepMSA? outperforms the control methods consistently in all categories of targets on the crifical
task of assisting template recognition and deep-learning contact/distance map predictions.

Accordingly, we have rewritten the discussions to clanfy the 1ssues (Page 3-4):

Nevertheless, the parameters considered above (Neff, Seqld, cov) only measure the geometrical
characters of the MSA matnx. and do not necessanly reflect the mherent evolutionary and co-
evolutionary information contained m the MSAs (Fig 52). which are critical to the deep learming-based
protein structure predictions. As a more direct test of their ability to encode evolutionary and co-
evolutionary information, we further examine the performance of the MSAs in assisting template
recognition and deep learning spatial restraint prediction. In Fig 2A_ we list the average TM-scores of
the structure templates recognized by HHsearch based on the profile HMMs constructed from the six
different MSAs, where all close homologous templates (=30% sequence identity to the query sequence)
have been excluded from the template library. It is shown that the templates detected using the
DeepMSA2 MSA have the highest TM-score for both FM and TBM domains. The average Th-score
for all 293 CASP domains obtained using the MSA from DeepMSAZ (0.492) is also higher than those
using the MSAs from BLAST (0.454), MMseqs2 (0.469), HHblits (0.463), HMMER. (0.448), or
PSIBLAST (0.448). all with p-values <2 72E-08 by one-sided Student’s t-test (Table S2).

In Fig 2B, we present the precision of the top L long-range contact predictions made by the deep
neural-network program DeepPotential'l »* using co-evolutionary features derived from the six
different MSAs (where L 1s the query sequence length and “long-range” represents a sequence
separation |{ — f| = 24 residues for the contacts between residues i and j, which are then ranked by the
DeepPotential contact probability). Again utilizing the DeepMSA2 MSA results in a higher precision
of top L long-range contacts (=0.601) predicted by DeepPotential. compared to those obtained while
using the MSAs from BLAST (=0.514), MMseqs2 (0.568), HHblits (0.559), HMMER. (0.538), or
PSIBLAST (0.566) as inputs for DeepPotential A similar tendency can be seen for top L/3 and L2
predictions as detailed in Table S3. where p-values are below 1.23E-05 for all the comparisons when
all domains in our evaluation set are considered.

In Fig 2C. we further display the mean absolute distance error (MAE, see Eq. 6) of the top 5L long-
range distances predicted by DeepPotential, where the use of the MSA from DeepMSAZ results in an
MAE=2 22A which is significantly lower than those from the other five MSA programs, i.e., 3.094 (p-
value=1.62E-22) for BLAST. 2.70A (p-value=35.79E-12) for PSIBLAST, 2 68A (p-value=1.03E-07) for
MMseqs2, 2. 74A (p-value=1.26E-09) for HHblits, and 2 98A (p-value=4.80E-13) for HMMER (Table
54). In Fig S3, we also display a head-to-head companson of the MAFE between DeepMSAZ and the
five control methods, where DeepMSA2 has lower MAE valves than the other MSA methods for a
dominant fraction of the domains; this accounts for the major reason for the significant p-values. Overall,
these data show that the balanced and highly informative MSA construction provided by DeepMSA2
might have encoded more relevant co-evolutionary features and help guide accurate template
recognition and spatial restraint predictions; this ability is alse important for the subsequent deep
learning-based tertiary structure prediction.

Finally, we note that despite the improved performance by DeepMSA? on template recogmtion
and contact/distance map prediction, the data presented n this Section and Figure 2 are only for
pilot examination of the method. The more critical examinations of DeepMSAZ on tertiary and
quaternary structure predictions, which are the goals of DeepMSA?2 development, are presented in
the subsequent sections as discussed below.

4. The Reviewer commented:
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5. Figure 34. The vast majority of datapoints are in the upper right corner. They appear right
alang the diagonal, which would mean that DMFold is as good as AlphaFeld. The main text says
that MDFold is better, I guess this statement refers to the 20 or so other datapeints, most of which
are above the diagonal. I'd revise the text to explain that. Same comment also regarding Fig. 54.

Thank you for the comment and suggestion. To address the 1ssue, we first included more targets
from CASP15 which increased the statistics of analyses and therefore better highlighted the
differences between the methods. As mentioned above, since CASP15 domains were released after
AlphaFold? model training, the comparison results can be less affected by the danger of over-

Second, we have split the comparisons m two categonies. As shown in Figure 3A. for the 86
monomer domamns with both TM-scores by AlphaFold? and DMFold =0.8, as the Reviewer
pointed out, the overall performance 1s indeed comparable (0.925 vs 0922 for DMFold and
AlphaFold?). For the rest of 46 domains, the TM-score difference for these two methods 1s highly
significant, 1.e., average TM-scores of 0.626 vs 0.317 for DMFold and AlphaFold2?, with a p-
value=2 86E-04 in Student’s t-test. This highlights the essential point that while AlphaFold2
provides excellent performance on many domains, DMFold 1s nevertheless capable of providing
accurate structures for many of the cases where AlphaFold? fails. We have rewritten the discussion

as following (Page 4):

The DeepMSAZ2-driven monomer protein prediction pipeline utilizes a modified version of
AlphaFold2?™, in which the input MSA is replaced with the MSA created by DeepMSA2. In the
following discussion, we use ‘DMFold’ to refer to our pipeline for brevity. In Fig 3A, we compare
the TM-scores of all models predicted by DMFold vs. AlphaFold2? on the 132 FM monomer proteins
from the CASP13-15 experiments. To correctly reflect the FM nature of the domains, all templates
released after May 2018, May 2020, and May 2022 have been excluded for the CASP13, CASP14.
and CASP15 domains, respectively, when reoning the programs. It is shown that DMFold generated
models with a higher TM-score than AlphaFold2 in 63% (=83/132) of the cases. The average TM-
score of the models generated by DMFold (0.821) 15 5% higher than that of AlphaFold2 (0.781),
with a p-value=1.82E-04 in one-sided Student’s t-test indicating that the difference is statistically
significant. It is notable that the difference mainly comes from difficult domains. For the 86 domains
where both AlphaFold2 and DMFold achieved TM-score =0.8, for example, the average ThM-score
is very close (Le.. 0.925 vs 0.922 for DMFold and AlphaFold?). But for the remaining 46 domains.
where at least one of the methods performed poorly, the TM-score difference is dramatic (1.e., 0.626
for DMFold vs 0.517 for AlphaFold 2), with a p-value=2.86E-04 in one-sided Student’s t-test.
Among the 46 difficult domains, DMFold builds models with TM-scores 0.1 umt higher than
AlphaFold in 18 domains while AlphaFold2 does so only in 4 domains. This data highlights the
advantage of the DeepMSA2/DMFold pipeline for modeling difficult protein domains.

Smmlarly, for Figure SA, we split the complex fargets mio two categones. For the targets where
both DMFold- and AlphaFold2-Multimer TM-scores were above 0.9, accounting for 26 targets,
the average TM-score is very close (0.961 ws 0960 for DMFold-Multimer and AlphaFold2-
Multimer). However, for the remaining 28 complexes, the average TM-score by DMFold-
Multumer (0.716) is 32% higher than that of AlphaFold2-Multimer (0.542), with p-value=1.03E-
04 1n Student’s t-test. Thus, agamn we see that DMFold-Multimer shows 1is strength on cases where
the standard AlphaFold?-multimer cannot provide good predictions. We accordingly added the
following discussion in Page 6:
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Fig 5A also displays a head-to-head comparison of the TM-score of the models, where DMFold-
Multimer cutperforms AlphaFold2-Multimer in 70% of cases. Again, the improvement mainly
occurs on the difficult complexes: If we consider the 26 easy targets where both DMFold-Multimer
and AlphaFold2-Multimer models have TM-scores above 0.9, the average T -scores are very close
(0.961 for DMFold-Multimer vs 0.960 for AlphaFold2-Multimer). For the 28 more difficult targets,
however, the average TM-score of DMFold-Multimer (0.716) is significantly higher than that of
AlphaFold2-Multimer (0.542), with a p-value=1_05E-(M in one-sided Student’s t-test (Fig SA).

5. The Reviewer commented:

6. “Since the major difference between DMFold and AlphaFold2 is in MSA generation, the large
improvement in TM-score indicates that the quality of the MSAs has a profound impact on the
structural models that are ultimately generated.”: This sentence refers to the minor improvements
presented in Fig. 3. It should be tuned dovn.

Thank you for the suggestion. We have rewniten the sentence to appropnately tone down the
statement (Page 4):

Since the major difference between DMFold and AlphaFold? 15 in MSA gemeration, the
improvement in TM-score observed for DMFold indicates that the quality of the MSAs has a strong
effect on the structural models.

6. The Reviewer commented:

7. Fig. 52: In the upper left example the DMFold and AlphaFeld models look very similar to each
other {and to the experimental struciure). Maybe TM-score difference of 0.1 is not high enough
te show diversity? Maybe try 0.27 And, of course, tune down the statement about improvements
over AlphaFold?

Thank you for the comment and suggestion. To better highlight the structural improvement, we
have redrawn Figure 54 (previously Figure 52) as follows: (1) we mtroduced 8 examples from
CASP13-15 with a TM-score difference above 0.3; (2) we drew the DMFold and AlphaFold2
models separately when they are superposed on the experimental structures, which helps more
clearly display the structural differences. Accordingly, we rewrote the following paragraph (Page
)

In Fig 54, we further list eight other examples from CASP13-15 (T0991-D1, T1064-D1, T1125-D1,
T1125-D2, T1125-D5, T1130-D1, T1169-D1, and T1169-Dd), in which the TM-score
improvements by DMFold are higher than 0.3. In seven out of these eight cases, the Ngff of
DeepMSA? is higher than that of AlphaFold2. These results again demonstrate the capacity of
DeepMSAZ? to provide more informative MSAs to a state-of-the-art protein prediction pipeline, thus
further mmproving protein monomer modeling accuracy and rendering many previously “un-
foldable” proteins tractable for stucture prediction.

7. The Reviewer commented:

8. Figure 4 convincingly shows that in spite of my reservations above DeepMSA2 managed to
produce significantly better MSAs that enabled accurate prediction of nearly 2000 human
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proteins for which AlphaFold models were not trustworthy. To further understand this apparent

conflict, I explored a bit further. Indeed, the examples shown in the manuscript are very
convincing. However, I clicked around in the database of ~5000 human proteins and in most

cases the protein core, as predicted by DeepMSA2, seemed very similar to that of the AlphaFeld
model. I encourage the authors to highlight all the ~2000 models that they consider better than
the corresponding AlphaFold models.

Thank you for raising the important point. We added a new Figure S5 to examune the structural
similarity between DMFold models and AlphaFold? DB models on those 1.934 human proteins
which AlphaFold? failed to model but DMFold succeeded As shown in Figure S5, 80%
(=1549/1934) of the DMFold models have a different overall structure compared with the
AlphaFold? DB models (with TM-score <0.6 between the models), indicating that the
improvement of the DMFold models for those protemns may come from the topology-level quality
increasing. In contrast, for 385 targets, DMFold models have similar structures with AlphaFold2
DB model, where the improvement of DMFold model may come from the local topology
CcOofTection.
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Figure S5. Structural comparisons between DMFold models and AlphaFeld? DB models on 1,934
human proteins for which the DMFold creates high-quality models with pLDDT=0.7, while
AlphaFold? DB models have a confidence score of pLDDT<0.7. The histogram shows the
distribution of TM-scores between DMFold and AlphaFold2 DB on each target. There are 385 of
1,934 targets, where two methods generate similar modes with TM-scores between two methods’
models of 206, where the rest of 1549 (80%) have TM-score <0.6.

Accordingly, we have added the following paragraph to summanze the results of Figure S5 (Page
)X

In Fig 85, we plot a histogram distribution of TM-scores between DMFold and AlphaFold2 DB
models of the 1.934 proteins that could be folded only by DMFold. 80% (=1.549/1.934) of the
DMFold models have a different overall structure relative to the comesponding AlphaFold2 DB
models (with a TM-score <0.6 between them), indicating that the improvement of the DMFold
models comes at the topology level In contrast, for the remaining 385 proteins, DMFold models
have relatively similar structures with AlphaFold2 DB models, and thus the improvements in
DMFeld may come mainly from local structural comrections.

8. The Reviewer commented:

9. Further on this: Having the per-residue measures that AlphaFold provide may have helped
convincing me te the contrary.
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This 1s an excellent point. To address this issue, we added Figure 4B to make a head-to-head
comparison of the residue-level pLDDTs obtained by DMFold and AlphaFold? DB respectively.
In total, 878,094 residues are modeled by DMFold and AlphaFold? DB for the 1,934 proteins,
where DMFold models have greater pLDDTs than AlphaFold? DB models for 93% of the residues.
We added the following paragraph to summarize the results of Figure 4B (Page 6):

Fig 4B further shows a head-to-head comparison of the residue-level pLDDTs obtained by DMFold
and AlphaFold2 DB for the 1,934 human proteins which involve a total of 878,094 residues, where
the DMFold models have a higher residue-level pLDDT than the corresponding AlphaFold2 DB
models on 93% of the residues.

Furthermore, we have given two examples and corresponding residue-level pLDDT distributions
i Figures 4C-4F to illustrate the improvements of DMFold over AlphaFold2, which occur on
both global fold and local structure levels. The corresponding discussions are given in the
following paragraph (Page 6):

In Fig 4C, we present one illustrative example from an uncharactenized protein, Q6ZQTO0,
for which AlphaFold? collects only 9 homologous sequences with Neff=0.7 m the
MSA, compared to the DeepMSA2 MSA with 122 sequences and Neff=6.2. Due to
the sparse information from the MSA, a poor structure model with pLDDT=0.51 is
produced by AlphaFold2, showing an irregular secondary structure. In contrast. using the
improved MSA from DeepMSA2, DMFold creates a model with much higher confidence
(pLDDT=0.92), which has a more stable fold with well-formed hydrogen-bonding network
and secondary structure. Fig 4D further hists the residue-level pLDDT distributions. where
nearly all residues in the DMFold model have a pLDDT =0.7, while the corresponding
residues in the AlphaFold2 DB model all fell below 0.7. For this protein, the DMFold
model and AlphaFold2 DB model have a very low similarity with TM-score=0.44, showing
that DMFold improves the modeling quality at the global fold level Fig 4E shows a
complementary example from the putative diacylglycerol O-acyliransferase 2-like protein
{Q6IEDY) with a w/p three-layer sandwich fold Although the DMFold and AlphaFold2
models have similar global folds (TM-score=0.88), DMFold built the model with a
pLDDT=0.83 while AlphaFold2 DB did so with a pLDDT=0.68. The residue-level pLDDT
distributions in Fig 4F show that DMFold created better local structures with greater
pLDDTs for several regions (marked in red), which correspond to the two better-formed
[-sheets in 3D structural packing as highhghted in red in Fig 4E. These examples show
that DMFold could improve AlphaFold2? modeling at both global fold and local structure
levels through the supplying of additional evolutionary information from more informative
MSAs.
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Figure 4. The structural modeling results of DMFold on 5,042 difficult targets from the human
proteome. (A) The histogram distributions of pLDDTs for DMFold models vs. AlphaFold2 DB
models for the subset of 5,042 AlphaFold2 DB models with pLDDT <0.70. The red dashed line
marks the threshold pLDDT=0.70 for considenng a target to be confidently predicted, where
DMFold models have a pLDDT=0.7 in 1.934 cases. (B) A head-to-head comparison of the residue-
level pLDDTs obtained by DMFold and AlphaFold? DB for the 1,934 confidently modelled proteins
which involve in total 878,094 residues. (C) Structural models generated for a putative
uncharacterized protein FLJ45035 (Q6ZQT0) by AlphaFold2 DE (yellow) and DMFold (blue),
respectively. (D) The residue-level pL DDT curves of AlphaFold? DB (yellow) and DMFold (blue)
for Q6ZQT0. (E) Structural models generated for a putative diacylglycerol O-acyltransferase 2-like
protein (Q6IEDY) by AlphaFold2 DB (yellow) and DMFold (blue), respectively, where two better-
formed P-sheet secondary structures created by DMFold are highlighted by red. (F) The residue-
level pLDDT curves of AlphaFold? DB (yellow) and DMFold (blue) for Q6IED9. where the
pLDDTs associated with the four f-stands are highlighted with red backgrounds.

9. The Reviewer commented:

10, T encourage the authors te include the per-residue pLDDT score in the database because it
provides alse local indications on structure quality, allowing to figure out which paris of the
structure are more reliable.

Thank you for the suggestion. We have added residue-level pLDDT score figure in DMFold online
database (see, e.g.. each entry in the URL of https://zhanggroup. org/DMFold2/human/1 html).




natureresearch

10. The Reviewer commented:

11. And I am alse missing the predicted aligned ervors (PAE), i.e., the expected positional error
at residue x if the predicted and actual structures are aligned on residue y.

Thank vou for the suggestion In thus study, DMFold used an earher released version of
AlphaFold? (v2.2.0) with pre-trained ‘monomer’ parameters to generate the human proteome
models. Unfortunately, at that ttme, Alphafold? v2.2 0 does not have PAE output m the final “pkl’
file. And even with the newly released AlphaFold? package (v23.0), it only has the
“monomer ptm~ model supporting PAE calculations m the “pkl’. In order to allow for the
companson requesied by the Reviewer, we have rebmlt our human model database by re-modeling
all of the 5,042 human proteins, using DMFold based on AlphaFold? v2 3.0, which are now with

both pLDDT and PAE values (see, e.g., https://zhanggroup org/DMFold2/human/Q6Z0QT0/).

In our benchmarking, we found that the models obtained based on AlphaFold? v2.3.0 with the
‘monomer_ptm’ parameters have on average a slightly lower pLDDT than that on AlphaFold?
v220 with “monomer’ parameters (-this finding is consistent with the clanification by the
DeepMind team that “Thas 1s the original CASP14 model fine tuned with the pTM head, providing
a parrwise confidence measure. It 1s shghitly less accurate than the normal monomer model”, taken
from https://github.com/deepmind/alphafold). Thus, i our manuscript, we still used models bult
on AlphaFold? v2 2.0 ‘monomer” parameters for data analyses and discussions. But in the online
database, we listed the models of both versions of DMFold programs, which allow users to choose
different versions of models according to their needs (see, eg., each entry m the URL of
https-//zhanggroup.org/DMFold?/human/1 html).

11. The Reviewer commented:

12, Figure 6. Since the structures are known it is trivial to superimpeose them on the medels. Thus,
if makes sense to measure RMSD, which more accurately shows similarity.

Thank you for the suggestion. We have now added the RMSD values for the 27 complex targets
i Figure 6B.

We previously histed TM-scores mstead of RMSD m Figure 6 partly because the CASP Assessors
use the TM-score mstead of RMSD as a part of their formula (Assessors' formula: Z-score(ICS) +
Z-score(IPS) + Z-score(LDDTo) + Z-score(TM)) to evaluate the accuracy of protemn complex
structure models from different groups. Here, RMSD 15 the root mean squared deviation of all the
equivalent atom pairs after the optimal superposition of the two structures. Because all atoms
the structures are equally weighted mn the caleulation, one drawback of RMSD is that big deviation
on a few residues in the loop/rail regions could result in high RMSD values although the structures
in the core regions are close, rendering the RMSD value more sensitive to the local structure
deviations when RMSD value 15 big; this 1s especially an 1ssue for protem complexes as they
contain more loop and tail regions than monomers. In contrast, TM-score uses the Levitt—Gerstemn
factor which weights small distances stronger than big distances, which makes TM-score more



natureresearch

sensitive to the global topology. Thus, in the corrected manuscript, we listed both RMSD and TM-
score m Figure 6B.

12. The Reviewer commented:

13. Methodelagy: Just te clarify, AlphaFold was retrained within the context of the improved
MSA pipeline, right? Or maybe used as is?

Thank you for raising the question. We have chosen not to re-train AlphaFolds in both AlphaFold2?
and DMFold pipelines for two reasons. First, we want to examuine the impact of the DeepMSA2
on the structure prediction purely from the aspect of MSA improvement. Therefore, 1t 1s better to
use the same model and parameters in both pipelines for fair comparisons. Second, because the
original AlphaFold? trammng sets include proteins with varions MSA qualities with Neff ranging
from low to high values, we expect that the optimal weighting parameters of AlphaFold? models
should not change much when using the MSAs with an overall improved quality. In other word,
retramning AlphaFold? models should have a munimmm impact on the final model quality with
using new MSAs from DeepMSA2.

To clanfy the 1ssue, we have added the following paragraph m the “ONLINE METHODS™ section
(Page 18):

We note that we did not re-train the AlphaFold? or AlphaFold2-Multimer network models with
DeepMSA2 MSAs in the DMFold or DMFold-Multimer pipeline. since one focus of this study is
on companing the impact of the MSAs on protein structure prediction and making a fair comparison
with AlphaFold2 and AlphaFold2 -Multimer. Meanwhile, becanse the original AlphaFold2 training
sets contain proteins with vanous MSA qualities —e. g with Neff mnging from low to high values—,
it 15 expected that the retraiming of AlphaFold2 models on a set of improved MSAs should have a
minimal impact (if any) on the final model quality. Thus, for the calculations shown here, we simply
used the DeepMind pre-trained AlphaFeld? and AlphaFold2-Multimer models and parameters when
implementing DMFold and DMFold-Multimer programs.

13. The Reviewer commented:

14. When predicting the structure of a multimer, I take it that in the curvent implementation the
steichiometry is provided, I wonder however if it is possible to deduce it from the coevolution
sighal. In particular for homo-oligomers.

The Rewviewer is right that the current implementation of the DMFold-Multimer pipeline requires
the input of all protein component sequences, 1.e., the providing of the stoichiometry information.
Specifically, for homo-oligomers, the information of “A#n” with “»#” bemg the number of 1dentical
SEeQUENCES TEMAINS NeCessary.

We appreciate that the Reviewer raises a very mteresting but challenging question of deducing the
stoichiometry information from coevolution signals. First, we like to note that the stoichiometry
state may not be umque for some protems. For example, the human calcium homeostasis
modulator can form an “A10" complex (PDB ID- 6YTV) and an “A 11" complex (PDB ID: 6YTX),
both of which are in stable form. Similarly, the proton-gated ion channel from Gloeobacter
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violaceus can form both an “A5” homo-oligomer (PDB ID: 6zgy) and an “A6” homo-oligomer
(PDB ID: 31gq). Another example 1s the portal protein from Eschenichia phage T7, for which both
“A12” and “A13” homo-oligomer states have been observed in the solved experimental structures
(PDB IDs: 3j4a and 6qwp). Thus, solely based on a protemn monomer sequence and 1ts MSA, the
co-evolution signal may not be sufficient to decide which oligomer states 1t should exist .

Nevertheless, there are several machine leaming studies trying to predict the protein oligomer
states from query sequence alone, including, for example: (1) Shen, et. al.. QuatIldent: A web server
for identifying protein quaternary structural attribute by fusing functional domain and sequential
evolution mformation. Jowrnal of Proteome Research, 2009; (2) Y Sheng, et al, Quad-PRE: a
hybnid method to predict protein quaternary structure attributes. Comput Math Methods Med 2014

Accordingly, we have added the following paragraph in Section DISCUSSION to highlight the
issue and the prospects of future developments, together with the citation of above efforts (Page
10):

In addition, the stoichiometry information (i.e., the number of copies of each component chain) of
the complex is required before implementing the current DMFold-Multimer pipeline. which may
limit the vsefulness of the algorithm in practical applications. Including a deep leaming-based
stoichiometry predictor: 3° based on the query sequences and evolutionary signals to DMFold-
Multimer pipeline may be part of the solution to alleviating the limitation. Furthermore, whether the
curent DeepMSA? approach could be extended to RNA MSA construction for improving ENA and
RINA-protein complex structure prediction is also a topic to explore in our ongoing research.



natureresearch

Response to Reviewer #2

We very much appreciate the comments and suggestions from the Reviewer, which help to
significantly improve the quality and descniption of the manusenipt. One of the major concems 1s
on the validation of the human proteome structure prediction by DMFold. Accordingly, we have
identified 48 newly solved protein structures and carefully examined the model accuracy relative
to the expenimental structures. Another major concern is on the lack of explanation why DMFold
successfully modeled some of the immune protemns in CASP15 but not others. To address this
issue, we have carefully analyzed the modeling data of two nanobody protemn complexes H1142
and H1144 and found that the multiple MSA pairing and selecting procedure, which allows for the
identification of correct MSAs with more relevant co-evolutionary mformation, 1s the key for the
successful modeling of these immune protemn structures by DMFold. In addition, the Reviewer
pointed out a number of grammatical errors and points of unclear logic in the manuscript. We have
carefully proofread the manuscript and partly rewntten the paragraphs/figures to address the
grammar and presentation issues. We have also toned down several statements following the
Rewviewer’s suggestion. Below, we imnclude pomi-by-poimnt replies to the comments of the Reviewer,
where all changes have been highlighted 1 yellow in the manuscript.

1. The Reviewer commented:

Two main messages of the paper are that deeper and better constructed MSAs improve protein
structure prediction and that this enhancement can push model accuracy beyond the "vanilla'
AlphaFold2 version (both standard and multimer), in many cases genevating much better models.
The methed was tested in CASPI1S and was recognized as one of the best performers. The study
is well thought-through, the message is appropriately substantiated with the data, examples are
illustrative and well picked, and the paper is overall well written.

We appreciate the positive comments of the Reviewer on the work.

2. The Reviewer commented:

Comments below.
ABSTRACT

An infegrated pipeline with DeepMS.A2 participated in the most recent CASP15 experiment and
created high quality complex models with mean Z-scores 3-times higher than the AlphaFold2-
Multimer server.”

Even though technically correct, this statement may mislead readers to think that the reported
method is 3 times better than AF2-Multimer. First and foremost, it is not an apple-to-apple
comparison as the databases are different. I guess that if the available A F2-M method was simply
retrained with the huge metagenomics data’ (without any other changes), it would show
comparable performance. This was demonstrated on monomeric CASPIS targets with an updated
AF2 version 2.3.0 released in the end of 2022. I suggest the authors fone down this statement
(here and in the Discussion).
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We appreciate and agree the Reviewer’s comments. Following the suggestion, we have rewntten
the sentences i both ABSTRACT and DISCUSSION sections to tone down the statement and
clarify the confusion:

An mtegrated pipeline with DeepMSAZ2 participated in the most recent CASP15 experiment and
created complex structural models with considerable higher quality than the AlphaFold2-Multimer
server.

[ABSTRACT, Page 1]

In the most recent community-wide blind test of CASP15, DMFold-Multimer achieved the highest
modeling accuracy for complex structure prediction, with an average TM-score 15.4% and average
ICS score 27.3% higher than the public March-2022 version of the AlphaFold2-Multimer server
(registerad as "NBIS-AF2-multimer’), respectively, according to the assessor’s criteria.
[DISCUSSION, Page 9]

3. The Reviewer commented:

INTRODUCTION

lines 57-59: These lines are formulated cautiously (which is good), however an unexperienced
reader may still downplay a very important word some’ in the phrase ‘on some erphan sequences
Jor which detectable homelogous sequences de not exist’. While in the next paragraph the anthors
do emphasize that language models in CASP15 were in fact inferior to the state-of-the-art
methaods, it is not clear whether the metheds mentioned here are among those discussed further
on. As an easy fix, I would suggest substituting ‘proved to be capable of generating” with "can
generate’,

62-63: Indeed, in CASPI4, results in assembly prediction were not as excited as those in fertiary
structure prediction. However, this changed in CASPIS, and the authors are surely aware of it
and should adjust their text accordingly.

Thank you for the appropriate suggestions. We have replaced the words ‘proved to be capable of
generating' with ‘can generate’ following the Reviewer's suggestion (Page 2)-

Protein structure prediction methods that combine a protein languape model with the AlphaFold2
end-to-end structure leaming module, such as ESMFold" and OmegaFold"?, can generate better
models than AlphaFold2 on some orphan sequences for which detectable homologous sequences do
not exist.

We also rewrote the next paragraph to (1) update the changes of complex structural modeling in
CASP135 and (2) mention specifically the performance of the language models in CASP15 mnclude
the above-mentioned methods (e.g., OmegaFold) (Page 2):

Despite the ongoing efforts of the field, the methods noted abowve do not sipnificantly improve the
overall prediction accuracy of monomer proteins. In addition, structure prediction for protein
complexes remains an even more substantial challenge. In the CASP14 expeniment. for example,
satisfactory models (those with interface contact score >0.8) could only be built for 7% of tested
protein complexes’®; in CASP13, the situation was comsiderably improved, where the best-
performance methods (including the pipeline introduced in this study) provided satisfactory models
for up to 47% of cases'®. However, there is still no evidence that the modifications made in most
newly introduced AlphaFold2-based methods (e.g., ColabFold) can significantly improve the
prediction performance for structural modeling of protein-protein complexes relative to AlphaFold2.
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It is also notable that in the CASP15 experiment, the ostensibly MSA-free protein language models,
such as OmegaFold, performed pootly on most of the targets with few homologous sequences’’,
suggesting that the lack of sufficient identifiable evolutionary information encoded in the protein
language model is equivalently problematic to shallow MSAs for explicitly MSA-based methods.

4. The Reviewer commented:

METHODS

485-488: CASP assessment is usually done on demains {evaluation units), and not targets (some
targets can contain domains of different homology-based categories). Please clarify that the
numbers provided here fand in figures) are for domains. Alse, fypically CASP domain
classification includes an overlap TEM/FM difficulty category. No mentioning of that here.
Checking Table §9 I can see that TEM/FM domains were included as a subclass of a broader
FM category. Please clarify in the text.

Thank you for pointing out the 1ssue. Following the suggestion, we have replaced the word “targets”
by ‘domaimns’ for the CASP monomer structure prediction throughout the manuseript and
Supplemental Information. We have also rewritten the first paragraph of “ONLINE METHODS™
to explan our classification of domam types (Page 14):

Monomer proteins from CASP. 293 domains from monomer targets in the Critical Assessment of
protein Structure Prediction (CASP) expenments were collected to benchmark the effect of
DeepMSA? on monomer protein structure prediction. The CASP experiments often classify the
domains as TBM-easy, TBM-hard, TBM/FM and FM. To simplify the data analyses, we merged
TBM-easy and TBM-hard domains as “template-based modeling (TBM) domains’, and TBM/FM
and FM domains as “free modeling (FM) domains’ in this study. In our benchmarks. 48 FM domains
and 64 TBM domains came from CASP13; 37 FM domains and 30 TBM domains were taken from
CASP14; and 47 FM domains and 47 TBM domains were from CASP15 (Table S11).

5. The Reviewer commented:

486-487: 'the effect of DeepMSA2 on menomer protein structure folding'. Protein folding does
not depend on MSAs. It has its own rules and pathways, often unknown. However, it does seem
like medern-day protein structure prediction depends on MSAs.

We thank the Reviewer for the clanfication. We have changed the “protem structure folding”™ to
“protemn structure prediction” mn the entire manuscnipt and Supplemental Information.

6. The Reviewer commented:

498-505: Do not understand arithmetic here. 13,838 + 6,757 = 20,595, This is more than 20,389
proteins mentioned as the Human FProteome dataset in your paper (including the 2-residue
peptide). Where does the discrepancy come from?

Thank you for the question, which helps us clarify the issue. The number 20,389 was from the
UniProt human proteome record, while the number 13,838 + 6,737 = 20,595 came from
AlphaFold? DB database. Since UmProt records are constantly changing based on the newly added
data, the two numbers were shightly different Given the vaniations in (and constant updating of)
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the UniProt database, we believe it might be better to give an approximate number to avoid
confusion We have accordingly revised the paragraph as the following (Page 14):

Human proteome. The human protecme dataset contains more than 20,000 proteins or peptides with
lengths between 2 and 34,350 AAs collected from UniProt
(https:/www uniprot.org/uniprotkb/ T face ts=reviewed%e3 Atrued: query=proteome%3AUP0000056
40). In 2021, DeepMind released the AlphaFold2 model database, AlphaFold2 DB, which contains
structure models predicted by AlphaFold2 for several reference proteomes, including the human
proteome. However, only around 70% (13,838) of human proteins in AlphaFold2 DB have confident
predictions with pL.DDT=0.7. From the remaining 6,757 proteins for which AlphaFold2 failed to
create confident folds, we selected the 5,042 proteins with lengths <800 AAs for remodeling by
DMFeld.

7. The Reviewer commented:

507-513: There are many different Neff definitions and protocols to calculate them. If would be
nice if the anthors can help their readers to understand the Neff definition provided here.
Practically all Neffs in the main text are discussed from the comparative analysis perspective, i.e.,
this methed recovers more diverse sequences than the other, and thus is befter. But what about
the absolute values? What Neff values according to the provided definition indicate a diverse
enough MSA and a useful for the prediction purposes evolutionary signal? 1, 2, 5, 10?7 Or in
other words, how many diverse sequences (below 0.8 cutaff) are needed in a MSA for, say, 100-
or 300-residue long protein? Whart about the coverage of the query sequence?

This 1s a very good question. To address the issue, we have added Figure 510 and the following
paragraph to explain in an infuitive way the concept of Neff and approximate thresholds of Nefff
and alignment coverage needed for deep learming-based structure prediction m ONLINE
METHODS section (Pages 14-15):

Based on the defimition in Eq. (1), MSAs with a more diverse set of sequence pairs with sequence
identity <0.8 have the term Y% _ . I[S,.n = 0.8] closerto 0, and thus result in a higher Neffvalue
given the same number of sequences (). In case that all N sequences in an MSA are diverse
(pairwise sequence identity <0.8), the term ¥¥_, on![Smp = 0.8] = 0, and then Negff will be
N /L. In other word, given a Neff cutoff Nef foy,, the minimal rmmber of diverse sequences needed
for modeling can be roughly estimated by

N = Nef four * VL @)

It 15 generally believed that MSAs with more diverse sequences and higher alignment coverages
can provide more evolutionary and co-evolutionary information and thus better assist deep leaming
protein structure prediction. To quantitatively evaluate that belief based on our data, we plot in Fig
S10A the TM-score of DMFold models versus Neff values for the 62 monomer FM domains in
CASP13-15. Although higher Neffs tend to comvespond to models with higher TM-scores, there is
no clear quantitative threshold of Neff cotresponding to the absolute success of structure modeling.
Following the general trend, we can provide two approximate thresholds, Neff=2" and Neff=2%,
which are roughly associated with three TM-score temitonies, 1.e, the average TM-scores with Neff’
in [0, 2%, (2%, 2%, and (2°, c0) are roughly <0.70. ~0.85, and >0.90, respectively. Thus, following
Eq. (2), approximately at least 10 (=20 » /100) or 160 (=2* = 1/T00) diverse sequences are required
for good- or high-accuracy modeling of a 100-residue long protein, respectively.

In Fig S10B, we also present a comparison of TM-score vs alignment coverage, which is defined
as the average rate of aligned residues on the query sequence cross all homologous sequences in the
MSA, for the same set of recent CASP targets. The data shows no obvious correlation between TM-
score and coverage of the MSA. Tt is obvicus that an MSA with coverage that is too short (e.g.. with
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the alignment focused only on the N-terminal tail) is useless for deducing co-evolutionary signal of
the enfire protein sequence. Our data suggest. however, that the final performance of structure

prediction does not depend on the alignment coverage as long as the alignment covers a reasonable
region of the query sequence (e.g., >~60% in our case).
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Figure $10. TM-score of DMFold models versus (A) the Neff of DeepMSA2 MSAs, and (B) the
alipnment coverage between the query and homologous sequences of the DeepMSA2 MSAs on 62
CASP13-15 “FM’" monomer protein domains. The “FM’™ domains that came from protein complex
are excluded in this analysis due to possible interference from binding partners. The red line
indicates the average TM-score in each Ngff bin. Two approximate thresholds, Neff=2" and Neff=2*,
are plotted by blue dashed lines. The average TM-scores with Nefflower than 2°, between 2° and 2%,
and higher than 2* are roughly below 0.70, approximate 0.85, and higher than 0.90, respectively. If
a domain does not have any homologous sequence in the MSA, we define the coverage as 0.

8. The Reviewer commented:

Figure 6: recommend swapping names of panels {4 <-> B) in the figure and the caption. It was
confusing for the reviewer that the upper left panel in the Figure was B and not A.
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Thank you for the suggestion. We have redesigned the Figure 6 panels to make it logically clearer.
Now, the panels A B and C are m top, middle, and bottom regions of Figure 6 respectively.

9. The Reviewer commented:

773-773: Do not lilke 3 things: 1) the 'DMFold-Multmer’ typo, 2) text in the Ist parenthesis, and
3) the fact that it is not clarified that the AF2-Multimer results are from the March 2022 edition
of a public server. Suggest correcting to: (B) Sum of Z-scores on 43 multimeric targets for 87
CASP15 assembly groups. DMFeold-Multimer (registered as ‘Zheng’) and the public March-2022
version of the AlphaFold2-Mulfimer server (registered as 'NBIS-AF2-multimer') are marked in
red and yellaw, correspondingly.

Thank you for the suggestion. We have fixed the typo and revised the text in the legend of Figure
6 to clarify the point (Page 24):

Figure 6. Performance of the DMFold/DMFold-Multimer pipeline for protein complex structure
prediction in the CASP15 experiment. (A) Histogram of the TM-scores of structural models by
DMFold-Multimer on the 38 complex targets that have experimental structure released. (B) The first
models produced by DMFold-Multimer superposed on the expenmental structures for the 27
complex targets with TM-scores >(.8, where the component menomers of the predicted models are
shown in distinct colors with the expenimental structures marked in black. (C) Sum of Z-scores on
41 multimeric targets for the 87 registered CASP15 assembly groups, with data taken from the
CASP15 webpage. DMFold-Multimer (registered as “Zheng’) and the public March-2022 version
of the AlphaFold2-Multimer server (registered as NBIS-AF2-multimer’) are marked in red and
yellow, respectively.

Furthermore, we have changed the “AlphaFold2-Multuner”™ group name to “the public March-
2022 version of the AlphaFold2-Multimer server” i CASP15-related analyses mn RESULTS and
DISCUSSION Sections to avoid further confusion:

Overall, DMFeld-Multimer achieved a cumulative Z-score of 3530, which is nearly 3 times higher
than that of the ‘NBIS-AF2-multimer’ group (ie. the public March-2022 version of the
AlphaFold2-Multimer server run by the Elofsson Lab on CASP15 targets, which achieved a
cumulative Z-score of 12.27), and 21.1% higher than the second-best performing group (29.15).
[Page 8 in RESULTS]

In the most recent community-wide blind test of CASP15, DMFold-Multimer achieved the highest
medeling accuracy for complex structure prediction, with an average TM-score 15.4% and average
ICS score 27.5% higher than the public March-2022 version of the AlphaFold2-Multimer server
(registerad as ‘NBIS-AF2-multimer”), respectively, according to the assessor’s criteria.

[Page 9 in DISCUSSION]

10. The Reviewer commented:
RESULTS
96-97: 'The optimal multimer MSAs are then selected based on a combined score af the depth of

the MSAs and folding score of the monomer chains'. Did not see it in the Methods where the
folding score” of monomer chains is defined or used.



natureresearch

Thank you for pointing out the issue. Here, “folding score’ refers to ‘pLDDT" score, which 1s given
in Eq. (3) in ONLINE METHODS. We have revised the text in the first paragraph of the
RESULTS section to clarify the poimnt (Page 3):

The optimal multimer MSAs are then selected based on a combined score of the depth of the MSAs

and folding score (Le., pLDDT score) of the monomer chains as defined in Eq. (3) below.
11. The Reviewer commented:

98: There is no "Methods' section (line 482 lists "ONLINE METHODS", adjust either here or
there).

Thank you for picking up the error. We have replaced ‘Methods® by ‘ONLINE METHODS®
throughout the manuscnpt.

12. The Reviewer commented:

133: Well, TM=0.483 is not considerably higher than 0.469 or 0.477. They are all rather very
similar. So nothing to brag about here.

Thank you for the comment. In the revised manuscript, to have a better comparison, especially on
the proteins outside the AlphaFold? traming datasets, we mncluded 94 new domains from CASP15
into our test dataset (see Tahle S11). Thus, we have redone the corresponding experiments on the
enlarged dataset and also calculated the p-values between DeepMSA?2 and other methods. We
found that the DeepMSA2 method has now an average TM-score of 0.492, compared to that by
BLAST (0.454), MMseqs2 (0.469), HHblits (0.463), HMMER. (0.448). or PSIBLAST (0.448),
where the p-values by one-sided Student’s t-test are all below 2.72E-08 in the comparisons, as
shown in Table S2. Accordingly, we have updated the data and smtably qualified the statement in
the RESULTS (Page 4):

The average Th-score for all 203 CASP domains obtained using the MSA from DeepMSAZ (0.492)
is also higher than those using the MSAs from BLAST (0.454), MMseqs2 (0.469), HHblits (0.463),
HMMER. (0.448), or PSIELAST (0.448), all with p-values <2 72E-08 by one-sided Student’s t-test
(Table 52).

13. The Reviewer commented:

135, 140, Figure 2: What does the "top L long-range confacts” mean? Is L defined anywhere that
I missed? And the phrase 'top SL long-range distance map' is simply confiising.

Thank you for the question. which help us clarify the 1ssue. Here, L 1s the protein length (which
was defined 1n Eq. 1 but not here), and “long-range™ represents a separation of at least 24 residues
in the primary sequence. Thus, “top L long-range contacts” refer to the I long-range contacts that
are top ranked by the predicted contact probability from the DeepPotential  Similarly, “top 5L long-
range distance map’ refers to the 5*L long-range distance predictions as ranked by the predicted
distance probability from the DeepPotential.
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We have revised the corresponding text in “Results™ section (Page 4) and in Figure 2 caption
(Page 21) to clanfy the point.

In Fig 2B. we present the precision of the top L long-range contact predictions made by the deep
neural-network program DeepPotential'" , using co-evolutionary features derived from the six
different MSAs (where L is the query sequence length, and “long-range™ represents a sequence
separation |i — j| = 24 residues for the contacts between residues i and j, which are then ranked by
the DeepPotential contact probability). Again utilizing the DeepMSA2 MSA results in a higher
precision of top L long-range contacts (=0.601) predicted by DeepPotential, compared to those
obtained while using the MSAs from BLAST (=0.514), MMseqs2 (0.568), HHblits (0.559),
HMMER. (0.538), or PSIBLAST (0.566) as inputs for DeepPotential. A similar tendency can be seen
for top L/5 and L/2 predictions as detailed in Table S3, where p-values are below 1.23E-05 for all
the comparisons when all domains in our evaluation set are considered.

In Fig 2C, we further display the mean absolute distance error (MAE, see Eq. 6) of the top 5L
long-range distances predicted by DeepPotential, where the use of the MSA fiom DeepMSAZ2 results
in an MAE=2 22&_which is significantly lower than those from the other five MSA programs, ie.
3.09A (p-value=162E-22) for BLAST, 2.704 (p-value=5.79E-12) for PSIBLAST, 2.684 (p-
value=1.03E-07) for MMseqs2, 2.74A (p-value=1.26E-09) for HHblits, and 2.984 (p-value=4 80E-
13) for HMMER. (Table S4). In Fig 53, we also display a head-to-head companson of the MAE
between DeepMSAZ and the five control methods, where DeepMSAZ has lower MAE values than
the other MSA methods for a dominant fraction of the domains; this accounts for the major reason
for the sigmificant p-values. Overall, these data show that the balanced and highty informative MSA
construction provided by DeepMSA2 might have encoded more relevant co-evolotionary features
and help puide accurate template recognition and spatial restraint predictions: this ability is also
important for the subsequent deep leaming-based tertiary structure prediction.

Figure 2. Comparisons of MSAs generated by DeepMSA2 and five control methods for assisting
template recopnition and deep-leaming spatial restraint prediction on 293 CASP13-15 monomer
domains. (A) the average TM-score of the first template detected by HHsearch; (B) the precision of
top L long-range residue-residue contact prediction with L being the sequence length and sequence
separation |i—j|= 24; and (C) the mean absolute error (MAE) for the top 5L long-range residue-
residue distance predictions by DeepPotential. The CASP domains are categorized into Free-
Modeling (FIM) and template-based modeling (TBM) by the accessors. The height of the histogram
indicates the mean value and ervor bar depicts the 95% confidence interval for each variable using
Student’s t-distribution.

14. The Reviewer commented:

138-139: What are the numbers in parentheses defining accuracy of a contact map?

Thank you for the question, which help us clarify the presentation of our data. The numbers in
parentheses represent the precision of contacts predicted by DeepPotential with input MSAs from
DeepMSA2, BLAST, MMseqs?, HHbhts, HMMER, or PSIBLAST. We have rewntten the
corresponding text in RESULTS section to clanify the point (Page 4):

Again utilizing the DeepMSA2 MSA results in a higher precision of top L long-range contacts
(=0.601) predicted by DeepPotential. compared to those obtained while using the MSAs from
BLAST (=0.514), MMseqs2 (0.568), HHblits (0.559), HMMER. (0.338), or PSIBLAST (0.566) as
inputs for DeepPotential.

15. The Reviewer commented:
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139: '4 similay tendency can be seen FOR short- and ..."

Thank you for the suggestion. We have changed “from™ to “for™ here. Also, because the short- and
medmim-range contacts are less mmportant, we focused our discussion manly on the long-range
contact predictions with different cutoffs. The new text now reads as following (Page 4):

A similar tendency can be seen for top L/5 and L/2 predictions as detailed in Table 53, where p-
values are below 1.23E-05 for all the companisons when all domains in our evaluation set are
considered.

16. The Reviewer commented:

135-146: When I look af graphs in Fig. 2 (in particular, E and F) I cannot see anything
SIGNIFICANTLY better than the rest {as the authors confinuously emphasize). In the graphs,
BLAST is always provided second after the DeepMSA2 and it gives an impression of a sizeable
improvement. But BLAST results are expected te be poorer (as BLAST is a conceptually different
and simpler methed), and if one removes BLAST s violin in the lineup of methods {or moves it to
the very right), then the 'significantly better’ impression disappears. It is better to move to a
quantitative language in the text.

Thank you for the suggestions. In order to improve the presentation of Figure 2. we made the
following changes on it: (1) we moved the less relevant data on the MSA parameters (Neff. SeqlD
and Cov, see Point 7 above) to SI and had Figure 2 now focused on the parameters (TM-score,
contact/distance accuracy) that are more relevant to deep-learning structure prediction; (2) we
redid the statistics based on an enlarged test dataset including CASP15 domamns; (3) grven that the
violin plots require the display of mimimum and maximum values which results in a very wide v-
axis range, we converted the violin plots to barplots with 95% confidence mtervals which better
lighhights the differences among different methods; and (4) following the Reviewer's suggestion,
we calculated the P-value mn one-sided Student’s t-test between DeepMSA? and other control
methods which are all consistently and significantly below 0.053 in all the comparisons when All
domains are considered, as shown i Tables S2-4.

Accordingly, we have rewniten the following paragraphs based on the new analysis (Pages 3-4):

Nevertheless, the parameters considered above (Neff, Segld, cov) only measure the geometrical
characters of the MSA matrix and do not necessarily reflect the inherent evolutionary and co-
evolutionary information contained in the MSAs (Fig 52), which are critical to the deep learning-
based protein structure predictions. As a more direct test of thewr ability to encode evolutionary and
co-evolutionary information, we further examine the performance of the MSAs in assisting template
recognition and deep leamning spatial restraint prediction. In Fig 2A, we list the average Th-scores
of the structure templates recognized by HHsearch based on the profile HMMSs constructed from the
six different MSAs. where all close homologous templates (~30% sequence identity to the query
sequence) have been excluded from the template library. It is shown that the templates detected
using the DeepMSA2 MSA have the highest TM-score for both FM and TBM domains. The average
TM-score for all 293 CASP domains obtained using the MSA from DeepMSAZ2 (0.492) is also
higher than those using the MSAs from BLAST (0.454), MMseqs2 (0.469), HHblits (0.463),
HMMER. (0.448). or PSIBLAST (0.448). all with p-values <2.72E-08 by one-sided Student’s t-test
(Table 52).

In Fig 2B. we present the precision of the top L long-range contact predictions made by the deep
neural-network program DeepPotential'l: 3, using co-evolutionary features derived from the six
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different MSAs (where L is the query sequence length and “long-range”™ represents a sequence
separation |i — j| = 24 residues for the contacts between residues i and j, which are then ranked by
the DeepPotential contact probability). Again, utilizing the DeepMSA2 MSA results in a higher
precision of top L long-range contacts (=0.601) predicted by DeepPotential, compared to those
obtained while using the MSAs from BLAST (=0.514), MMseqs2 (0.568), HHblits (0.559),
HMMER. (0.538), or PSIBLAST (0.566) as inputs for DeepPotential. A similar tendency can be seen
for top L/5 and L2 predictions as detailed in Table 53, where p-values are below 1.23E-05 for all
the comparisons when all domains in cur evaluation set are considered.

In Fig 2C, we further display the mean absolute distance emror (MAE, see Eq. 6) of the top 5L
long-range distances predicted by DeepPotential, where the use of the MSA fiom DeepMSAZ results
in an MAE=2 228 which is significantly lower than those from the other five MSA programs, ie.,
3.09A (p-value=1.62E-22) for BLAST, 2.70A (p-value=3.79E-12) for PSIBLAST, 2.684 (p-
value=1.03E-07) for MMseqs2, 2. 744 (p-value=126E-09) for HHblits, and 2 984 (p-value=4 80E-
13) for HMMER (Table 54). In Fig S3. we also display a head-to-head comparison of the M4FE
between DieepMSA?2 and the five control methods, where DeepMSA?2 has lower MAF values than
the other MSA methods for a dominant fraction of the domains; this accounts for the major reason
for the significant p-valoes. Overall, these data show that the balanced and highly informative MSA
construction provided by DeepMSA2 might have encoded more relevant co-evolotionary features
and help guide accurate template recognition and spatial restraint predictions; this ability i1s also
important for the subsequent deep leaming-based tertiary structure prediction.
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Figure 2. Comparisons of MSAs generated by DeepMSA2 and five control methods for assisting
template recognition and deep-leamning spatial restraint prediction on 293 CASP13-15 monomer
domains. (A) the average TM-score of the first template detected by HHsearch; (B) the precision of
top L long-range residue-residue contact prediction with L being the sequence length and sequence
separation [i-j|= 24; and (C) the mean absolute error (MAE) for the top 5L long-range residue-
residue distance predictions by DeepPotential. The CASP domains are categorized into Free-
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Meodeling (FM) and template-based modeling (TBM) by the accessors. The height of the histogram
indicates the mean value and error bar depicts the 95% confidence mnterval for each variable using

Student’s t-distribution.

17. The Reviewer commented:

152: There were ne that many FM targets in CASP13 + CASPI14. I guess that the 85 FM
mentioned in the text is for a wider target set incInding slightly easier FM/TBEM domains.

The reviewer 1s right that the 85 FM domains include both FM and FM/TBM domains, which was
to mcrease the statistics of FM domains. In the revised manuscnipt, we have mcluded 94 new
domains from CASP135 to further increase the size of the test dataset We have rewritten the first
paragraph of “ONLINE METHODS" to explain the setting of test dataset (Page 14):

Monomer proteins from CASP. 293 domains from monomer targets in the Critical Assessment of
protein Structure Prediction (CASP) expeniments were collected to benchmark the effect of
DeepMSA? on monomer protein structure prediction. The CASP experiments often classify the
domains as TBM-easy, TBM-hard, TEM/FM and FM. To simplify the data analyses, we merged
TBM-easy and TBM-hard domains as ‘template-based modeling (TBM) domains’. and TBM/FM
and FM domains as *free modeling (FM) domains’ in this study. In our benchmarks. 48 FM domains
and 64 TBM domains came from CASP13; 37 FM domains and 50 TBM domains were taken from
CASP14; and 47 FM domains and 47 TBM domains were from CASP15 (Table S11).

18. The Reviewer commented:

188-191: Please reformulate - hard fo read.
We have rewritten the paragraph to improve the readability (Page 3):

In Fig 54, we further list eight other examples from CASP13-15 (T0991-D1, T1064-D1, T1125-D1,
T1125-D2, T1125-D5, T1130-D1, T1169-D1, and T1169-D4), in which the TM-score
improvements by DMFold are higher than 0.3. In seven out of these eight cases, the Ngff of
DeepMSA? is hipher than that of AlphaFold?. These results again demonstrate the capacity of
DeepMSA? to provide more informative MSAs to a state-of-the-art protein prediction pipeline, thus
further improving protein monomer modeling accuracy and rendering many previously “un-
foldable™ proteins tractable for structure prediction.

19. The Reviewer commented:

198-199: have a confidence score (pLDDI<{.7} -> have a confidence score of pLDDT<{.7.

Thank you for the suggestion and we have made the correction.

20. The Reviewer commented:

204: Please explain also in the Figure 4 caption what is the '1,934" number shown there (it points
in the y-axis direction, which shows pLDDT). Alse, explain (in addition te the main text) that the
"5042 difficult targets' mentioned there are these specifically selected by you where AF2's pLDDT
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was <@.7, as by quickly looking af the histogram it may seem that AF2 is unable to generafe
models in excess of 0.7, In general, I think that the panel A may be confusing for a reader, and I
would recommend (but not insist) fo delete the AF2 histogram as it delivers no useful message in
itself in the discussed context.

Thank you for the suggestion. The “1,934" refers to the number of human protems where DMFold
creates models with pLDDT=0.7, while AlphaFeld2 DB models have pLDDT<0.7. To be clearer,
we have changed *1934° to “1934 protemns’ in Figure 4A.

The 53,0427 refers to the number of human proteins where the AlphaFold2 DB models have
pLDDT=0.7, so we run DMFold on these 5,042 proteins to see the performance of DMFold. We
have made 1t clearer in the caption of Figure 4A by stating “for the subset of 5,042 AlphaFold2?
DB models with pL.DDT <0.70."

Finally, we elected to keep the Panel A as a graphic comparison of the AlphaFold?2 DB and
DMFold histograms that could help 1llustrate the difference m pLDDT distibutions. The Figure
4 and the caption are now read as (Page 22):
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Figure 4. The structural modeling results of DMFold on 5,042 difficult targets from the human
proteome. (A) The histopram distributions of pLDDTs for DMFold models vs. AlphaFold2 DB
maodels for the subset of 5,042 AlphaFold2 DB models with pLDDT <0.70. The red dashed line
marks the threshold pLDDT=0.70 for considering a target to be confidently predicted, where
DMFold models have a pLDDT=0.7 in 1,934 cases. (B) A head-to-head comparison of the residue-
level pL DDTs obtained by DMFold and AlphaFold? DB for the 1,934 confidently modelled proteins
which mwvolve in total 878,094 residues. (C) Structural models generated for a putative
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uncharacterized protein FLJ45035 (Q6ZQT0) by AlphaFold2 DE (yellow) and DMFold (blue).
respectively. (D) The residue-level pLDDT curves of AlphaFold2 DB (yellow) and DMFold (blue)
for Q6ZQT0. (E) Structural models generated for a putative diacylglycerol O-acyltransferase 2-like
protein (Q6IEDY) by AlphaFold2 DB (yellow) and DMFold (blue), respectively, where two better-
formed p-sheet secondary structures created by DMFold are highlighted by red. (F) The residue-
level pLDDT curves of AlphaFold? DB (yellow) and DMFold (blue) for Q6IEDY, where the
pLDDTs associated with the four f-stands are highlighted with red backgrounds.

21. The Reviewer commented:

195-210:
1) Have any predicted structures firom the human proteome been solved experimentally recently?
Especially from the 5,0427 It wonld be interesting fo compare the results to known answers.

2) Also, it is nice that in 1,943 cases the pLDDT score jumped over 0.7. However, I am curious,
in how many cases these are true positives (i.e., represent better predictive ability of DMFold)
compared to false positives (e.g., the target is largely disordered and low AF2's pLDDT scores are
genuinely indicating that). But I guess it is impossible to check this without the experimental
structural data, or?

This 15 a very good suggestion. Following the suggestion, we i1dentified 48 human proteins that
were recently solved and used them to make a comparison between DMFold and AlpaFold? DB
models relatrve to the expenimental structures with results summanzed in Table S6. Furthermore,
we also added a new Figure S6 to examine the cormrelation between TM-score and pLDDT of
DMFold for those 48 proteins. We added the following paragraph to discuss the data (Page 6):

Qut of the 5.042 human proteins for which no high-confidence AlphaFold2 structure was available,
48 have experimental structures that cover =80% of the sequence of the natural protein and were
released in the PDB after the model training date of AlphaFold2 (May 1, 2018). For these 48
proteins, AlphaFold? DB models achieve an average TM-score of 0.630, compared to the average
TM-score achieved by DMFold (=0.679), providing a significant improvement with p-value=1 46E-
04 by one-sided Student’s t-test (see Table S6). Fig S6 examines the correlation between TM-score
and pLDDT of DMFold for those 48 proteins. Among all models with DMFold pLDDT =0.7, 85%
of the predictions could be considered as true positives, Le., the model is predicted as foldable and
is actually foldable with TM-score =0.5. There is also a quite high false omission rate (76%) if solely
based on the 0.7 pLDDT score cutoff, suggesting that many of the models with a lower pLDDT
might also possess correct folds. Overall, we note that despite the higher scores for the small set of
recently crystallized human proteins, the absolute quality of the predicted human proteome models
from DMFold still needs to be verified with more proteins when the experimentally solved structures
are available in the future.
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Figure S6. Ahead-to-head comparison between TM-score and pLDDT for final models by DMFold
on 48 human proteome proteins that have recently solved experimental structures, testing the
performance of pLDDT as a binary classifier for whether a model is comectly folded (using
pLDDT=0.7 as the model-based prediction, and TM-score between the model and the experimental
structure 0.5 as the ground truth). “TP’ means the number of true positive models, where DMFold
models are predicted as foldable with a pLDDT =0.7, and are also actually foldable with a TM-score
=0.5. 'FP" means the number of false positive models, where DMFold models are predicted as
foldable with a pLDDT >0.7, but are actually non-foldable with a TM-score <<0.5. “TN” means the
mumber of true negative models, where DMFold models are predicted as non-foldable with a pLDDT
<0.7, and are also actually non-foldable with a TM-score <0.3. FN' means the number of false
positive models, where DMFold models are predicted as non-foldable with a pLDDT <0.7, but are
actually foldable with a Th-score =0.5.

22. The Reviewer commented:

296-297: content: 'where the former two measure the global fold quantity”’ [7] and grammar: and
the latter two for assessing protein interface modeling quality of protein complexes.

Thank you for the suggestion. We have corrected the typo and grammar as following (Page 8)-

It is observed that DMFold-Multimer outperformed all other groups in terms of the sum of Z-score,
which was calculated by the CASP Assessors based on a combination of TM-score, LDDT, Interface
Contact Score (ICS), and Interface Patch Score (IPS); where the former two (TM-score and LDDT)
measure the global fold quality and the latter twro (ICS and IPS) assess the protein interface modeling
quality of protein complexes.
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23. The Reviewer commented:

297-298: 'The standard version af AlphaFold2-Mulfimer also participated in the CASPIS with
registered name of ‘NBIS-AF2-multimer’ as operated by the Elofsson lab.' Despite your
explanations, it still sounds like DeepMind participated in CASP135, which is not true. I guess the
sentence in guestion can be deleted and then you can say: Overall, DMFold-Multimer achieved
a cumulative Z-score of 35.43, which is nearly 3 times higher than that of the ™NBIS-AF2-
multimer’ group (i.e., the public AlphaFold2-Multimer server run by the Elofssen Lab on
CASPIS targets) (12.30), and 18.3% higher than the second-best performing group (29.95).

Thank you for the suggestion. We have revised the text accordingly (Page 8):
Overall, DMFold-Multimer achieved a cumulative Z-score of 35.30, which is nearly 3 times higher
than that of the "NBIS-AF2-multimer” group (ie., the public March-2022 version of the AlphaFold2-

Multimer server run by the Elofsson Lab on CASP15 targets, which achieved a cummulative Z-score
of 12.27), and 21.1% higher than the second-best performing group (29.15).

24. The Reviewer commented:

299-200: Please make sure your numbers are updated to reflect those provided at the link in line
203,

Thank you for raising the pomnt. The CASP15 official website was updated on May 3 according to

the statement of on website (https://predictioncenter org/caspl3/zscores_nmltimer cgi): “** The
performance graph and table were updated on May 3, 2023 to exlude two targets with unreliable experimental
stoichiometry dafa. Oviginally, results for 43 targets were assessed. This change had marginal effect on the cumulative
Z-scores and did not affect the group ranking reported at the CASF13 meeting.”.

Accordingly, we have updated the data in Figure 6C and Table S9, as well as the main text in
Page 8:

Overall, DMFold-Multimer achieved a cumulative Z-score of 3530, which is nearly 3 times higher
than that of the "NBIS-AF2-mmltimer” group (i.e., the public March-2022 version of the AlphaFold2-
Multimer server run by the Elofsson Lab on CASP135 targets, which achieved a cumulative Z-score
of 12.27), and 21.1% higher than the second-best performing group (29.15). Specifically. the TM-
score, LDDT, ICS, and TIPS of DMFold-Multimer are 0830, 0.789, 0.598, and 0.641, which are
15.4%, 9.7%. 27.5%. and 19.1% higher than the public March-2022 version of the AlphaFold2-
Multimer (0.719, 0.719, 0.469, and 0.538), respectively, all with a significant p-values <0.05 by one-
sided Student’s t-tests (Table S10).

25. The Reviewer commented:

301-310: Talling about the immune complexes. Can you explain why these three were modeled
very well, while others that are similar (e.g., HI1142) were not?

Thank you for raising the excellent question. We added two figures (Figures S8 and 59) in SI and
the following paragraphs to carefully examine the reason why DMFold-Multimer modelled well
(and outperformed AlphaFold2-Multimer) on some of the antibody-anitigen complexes (H1140,
H1141, H1143, H1144) but not others (H1142) (Pages 8-9):
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In Fig S8, we take Target H1144 as an example to further examine the possible reason of the
successful modeling by DMFold-Multimer compared to AlphaFold2-Multimer on the nanobody-
antigen complexes. First, Fig S8A shows a 3D scattering plot of between TM-score, predicted Th-
score, and Neff of paired MSAs for the structural decoys by DMFold-Multimer Here, DMFold-
Multimer implemented 25 paired MSAs created by DeepMSA2 wlnchhaveNeﬁimngmgfrm 18

to 16.3 and created 625 decoy conformations in which 13.6% have high quality with TM-score
above 8. Importantly, there is a decent correlation between the actual TM-score and predicted TM-
score in the high TM-score region (see the top-right area of the 21 TM-score vs predicted TM-score
plane of Fig S8A), which allows for DMFold-Multimer to select a correct model with TM-score
0.99 based on the predicted TM-score. It is notable that this best model comes from the MSA with
the highest Neff (=16.3) that contains more abundant and relevant co-evolutionary information for
quaternary structure modeling. As a companison. Fig S8C displays the 3D scattering plot for the
decoys by re-running AlphaFold2-Multimer, which utilized a single MSA with Nef=8.1 and
generated no models with TM-score above (0.8, In Figs S8B and 8D. we compare the distance map
restraints for the models with the highest predicted TM-scores by DMFold-Multimer and
AlphaFold2 -Multimer, respectively. Although both programs have comrect distance predictions for
the intra-chain residues, only DMFold-Multimer has a correct distance map between the inter-chain
residues (with a low MAE=0.61 A, compared to 4.35 A by AlphaFold2-Multimer), which is essential
to the comect quaternary structure modeling. This example highlights the advantage of DMFold-
Multimer by utilizing a multiple MSA pairing strategy to extract diverse co-evoluticnary
information which covers a more extensive quaternary conformational space, where the positive
TM-score and predicted-TM-score correlation allows for the selection of comrect complex models.

Nevertheless, DMFold-Multimer could not fold all the nanobody-antigen complexes in CASP15.
In Fig 59, we present the modeling result on Target H1142, the only case out of the five nanobody-
antigen targets in CASP13 for which DMFold-Multimer had the predicted model with a TM-score
below 0.90 (-the TM-score of DMFold-Multimer model is 0.98 for H1143 which was not shown in
Fig 57). Although DMFold Multimer also uses multiple paired MSAs with Neff ranging from 2.0
to 17.0 for this target, none of the MSAs contains comect inter-chain co-evolutionary information or
created comect inter-chain distance maps as shown in Fig S9C. As a result. all the created
conformational decoys have low quatemnary TM-scores (Fig S9B). and the final model selected
using predicted Th-score has thus a completely incorrect inter-chain orentation with a poor TM-
score 0.614, despite the correct tertiary folding in the individual chains (Fig S9A). Interestingly. the
maximum of predicted TM-scores for H1142 (pTMuwax=0.75) is considerably lower than that of all
other successfully folded nancbody-antigen complexes, ie., pTMaoo=0.82, 0.88. 0.90 and 0.90 for
H1140, H1141, H1143, and H1144, respectively, suggesting that the pTMma may be used as a
pcmmua] Lnxhcahn’ﬁ:lreshmahﬂgthe quality of the DMFold-Multimer models in blind prediction

experiments.
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Figure 58. Case study of Target H1144 from the CASP15 Multimeric Modeling Section. which is
a nanobody-antigen complex. (A) 3D scatter plot for TM-score, predicted TM-score, and Neff of
paired MSAs on DMFold-Multimer decoys. Here, the predicted TM-score is defined by
pTMS=02*pTM+0.8*ipTM, where pTM and ipTM are predicted TM-scores for monomer and
interface models, respectively, following AlphaFold? modeling. The larger-sized cyan points are 3D
points, representing DMFold-Multimer decoys with different TM-score, predicted TM-score, and
Neaff of paired MSAs, where the red point refers to the 3D point comresponding to the decoy with the
highest predicted TM-score. The smaller-sized black points represent the projection of 3D cyan
points on the 2D planes, where the yellow points indicate the projection of the 3D red point on each
of the 2D planes. Here, some of DMFeld-Multimer decoys hawve very high TM-scores as well as
high predicted Thi-score, so they can be correctly selected as the final model based on the highest
predicted TM-score. (B) The residue-residue distance map (heat map) for the model with the highest
predicted TM-score from DMFold-Multimer (upper triangle) compared to that calculated from the
experimental structure (lower triangle). (C) Same as in panel ‘A’ but modeled with AlphaFold2-
Multimer. Note that the panel *C” has the same number of points (decoys) as panel A’ but most of
points are overlapped, and no high-gquality models are generated. (D) Same as in panel ‘B’, but
modeled with AlphaFold2-Multimer.
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Figure 59. Case study of target H1142 from the CASP15 Multimeric Modeling Section, which is a
nanobody-antigen complex. (A) The expenimental structure and the DMFold-Multimer model for
H1142. (B) The 3D scatter plot for TM-score, predicted TM-score, and Neff of paired MSAs on
DMFold-Multimer decoys of H1142. The larger-sized cyan points are 3D points, representing
DMFold-Multimer decoys with different TM-score, predicted TM-score, and Neff of paired MSAs,
where the red point is the 3D point corresponding to the decoy with the highest predicted TM-score.
The smaller-sized black points represent the projection of 3D cyan points on each 2D plane, where
the yellow points indicate the projection of the 3D red point on each of the 2D planes. (C) The residue-
residue distance map (heat map) for the model with the highest predicted TM-score from DMFold-
Multimer (upper triangle) versus that calculated from the expenimental structure (lower triangle) for
Hl142.

26. The Reviewer commented:

A QUESTION related to the subject af the paper, but nat directly to the material discussed in the
paper:

The paper proves that deep learning methods can generate good structure models when
evolutionary information is abundant (deep MSAs). How do the authors see perspectives of deep
learning methods for the RNA structure predictfion, where structural data are much sparser?

Thanks for raising the general and important question. In many aspects, deep leaming (DL) based
RNA structure prediction can be regarded as an analogy of DL-based protein structure prediction.
However, the DL-based RNA structure prediction is currently hampered by two major factors.
First, as the Reviewer pointed out, the DL models are mainly leamned from nature structures, while
the limited number of known RINA structures 1 the PDB 15 the major barner for high-quality DL
model tramning. While the development of novel network leamning algorithms is important to learn
robust structural patterns from limited structural data, integrating sub-optimized DL models with
advanced physics- and knowledge-based approaches may be another feasible way to alleviate the
difficulty. Although the statistical approaches have generally lower accuracy, they could provide
complementary information to enhance accuracy and coverage of the DL models. The potential
has been partly demonstrated in the RNA Structure Section of the CASP15 experiment, where
statistical approaches generally outperformed the DL approaches. The outperformance 1s
particularly sigmificant for some of the computer-designed RINAs whose structural patterns are not
contained i the limted RNA structure library, where the top statistical approaches assembled
models with significantly higher TM-score than the DL models.

Secondly, the core mformation fed to DL networks 1s the evolutionary and coevolutionary
information derived from homologous sequences of multiple sequence alignments. Most of the
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current MSA collection programs are built on the NCBI non-redundant (NR) database, which
contains only 96,714,726 RNA/DNA sequences in the 2023-08-01 version; this number 1s far
smaller than that of proteins sequences in the NCBI NR database currently contaming 395,907 626
sequences. Furthermore, as demonstrated 1 this study, the cutting-edge protemn MSA algonithms
take the advantage of metagenomic databases which are hundreds of times larger than the NCBI
NR databases. Therefore, the extension of current DeepMSA2 to RNA MSA collections which
enables the use of abundant metagenome RINA sequences 15 another urgent topic to explore in DL
RINA structure prediction.

We have added the following paragraph to briefly note the potentials (Page 10):
Furthermore, whether the current DeepMSAY/DMFold approach could be extended to ENA and
RNA-protein complex structure prediction is also a topic to explore in our ongoing research, where

both limitations on the spare availability of RNA sequence and structure databases compared to
proteins need to be overcome.

27. The Reviewer commented:

Noticed grammar issues: lines 95, 516-517, 538, 593, 645-646, €91-692, 185, 235-236

Thank you for picking up the grammar 1ssues. We have carefully proofread the manusenipt and
corrected these and other issues.

Original line 95

Original:
Here, a sef of M top ranked menemeric M54s from each chain are paired those of all ether chains,
which resulf in M™ hybrid multimeric M54s with m being the number of distinct menemer chains
in the complex.

Revised:
Here, a set of M top ranked monemeric MSAs from each chain are paired with those of all other
chains, which results in M¥ hybrid multimeric MSAs with N being the number of distinct monomer
chains in the complex.

Ongmal line 516-517

Ongmal:
Three genomic sequence databases, Uniclust30%, UniRef30*' and UnirafP0'%, which are all based
UniProtKB*, are utilized in the DeepMSA? pipeling (see details in Table $10).

Rewvised:
Three genomic sequence databases, Uniclust30%, UniRef30%? and Uniref30'%, which are all based
on UniProtKB', are utilized in the DeepMSA2 pipeline (see details in Table S12).

Original line 538
Original:
The 1.59 billion metagenomics sequence were clustered with 50% sequence identity at 90%
coverage, resulting in 712 million clusters and the corresponding non-redundant sequences.
Revised:
The 1.59 billion metagenomics sequences were clustered with 50% sequence identity at 90%
coverage, yielding 712 million clusters and the cotresponding non-redundant sequences.
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Original line 595

Ongmnal:
In addition, fo speed up the custom database construction and filter ouf the noisy raw sequence
picked up by Jackmmer and HHMsearch in Stages 2 and 3, respectively, a BLAST filter is adopted
after the raw sequences picked up firom UnirefP0 before the kClust clustering.

Revised:
In addition, to speed up the custom database construction and filter out the noisy aw sequences
picked up by Jackmmer and HHMsearch in Stages 2 and 3, respectively, a BLAST filter is applied
to the raw sequences obtained from Uniref90 prior to kClust clustering.

Original line 645-646

Original:
Sequence linking. For a given set of P=M™ paired monomeric MS4ds, eg
(MSAg, MSA;z, -+, M5A;p with 1 =i = M, the sequences from the monomeric M54ds are
concatenated into a multimeric M54 as follows (see Fig S5B):

Revised:
Seguence linking. For a given set of MY paired monomeric MSAs, e.g (MS4-1;,, MS4-2;, ...
MSEA-Ny,,) with 1 < iy,i3, .., iy = M. the sequences from the monomeric MSAs are concatenated
into a multimeric MSA as follows (see Fig S12B):

Onginal line 691-692

Original:
Additional L2 regularization terms are alse added to avoid possible over-fitting, where Asingte = 1
and Apgiye = 0.2 % (L = 1) are the regularization cogfficients. The MI feature of residue i and j is
defined by:

Revised:
Additional L2 regulanzation terms are also added to avoid possible over-fitting, where Agingre = 1
and Apagr = 0.2 % (L — 1) are the regularization coefficients. The MI feature of residue pair / and j
is defined by:

Original line 185

Original:
The better-quality model firom DMFold is mainly due to the fact that DeepMSA2 construcis a desper
M54 with 42 homologous sequences and a Neff of 2.2 which offers more helpful co-evolutionary
information.

Rewvised:
The improvement i modeling quality by DMFold is mainly because DeepMSA2 constructs a
deeper M3SA with 42 homologous sequences and a Neff of 2.2, which offers more helpful co-
evolutionary information.

Ornginal line 235-236

Ongimnal:
Compared with homomer complexes, the improvement of DMFold-Multimer over AlphaFold2-
Mulfimer is relatively lower for heferomer complexes.

Rewvised:
Compared to homomer complexes. the magnitude of TM-score improvement of DMFold-Multimer
over AlphaFold2-Multimer is relatively small for heteromer complexes.
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Decision Letter, first revision:

Dear Dr. Zhang,

Thank you for submitting your revised manuscript "Improving deep learning protein monomer and
complex structure prediction using DeepMSA2 with huge metagenomics data" (NMETH-A51909A). It has
now been seen by the original referees and their comments are below. The reviewers find that the
paper has improved in revision, and therefore we'll be happy in principle to publish it in Nature
Methods, pending minor revisions to satisfy the referees' final requests and to comply with our editorial
and formatting guidelines.

We are now performing detailed checks on your paper and will send you a checklist detailing our
editorial and formatting requirements within two weeks or so. Please do not upload the final materials
and make any revisions until you receive this additional information from us.

TRANSPARENT PEER REVIEW

Nature Methods offers a transparent peer review option for new original research manuscripts
submitted from 17th February 2021. We encourage increased transparency in peer review by publishing
the reviewer comments, author rebuttal letters and editorial decision letters if the authors agree. Such
peer review material is made available as a supplementary peer review file. Please state in the cover
letter ‘I wish to participate in transparent peer review’ if you want to opt in, or ‘1 do not wish to
participate in transparent peer review’ if you don’t. Failure to state your preference will result in delays
in accepting your manuscript for publication.

Please note: we allow redactions to authors’ rebuttal and reviewer comments in the interest of
confidentiality. If you are concerned about the release of confidential data, please let us know
specifically what information you would like to have removed. Please note that we cannot incorporate
redactions for any other reasons. Reviewer names will be published in the peer review files if the
reviewer signed the comments to authors, or if reviewers explicitly agree to release their name. For
more information, please refer to our <a href="https://www.nature.com/documents/nr-transparent-
peer-review.pdf" target="new">FAQ page</a>.

ORCID

IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are encouraged to do so.
Please note that it will not be possible to add/modify ORCIDs at proof. Thus, please let your co-authors
know that if they wish to have their ORCID added to the paper they must follow the procedure
described in the following link prior to acceptance:
https://www.springernature.com/gp/researchers/orcid/orcid-for-nature-research
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Thank you again for your interest in Nature Methods. Please do not hesitate to contact me if you have
any questions. We will be in touch again soon.

Sincerely,
Arunima

Arunima Singh, Ph.D.
Senior Editor
Nature Methods

Reviewer #1 (Remarks to the Author):

I'm happy with how the authors revised the manuscript. The web-sites were down when | tried, but I'm
sure that they are generally ok.
Congratulations!

Reviewer #2 (Remarks to the Author):

The authors significantly improved the paper, and | am happy with the most of responses. A few minor
issues remain.

Response to #2.
Please polish the language in both paragraphs and add the version# of AF2-Multi in the Abstract.

#9, last paragraph.

"the public March-2022 version of the AlphaFold2-Multimer server

(registered as ‘NBIS-AF2-multimer’)"

still sounds like DeepMind enrolled it in CASP15. Add "run by the Elofsson Lab", like you did before.

#16

"the parameters considered above (Neff, Seqld, cov) only measure the geometrical characters of the
MSA matrix"

Did not get this. What geometry characters?
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#25

For the case study of immune complexes (H1140-44, Fig S8, S9), | do not think that paired MSAs (and the
related Neffs) make sense as there is no evolutionary signal in inter-species complexes.

‘ Author Rebuttal, first revision: |

47



natureresearch

Response to Reviewer #1

1. The Reviewer commented:

Summary:

I'm happy with how the authors revised the manuscript. The web-sites were dovwn when I fried,
but I'm sure that they are generally ok.

Congratulations!

Thank you for the wonderful comments. We are pleased to know the Reviewer 1s satisfied with
our revision During the end of August to September 10, 2023, the internet of Umversity of
Michigan had an outage due to a nniversity-wide security lockdown, and all the supercomputers
of Yang Zhang Lab that are hosted i Umversity of Michigan were temporanily shut down to the
outside — this was a truly unprecedented situation for the University as a whole. We believe the
Rewviewer tried our websites at that time. All the Internet of our supercomputers has been recovered
and DeepMSA?2 and DMFold servers have been running correctly now. Thank you for the careful
checkung.
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Response to Reviewer #2

We very much appreciate the comments and suggestions from the Reviewer, which helped us to
further improve our manuscript. A main concern of the Reviewer 1s on the explanation of co-
evolutionary information on the immune protemns. As described below, we have added further
analyses to address the 1ssue. The Reviewer also pointed out several language 1ssues and unclear
descriptions m the manuscript. We have carefully proofread the manusenipt to fix the presentation
issues. Below, we include point-by-point replies to the comments of the Reviewer, where all
changes have been highlighted in yellow in the manuscript. Note that we had to move some
contents to Supplementary Information (SI) because of the word limit by the Journal in the main
manuscript. Neveritheless, we have ensured that the mamn text 1s self-contamned and mcludes all
major data and analyses supporting the conclusion of the manuscript.

1. The Reviewer commented:

The authors significantly improved the paper, and I am happy with the most of responses. A few
miner issues remain.

We are pleased to know the Reviewer 1s satisfied with most of our revisions. We have mcluded
poimni-to-pomnt responses to the Reviewer's comments below, which helped us in further
strengthening the manuscript.

2. The Reviewer commented:

Please polish the language in both paragraphs and add the version# of AF2-Multi in the Abstract.

Thank you for the suggestion. We have proofread the entire manuscript and fixed a number of
language 1ssues. In addition, as suggested by the Reviewer, we added the AlphaFold2-Multimer
version m the Abstract:

An mntegrated pipeline with DeepMSAZ2 participated in the most recent CASP15 experiment and

created complex structural models with considerably higher quality than the AlphaFold2-Multimer
server (v2.2.0).

3. The Reviewer commented:

#9, last paragraph.
"the public March-2022 version of the AlphaFold2-Multimer server (registered as ‘NBIS-AF2-
multimer”) "still seunds like DeepMind enrolled it in CASPIS. Add "run by the Elofsson Lab",
like you did before.

We have added words in the third paragraph the Discussion section (Page 8):
In the most recent community-wide blind test of CASP13, DMFold-Multimer achieved the highest

modeling accuracy for complex structure prediction, with an average TM-score 15.4% and average
ICS score 27.5% higher than the public March-2022 version 2.2.0 of the AlphaFold2-Multimer



natureresearch

server run by the Elofsson Lab (registered as “NBIS-AF2-multimer’). respectively, according to the
a55€5501°s criteria.

4. The Reviewer commented:

#16
"the parameters considered above (Neff, Seqld, cov) only measure the geometrical characters of
the MSA matrix” Did not get this. What geometry characters?

Thank you for raising the question. By “geometry characters™, we referred to the general feature
characters collected from the sequence alignments themselves without additional traimng or
decoding of the MSA matrix (such as training MSAs for contact and structure prediction and/or
template recognition). We have removed the term of “geometry characters™ and used mstead more
descripiive terrunology. Please note that due to the space linmtation of the mam text, we moved
the first section in origmal version of Results to Text S1 in SI:

Nevertheless, the parameters considered above (Neff, Segld. cov) only measure general aspects of
the alignment information of the MSAs. and do not necessarily reflect the inherent evelutionary and
co-evolutionary information contained in the MSAs (Fig 53). which are critical to deep learning-
based protein structure predictions.

5. The Reviewer commented:

#25
For the case study af immune complexes (H1140-44, Fig §8, 59), I do not think that paired MSAs
{and the related Neffs) make sense as there is no evelutionary signal in inter-species complexes.

Thank you for the comment. We agree that the nanobody-antigen complex targets (H1140-H1144)
have the component chains from difference species and there may not be evolutionary signals in
the mter-species complexes. However, this does not necessarily mean that paired MSAs are not
important for nanobody-antigen complex structure predictions. In fact, 1t has been well established
that deep-leaming network models tramed on the MSAs from homologous complex sequences
could provide inter-chain structural patterns on how these component chains interact with each
other. Such structural pattern information (e.g., inter-chain contact and distance maps) will provide
useful and general help for protein complex structure prediction, no matter whether the target
complexes have evolutionary signals or not, because protemns (including nanobody-antigen) form
complex structures guided by general physical interacting laws, such as static electromc, van der
Waals, hydrogen bonding, and hydrophobic mteractions etc.

In our example of H1144, DeepMSA? identified 413 paired sequences from the same species,
which include, for example, two homologous sequences for the antigen are 2'.3'-cyclic-nucleotide
3'-phosphodiesterases from Homo sapiens, and two homologous sequences for the query nanobody
are Ig-like domains of Home sapiens. These homologous proteins in the paired MSAs provide
very useful information for the deep-learn networks to denve conserved structural patterns to help
gumide DMFold-Multimer to model the nanobody-antigen complex structures.
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To clarify this point, we have added the following paragraph, as well as a new figure of Figure
S8C which hsts the top 100 ranked species based on the number of the paired sequences from the
corresponding species in the paired MSA = Please note that due to the space limmt, we have moved
some of the related discussion on antibody-antigen into Text S2 in SI:

Here, we note that althongh the nanobody and the antigen came from different species (i.e., alpaca
and mouse) and there may not be evolutionary signals in the inter-species complexes, clear co-
evolutionary signal could still be obtained in the DeepMSA2 paired MSAs, since the paired sequences
of component MSAs are selected from the same species, which could be used to assist nancbody-
antigen complex structure predictions (see “DeepMSAZ-Multimer pipeline for multimeric MSA
construction” section of the Methods in the main text). Indeed, we found that even though the
nanobody itself is the product of adaptive immune molecule maturation, the DeepMSA2Z MSAs
provided informaticn on how Ig-like folds can interact with folds resembling the target protein in other
species, contributing to the quality of the resulting model. For the case of H1144, DeepMSA2
identified 413 paired homologous sequences that came from 172 common species (Fig SBC), where
the co-evolution information contained in the paired sequences helps the deep leaming networks leam
the inter-chain distance restraints. resulting in an accurate predicted distance map (Fig S8B).

A DR a b -Wumme: dacoys B Dol M i i Ched S 1an o8 map
—_—T— .

Experimentaily derted distance map

T

AlphsF ol Multiner precicted distance map

“i'ﬁif‘; MR

D AlphaFsidz Maltimer docays E
. .

...} ;
Esperinontally derived Gstance map

Figure 58. Case study of Target H1144 from the CASP15 Multimeric Modeling Section, which is a
nancbody-antigen complex. (A) 3D scatter plot for TM-score, predicted TM-score. and Neffof paired
MSAs on DMFold-Multimer decoys. Here, the predicted TM-score is defined by
pTMS=02%pTM+0.8%ipTM, where pTM and ipTM are predicted TM-scores for monomer and
interface models, respectively. following AlphaFold? modeling. The larger-sized cyan points are 3D
points, representing DMFold-Multimer decoys with different TM-scores, predicted TM-scores. and
Neff of paired MSAs, where the red point refers to the 3D point corresponding to the decoy with the
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highest predicted TM-score. The smaller-sized black points represent the projection of 3D cyan points
on the 2D planes, where the yellow points indicate the projection of the 3D red point on each of the
2D planes. Here, some DMFold-Multimer decoys have very high TM-scores as well as high predicted
TM-scores, so they can be comectly selected as the final model based on the highest predicted TM-
score. (B) The residue-residue distance map (heat map) for the model with the highest predicted TM-
score from DMFold-Multimer (upper triangle) compared to that calculated from the experimental
structure (lower triangle). (C) Top 100 species contributing to the paired MSA for H1144 ranked by
the number of paired sequences. (D) Same as in panel "A’, but modeled with AlphaFold2-Multimer.
Note that the panel ‘D’ has the same number of points (decoys) as panel “A’, but most of points
overlap, and no high-quality models are generated. (E) Same as in panel “B°, but modeled with
AlphaFold2-Multimer.
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‘ Final Decision Letter:

Dear Dr. Zhang,

| am pleased to inform you that your Article, "Improving deep learning protein monomer and complex
structure prediction using DeepMSA2 with huge metagenomics data", has now been accepted for
publication in Nature Methods. Your paper is tentatively scheduled for publication in our January print
issue, and will be published online prior to that. The received and accepted dates will be March 4, 2023
and November 13, 2023. This note is intended to let you know what to expect from us over the next
month or so, and to let you know where to address any further questions.

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced in
the print or electronic media, until the embargo/publication date. These restrictions are not intended to
deter you from presenting your data at academic meetings and conferences, but any enquiries from the
media about papers not yet scheduled for publication should be referred to us.

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Methods
style. Once your paper is typeset, you will receive an email with a link to choose the appropriate
publishing options for your paper and our Author Services team will be in touch regarding any additional
information that may be required.

You will receive a link to your electronic proof via email with a request to make any corrections within
48 hours. If, when you receive your proof, you cannot meet this deadline, please inform us at
risproduction@springernature.com immediately.

Please note that <i>Nature Methods</i> is a Transformative Journal (TJ). Authors may publish their
research with us through the traditional subscription access route or make their paper immediately
open access through payment of an article-processing charge (APC). Authors will not be required to
make a final decision about access to their article until it has been accepted. <a
href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more
about Transformative Journals</a>

Authors may need to take specific actions to achieve <a
href="https://www.springernature.com/gp/open-research/funding/policy-compliance-fags">
compliance</a> with funder and institutional open access mandates. If your research is supported by a
funder that requires immediate open access (e.g. according to <a
href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S principles</a>)
then you should select the gold OA route, and we will direct you to the compliant route where possible.
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For authors selecting the subscription publication route, the journal’s standard licensing terms will need
to be accepted, including <a href="https://www.springernature.com/gp/open-research/policies/journal-
policies">self-archiving policies</a>. Those licensing terms will supersede any other terms that the
author or any third party may assert apply to any version of the manuscript.

If you have any questions about our publishing options, costs, Open Access requirements, or our legal
forms, please contact ASJournals@springernature.com

Your paper will now be copyedited to ensure that it conforms to Nature Methods style. Once proofs are
generated, they will be sent to you electronically and you will be asked to send a corrected version
within 24 hours. It is extremely important that you let us know now whether you will be difficult to
contact over the next month. If this is the case, we ask that you send us the contact information (email,
phone and fax) of someone who will be able to check the proofs and deal with any last-minute
problems.

If, when you receive your proof, you cannot meet the deadline, please inform us at
risproduction@springernature.com immediately.

Once your manuscript is typeset and you have completed the appropriate grant of rights, you will
receive a link to your electronic proof via email with a request to make any corrections within 48 hours.
If, when you receive your proof, you cannot meet this deadline, please inform us at
risproduction@springernature.com immediately.

Once your paper has been scheduled for online publication, the Nature press office will be in touch to
confirm the details.

If you have posted a preprint on any preprint server, please ensure that the preprint details are updated
with a publication reference, including the DOI and a URL to the published version of the article on the
journal website.

Once your paper has been scheduled for online publication, the Nature press office will be in touch to
confirm the details.

Content is published online weekly on Mondays and Thursdays, and the embargo is set at 16:00 London
time (GMT)/11:00 am US Eastern time (EST) on the day of publication. If you need to know the exact
publication date or when the news embargo will be lifted, please contact our press office after you have
submitted your proof corrections. Now is the time to inform your Public Relations or Press Office about
your paper, as they might be interested in promoting its publication. This will allow them time to
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prepare an accurate and satisfactory press release. Include your manuscript tracking number NMETH-
A51909B and the name of the journal, which they will need when they contact our office.

About one week before your paper is published online, we shall be distributing a press release to news
organizations worldwide, which may include details of your work. We are happy for your institution or
funding agency to prepare its own press release, but it must mention the embargo date and Nature
Methods. Our Press Office will contact you closer to the time of publication, but if you or your Press
Office have any inquiries in the meantime, please contact press@nature.com.

To assist our authors in disseminating their research to the broader community, our Sharedlt initiative
provides you with a unique shareable link that will allow anyone (with or without a subscription) to read
the published article. Recipients of the link with a subscription will also be able to download and print
the PDF.

As soon as your article is published, you will receive an automated email with your shareable link.

You can now use a single sign-on for all your accounts, view the status of all your manuscript
submissions and reviews, access usage statistics for your published articles and download a record of
your refereeing activity for the Nature journals.

Nature Portfolio journals <a href="https://www.nature.com/nature-research/editorial-
policies/reporting-standards#protocols" target="new">encourage authors to share their step-by-step
experimental protocols</a> on a protocol sharing platform of their choice. Nature Portfolio 's Protocol
Exchange is a free-to-use and open resource for protocols; protocols deposited in Protocol Exchange are
citable and can be linked from the published article. More details can found at <a
href="https://www.nature.com/protocolexchange/about"
target="new">www.nature.com/protocolexchange/about</a>.

Please note that you and any of your coauthors will be able to order reprints and single copies of the
issue containing your article through Nature Portfolio's reprint website, which is located at
http://www.nature.com/reprints/author-reprints.html. If there are any questions about reprints please
send an email to author-reprints@nature.com and someone will assist you.

Please feel free to contact me if you have questions about any of these points.

Best regards,
Arunima

Arunima Singh, Ph.D.
Senior Editor
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