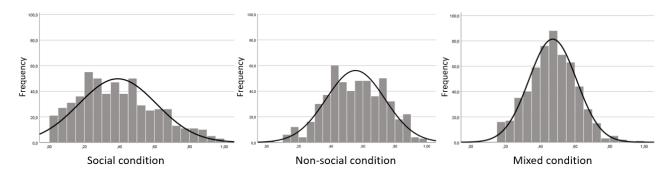
Supplementary Information


Genetic and environmental contributions to gaze lateralization across social and nonsocial stimuli in human infants

Authors: Charlotte Viktorsson^{1*}, Ana Maria Portugal^{1,2}, Terje Falck-Ytter^{1,2}

¹Development and Neurodiversity Lab, Department of Psychology, Uppsala University; Uppsala, Sweden ²Center of Neurodevelopmental Disorders (KIND), Division of Neuropsychiatry, Department of Women's and Children's Health, Karolinska Institutet; Stockholm, Sweden *Corresponding author. Email: <u>charlotte.viktorsson@psyk.uu.se</u> Supplementary Information S1. Gaze lateralization for the lower part of the face.

When analyzing data from only the lower part of the face (**Figure 1**), a significant right gaze bias was found (mean = .391, t(551) = -12.0, p <.001, Cohen's d = .51).

There were no statistically significant associations between gaze lateralization at five months and concurrent general development ($\beta = -.05$, 95% CI: -.03; .14, p = .226), socio-communicative abilities at 14 months ($\beta = <-.01$, 95% CI: -.13; .09, p = .707), or language comprehension at 14 months ($\beta = .01$, 95% CI: -.09; .11, p = .858). Likewise, autistic traits at 36 months was not related to gaze lateralization ($\beta = <.01$, 95% CI: -.09; .12, p = .792) and neither was vocabulary at 36 months ($\beta = -.07$, 95% CI: -.19; .06, p = .273).

Figure S1. Distributional plots of the Social condition, Non-social condition, and Mixed condition.

Social condition						Comparative fit with saturated model			
Model	-2LL	# parameters	df	AIC	Δ χ2	Δ df	р		
Fully sat.	-132.85	12	538	-108.86	-	-	-		
Submodel 1	-131.71	10	540	-111.71	1.14	2	0.56		
Submodel 2	-127.59	8	542	-111.59	5.27	4	0.26		
Submodel 3	-126.84	7	543	-112.84	6.02	5	0.30		
Submodel 4	-126.71	6	544	-114.71	6.15	6	0.41		
Age	-131.86	11	539	-109.86	1.00	1	0.32		
Sex	-132.54	11	539	-110.54	0.32	1	0.57		

Testing covariates and assumptions

Non-social condition					Comparative fit with saturated model			
Model	-2LL	# parameters	df	AIC	Δ χ2	Δ df	р	
Fully sat.	4415.20	12	500	4439.20	-	-	-	
Submodel 1	4416.18	10	502	4436.18	0.98	2	0.61	
Submodel 2	4418.56	8	504	4434.56	3.36	4	0.50	
Submodel 3	4418.56	7	505	4432.56	3.36	5	0.64	
Submodel 4	4421.46	6	506	4433.46	6.26	6	0.39	
Age	4415.61	11	500	4437.61	0.40	1	0.53	
Sex	4415.61	11	501	4437.61	0.41	1	0.52	
Mixed condition	n				-	rative fit ited mod		
Model	-2LL	#	df	AIC	$\frac{\Delta \chi^2}{\Delta \chi^2}$		p	
		parameters	U			df	•	
Fully sat.	-645.13	12	545	-621.13	-	-	-	
Submodel 1	-644.29	10	547	-624.29	0.84	2	0.66	
Submodel 2	-643.69	8	549	-627.69	1.45	4	0.84	
Submodel 3	-643.69	7	550	-629.69	1.45	5	0.92	
Submodel 4	-640.92	6	551	-628.92	4.21	6	0.65	
Age	-643.93	11	546	-621.93	1.20	1	0.27	
Sex	-644.19	11	546	-622.19	0.95	1	0.33	

Table S1. The fully saturated model is the baseline model, which models the means and variances

separately for each twin in a pair and across zygosity.

Submodel 1: Equating means across twins within a pair

Submodel 2: Equating means across zygosity

Submodel 3: Equating variances across twins within a pair

Submodel 4: Equating variances across zygosity

Age: Testing the significance of age

Sex: Testing the significance of sex

-2LL: Fit statistic, the lower the better fitting is the model

df: Degrees of freedom

AIC: An alternative fit index, lower value denotes better model fit

 $\Delta \chi 2$: Difference in -2LL statistic between two models, distributed $\chi 2$

 Δdf : Difference in degrees of freedom between two models