### **Supplementary Information**

# Tough double network hydrogel with rapid self-reinforcement and low hysteresis based on highly entangled networks

Ruixin Zhu,<sup>1,2</sup> Dandan Zhu,<sup>1,2</sup> Zhen Zheng,<sup>1,2</sup> Xinling Wang,<sup>\*,1,2</sup>

<sup>1</sup> School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

<sup>2</sup> State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

\*Corresponding authors. E-mail address: <u>xlwang@sjtu.edu.cn</u> (X. Wang)

Contact information for authors.

Ruixin Zhu zhuruixin@sjtu.edu.cn

Dandan Zhu zhudan@sjtu.edu.cn

Zhen Zheng zzheng@sjtu.edu.cn

#### The file includes:

Supplementary Tables 1 to 3

Supplementary Figures 1 to 21

## **Supplementary Tables**

|             |         | (HEI     | DN1st)    |            |                       |
|-------------|---------|----------|-----------|------------|-----------------------|
| Hydrogel    | AAm [g] | AMPS [g] | MBAA [mg] | I2959 [mg] | H <sub>2</sub> O [mL] |
| HEDN1st-0.2 | 8.63    | 0.2      | 0.189     | 0.110      | 4.41                  |
| HEDN1st-0.4 | 8.63    | 0.4      | 0.190     | 0.111      | 4.44                  |
| HEDN1st-0.6 | 8.63    | 0.6      | 0.191     | 0.111      | 4.47                  |
| HEDN1st-0.7 | 8.63    | 0.7      | 0.192     | 0.112      | 4.49                  |
| HEDN1st-0.8 | 8.63    | 0.8      | 0.193     | 0.112      | 4.51                  |
| HEDN1st-1.0 | 8.63    | 1.0      | 0.195     | 0.113      | 4.54                  |
| HEDN1st-1.5 | 8.63    | 1.5      | 0.198     | 0.115      | 4.63                  |
| HEDN1st-2.0 | 8.63    | 2.0      | 0.202     | 0.117      | 4.72                  |
| HEDN1st-3.0 | 8.63    | 3.0      | 0.210     | 0.122      | 4.89                  |
| HEDN1st-4.0 | 8.63    | 4.0      | 0.217     | 0.126      | 5.07                  |

Supplementary Table 1 Formulation of high entanglement first network hydrogels

**Supplementary Table 2** Preparation formula of HEDN1st-0.8 hydrogels with different entanglement degree. W is the molar ratio of water to total monomer

| e               | e       |          |           |            |                       |
|-----------------|---------|----------|-----------|------------|-----------------------|
| Hydrogel        | AAm [g] | AMPS [g] | MBAA [mg] | I2959 [mg] | H <sub>2</sub> O [mL] |
| HEDN1st-0.8-W2  | 8.63    | 0.8      | 0.193     | 0.112      | 4.51                  |
| HEDN1st-0.8-W4  | 8.63    | 0.8      | 0.193     | 0.112      | 9.02                  |
| HEDN1st-0.8-W6  | 8.63    | 0.8      | 0.193     | 0.112      | 13.53                 |
| HEDN1st-0.8-W8  | 8.63    | 0.8      | 0.193     | 0.112      | 18.04                 |
| HEDN1st-0.8-W10 | 8.63    | 0.8      | 0.193     | 0.112      | 22.55                 |

|                                  | References                                             | Water<br>content<br>(%) | Stress at<br>break (MPa) | Strain-<br>stiffening<br>capability |
|----------------------------------|--------------------------------------------------------|-------------------------|--------------------------|-------------------------------------|
| HEDN-0.8                         | This work                                              | 89                      | 3.0                      | 47.5                                |
| HEDN-AAc-3.0                     | This work                                              | 92                      | 2.1                      | 26.7                                |
| P(AM-AN-<br>MA)/Fe <sup>3+</sup> | Adv. Funct. Mater. 2023,<br>2210224.                   | 84                      | 1.4                      | 28                                  |
| PVAm/EGDE-<br>Zn <sup>2+</sup>   | ACS Appl. Mater. Interfaces 2022, 14, 27, 31354–31362. | 85                      | 1.3                      | 10                                  |
| CNF-g-<br>pHEMA/pHEMA            | Cellulose volume 28, pages1489–1497 (2021).            | 67.9                    | 2.1                      | 15.4                                |
| QCS-<br>AMP/PAAm                 | J. Mater. Chem. A, 2021, 9,<br>1835-1844.              | 75                      | 0.35                     | 12.3                                |
| SRC-7-20                         | Adv. Funct. Mater. 2021, 31, 2104139.                  | 60                      | 5                        | 32                                  |
| PAAS/PAAm                        | ACS Appl. Mater. Interfaces 2022, 14, 47148–47156.     | 75                      | 0.8                      | 13                                  |

Supplementary Table 3 Basic parameters of hydrogels with strain-stiffening characteristics

#### **Supplementary Figures**



**Supplementary Figure 1** Water content of fully swollen HEDN1st-0.8-W hydrogels with different W. W is the molar ratio of water to total monomer. Error bars represent mean +/- standard deviation (n=5).



**Supplementary Figure 2** Swelling multiple in weight of HEDN1st hydrogels obtained at different concentrations in 4 M AAm solution. W is the molar ratio of water to total monomer, e.g., W2 means that the molar ratio of water to total monomer is 2. Error bars represent mean +/- standard deviation (n=5).



Supplementary Figure 3 Tensile stress-strain curves of HEDN1st-0.2 (a), HEDN1st-0.8 (b), HEDN1st-1.4 (c) and HEDN1st-2.0 (d) hydrogels swollen by water or salt solutions (3 M NaCl). The stiffness of these hydrogels (e). Polymer fraction is 11%. Error bars represent mean +/- standard deviation (n=5).



Supplementary Figure 4 Effects of prepolymer concentration, crosslinker dosage

and AMPS dosage on stiffness of HEND1st and HEDN hydrogel, respectively.



Supplementary Figure 5 Tensile stress-strain curves of HEDN1st-0.8 hydrogels with different degree of entanglements. Water content: 89%.



Supplementary Figure 6 Water content of HEDN1st hydrogels with different AMPS contents.



**Supplementary Figure 7** UV- visible light transmission spectra of TDN and HEDN-0.8 hydrogels. Inner image: Photo of HEDN-0.8 hydrogel on flowers.



Supplementary Figure 8 Compressive stress-strain curves of TDN hydrogel and HEDN hydrogels with different AMPS contents.



Supplementary Figure 9 Single cyclic tensile curves of TDN hydrogel at 100% and

200% strain.



Supplementary Figure 10 Comparison of the two-cycle tensile curves of HEDN

hydrogels with different AMPS contents and TDN hydrogel at 200% strain. The reversibility of HEDN-1.5 and HEDN-2.0 hydrogel are 90% and 82%, respectively. Due to the low fracture strain of the two hydrogels, which had partially broken polymer chains when stretched to 200%.



**Supplementary Figure 11** Comparison of the two-cycle tensile curves of HEDN hydrogels with different AMPS contents and TDN hydrogel at 300% strain.



Supplementary Figure 12 Differential modulus  $(\partial \sigma / \partial \lambda)$  of TDN hydrogel (a) and HEDN hydrogels (b) with different AMPS contents against strain  $\varepsilon$ .



Supplementary Figure 13 Strain-stiffening capability of HEDN hydrogels with different AMPS contents.



**Supplementary Figure 14** Tensile stress-strain curves of HEDN-0.8 hydrogels with different degree of entanglements.



Supplementary Figure 15 Tensile stress-strain curves of HEDN-0.8 hydrogels with various contents of 2nd network MBAA. Water content: 89%.



**Supplementary Figure 16** Tensile stress–strain curves of HEDN-0.8 hydrogels with various concentrations of 2nd network monomer. Water content: 84%.



Supplementary Figure 17 a Tensile stress-strain curves of HEDN1st-0.8 hydrogel and HEDN-0.8 hydrogels with the same level of water content. b Tensile stress-strain curves of HEDN1st-0.8 hydrogel and HEDN-0.8-W4 hydrogels with the same level of water content and stiffness.



**Supplementary Figure 18 a** SEM images of large-pore microdomains in TDN hydrogel. inner image is a pore size statistical distribution. **b** SEM images of large and small pore microdomains in TDN hydrogels. **c** SEM images of small-pore microdomains in TDN hydrogel. **d**,**e** SEM images of HEDN-0.8 hydrogels at different magnifications. **f** Pore size statistical distribution of HEDN-0.8. Scale bars, 30 μm.



**Supplementary Figure 19** AFM height images of TDN hydrogel and HEDN-0.8 hydrogel in wet state.



**Supplementary Figure 20** SAXS patterns of TDN (a) and HEDN-0.8 hydrogels (b) with different strains during in situ stretching. The arrow indicates the stretching direction.



**Supplementary Figure 21 a** One-dimensional SAXS profiles of HEDN-0.8 hydrogel. **b-c** 1D SAXS profiles of HEDN-0.8 hydrogels with different strains in parallel (b) and perpendicular (c) directions. **d** 2D SAXS patterns of HEDN-0.8 hydrogels with different strains.