Supporting Information

FAP Targeting of Photosensitizer-Loaded Polymersomes for Increased Light-Activated Cell Killing

Michal Skowicki^{1,2,‡}, *Dimitri Hürlimann*^{1,2,‡}, *Shabnam Tarvirdipour*¹, *Myrto Kyropoulou*^{1,2}, *Cora-Ann Schoenenberger*^{1,2}, *Sandrine Gerber-Lemaire*³, *Cornelia G. Palivan*^{1,2*}

¹ Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland,

² NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland,

³ Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

[‡] These authors contributed equally to this work.

* Corresponding author. E-mail address: cornelia.palivan@unibas.ch

Figure S1. ¹H NMR of PDMS₂₇-PMOXA₇-PEG₃-N₃

Table S1. Determination of the size and concentration of polymersomes by nanoparticle tracking analysis (NTA). Samples were diluted 1:4000 - 1:2000 in PBS prior measurements. The obtained results were multiplied by the dilution factor.

	Concentration (NPs/mL)	Hydrodynamic radius R _h (nm)
Pol-Atto633	$2.0 \ge 10^{12} \pm 3.5 \ge 10^{10}$	55 ± 3
FAPi-Pol-Atto633	$7.0 \ge 10^{11} \pm 1.2 \ge 10^{10}$	58 ± 5
Pol-RB	9.1 x $10^{11} \pm 2.0$ x 10^{10}	54 ± 4
FAPi-pol-RB	$9.2 \ge 10^{10} \pm 2.8 \ge 10^9$	58 ± 7

Table S2. Determination of the size of polymersomes by dynamic light scattering (DLS) measured at fixed angle (angle of 173°) and Zeta-potential measurements.

	R _h (nm)	Zeta potential (mV)
Pol-Atto633	68 ± 5	$-4.0\pm0.5\ mV$
FAPi-Pol-Atto633	73 ± 7	$-6.2\pm0.5\ mV$

Figure S2. Polymersome size distribution measured by DLS at fixed angle (angle of 173°). (a) Pol-Atto633, (b) FAPi-Pol-Atto633, (c) Pol-RB, (d) FAPi-Pol-RB. Samples were diluted 1:500 – 1:1000 in PBS prior measurements.

Figure S3. UV absorbance spectra of DIBO-PEG₃-FAPi. (a) Absorbance spectrum of 8 μ M DIBO-PEG₃-FAPi in PBS containing 2% DMF. Absorbance spectrum has been recorded at range of λ = 243 nm - 375 nm and the background absorbance of the solution (2% DMF in PBS) has been subtracted. (b) linear calibration curve of absorbance (λ = 270 nm) vs. concentration of DIBO-PEG₃-FAPi (0.25 – 5 μ M).

Table S3. Determination of the size of polymersomes by DLS measured at scattering angles from 20° to 150° .

	Rh	Rg	R_g/R_h
Pol-RB	60 ± 2	$62 \pm 3 \text{ nm}$	1.03
FAPi-pol-RB	67 ± 4	$69 \pm 4 \text{ nm}$	1.03

Figure S4. Static light scattering (SLS) measurement of RB-loaded polymersomes. (a) DLS profile showing the mean hydrodynamic radius, Rh; (b) SLS data and linear fit to the Guinier equation.

Figure S5. SLS measurement of RB-loaded FAPi-functionalized polymersomes. (a) DLS profile showing the mean hydrodynamic radius, Rh; (b) SLS data and linear fit to the Guinier equation.

Figure S6. RB concentration measurement. Normalized absorbance spectra of samples containing: (a) free RB, (b) Pol-RB, (c) FAPi-Pol-RB after incubation at 95 °C for 15 min in the presence of 1% Triton X-100. (d) linear calibration curve of absorbance ($\lambda = 563$ nm) vs. concentration of RB (5 – 125 µg/ml) after incubation at 95 °C for 15 min in the presence of 1% Triton X-100.

Figure S7. Stability measurement of RB-loaded polymersomes upon 4-month storage at 4 °C. PBS suspensions of: Pol-RB (\approx 20 µg RB/ml) (a, b) and FAPi-Pol-RB (\approx 7.5 µg RB/ml) (c, d) were filtered through centrifugal regenerated cellulose filters of 3000 Da MWCO. (a, c) absorbance spectra of input polymersome samples (black), polymersome concentrate (red) and filtrate (blue) for Pol-RB (a) and FAPi-Pol-RB (c). (b, d) histograms representing absorbance values of each sample of Pol-RB (b) and FAPi-Pol-RB (d) measured at the λ_{max} ($\lambda = 565$ nm for polymersomes, $\lambda = 549$ nm for free RB).

Figure S8. Comparison of FAPa expression between different cell lines. Western blot analysis of FAP protein expression in protein extracts from MCF-7, A549, HepG2 and HeLa cell lines (equivalent of 40 µg of protein per lane). GAPDH was used as loading control.

Figure S9. Reactive oxygen species detection. CLSM images of MCF-7 cells after 24 h incubation with free RB, Pol and FAPi-Pol samples with and without irradiation. Images show transmitted light channel merged with fluorescence of the ROS detection agent (DCF, red). Scale bars, 50 µm.