Supplementary Table 6. Stress and drug resistance of C. albicans mutants.

CONDITION		30°C	37°C	42°C	45°C	CO ₂	37°C + FCS 5%	NaCl 1M
STRAIN	isolate	YPD	YPD	YPD	YPD	YPD	YPD	YPD
try6	Α	2	2	2	2	2	2	2
	В	2	2	2	2	2	2	2
pho84	Α	2	2	2	2	2	2	2
	В	2	2	2	2	2	2	2
xog1	Α	2	2	2	2	2	2	2
	В	2	2	2	2	2	2	2
ctn1	Α	2	2	2	2	2	2	2
	В	2	2	2	2	2	2	2
cyb2	Α	2	2	2	2	2	2	2
	В	2	2	2	2	2	2	2
osm1	Α	2	2	2	2	2	2	2
	В	2	2	2	2	2	2	2
ест3	Α	2	2	2	2	2	2	2
	В	2	2	2	2	2	2	2
hcm1	Α	1	1	1	0	1	1	1
	В	1	1	1	0	1	1	1
try4	Α	2	2	2	2	2	2	2
	В	2	2	2	2	2	2	2
nce103	Α	0	ND	ND	ND	2	ND	2
	В	0	ND	ND	ND	2	ND	2

0 = No growth

1 = Less growth than wt

2 = Same growth as wt

3 = More growth than wt

ND = Not done

Notes:

A. Wild type showed no growth under this condition

KCI 0.6M YPD	H ₂ O ₂ 5mM YPD	Menadione 0.1mM YPD	Menadione 0.3 mM YPD	DTT 25 mM YPD	BPS 350 μM YPD	FeCl ₃ 100 μM YPD	CuSO ₄ 5 mM YPD
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
1	1	0	0	2	2	1	1
1	1	0	0	2	2	1	1
2	2	2	0	2	2	2	2
2	2	2	0	2	2	2	2
2	2	2	0	2	0	2	2
2	2	2	0	2	0	2	2

3-Aminotriazole 10 mM	20 mM	Acetic Acid pH 6	pH 4.5	pH 7	pH 9.5	Glucose
YPD	YPD	YPD	YPD	YPD	YPD	YNB
2	1	2	2	2	2	2
2	1	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	1	2	2	2	2	2
2	1	2	2	2	2	2
2	3	2	2	2	2	2
2	3	2	2	2	2	2
2	3	2	2	2	2	2
2	3	2	2	2	2	2
2	3	2	2	2	2	2
2	3	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
1	0	1	1	2	2	1
1	0	1	1	2	2	1
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	1	2	2	2	2	1
2	1	2	2	2	2	1

Lactate	Glyc&EtOH	Congo red Calcofluor White Caffein		Caffeine	Fluconazole (μ _ξ	
		0.3 mg/ml	0.06 mg/ml	1 mg/ml	0.065	0.65
YNB	YNB	YPD	YPD	YPD	YPD	YPD
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
0	0	2	2	2	2	2
0	0	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
1	1	1	2	1	1	1
1	1	1	2	1	1	1
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	3
2	2	2	2	2	2	3

;/ml)	Casp	Ambisome ^A		
6.5 YPD	0.032 YPD	0.32 YPD	3.2 YPD	5 μg/ml YPD
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	1	1	1	2
0	1	1	1	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2
0	2	2	2	2

Supplementary Table S6. Stress and drug resistance of *C. albicans* mutants.

Resistance to stressors and antifungal drugs was tested by plating serial dilutions of the pairs of independent homozygous null mutants (A,B) for the nine target loci on rich (YPD) or minimal media (YNB) containing the specified stressor at the specified concentration (e.g. Supplementary Figure 2). Plates were incubated at 30 °C (unless specified otherwise) for 48 h, imaged, and the growth in the presence of stressor was estimated relative to growth in the absence of stressor: 0, no growth, dark pink; 1, low growth, light pink; 2, normal growth, white; 3, enhanced growth, green. The data represent median values from three independent experiments. Note that *nce103* phenotypes were tested under 5% CO₂; nd, not done; na, not applicable.