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Supplementary Note 1 
Independent benchmarking of cytotoxicity models 

Our benchmarking of the Chemprop-based cytotoxicity models used the following 
independently-acquired datasets: 

(1) the HepG2 and mitochondria toxicity datasets from Tox21 dataset22 
(2) a metabolite dataset from The Human Metabolome Database23, whose molecules are 

putatively non-cytotoxic as human metabolites55.  
Tox21 datasets were filtered to include only agonists and inactive compounds, as determined by 
Tox21 criteria; additionally, due to the possibility of both mitochondria hyperpolarizing and 
depolarizing agents to be associated with toxicity, the mitochondria toxicity dataset was also 
tested where it included antagonists and inactive compounds. This resulted in a dataset of 7,151 
compounds for HepG2 cytotoxicity, 5,726 compounds for mitochondria toxicity (agonists and 
inactive compounds), and 6,425 compounds for mitochondria toxicity (antagonists and inactive 
compounds). We found that the size of the overlap between the HepG2 dataset and our training 
dataset of 39,312 molecules was 961 molecules; similarly, for the mitochrondria toxicity 
datasets, the overlap was 859 molecules and 976 molecules, respectively. Given the small 
fraction of overlapping molecules relative to the sizes of the datasets, we present results below 
for which overlapping molecules have not been removed. However, removing the overlapping 
molecules does not substantially change the following results.  
The metabolite dataset was downloaded from The Human Metabolome Database23. A set of 
3,126 molecules that were "PREDICTED AND QUANTIFIED", as well as "FOOD" and 
"ENDOGENOUS", were selected. We found 223 molecules to overlap with our training set of 
39,312 compounds. The SMILES of all compounds from the datasets were supplied as inputs to 
the HepG2, HSkMC, or IMR-90 cytotoxicity models and compared with known toxicity values 
(in the case of Tox21) or the assumption that human metabolites are non-cytotoxic (in the case of 
human metabolites).  

As shown in Supplementary Table 7, our final ensembles of 20 Chemprop models trained on the 
full training dataset of 39,312 compounds exhibited encouraging performance, as measured by 
the area under the receiver operating characteristic curve (AUROC), the area under the precision 
recall curve (AUPRC), and the Matthews correlation coefficient (MCC). In the case of the 
human metabolite set as a putative negative control, we found that our models exhibited false 
positive rates of ~1% to ~10% depending on the prediction score thresholds used 
(Supplementary Table 8). Together, these findings suggest that our Chemprop models for 
HepG2, HSkMC, and IMR-90 cytotoxicity exhibit encouraging performance in accurately 
predicting cytotoxic or putatively cytotoxic compounds. 
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Supplementary Note 2 
Comparison of graph-based rationales with maximal common substructures 

As graph neural networks make predictions based on the information contained in the atoms and 
bonds of each molecule, we also investigated whether compounds with similar prediction scores 
possessed similar molecular substructures. For these initial analyses, we focused on the maximal 
common substructures (MCSs) shared by hits and non-hits. As a straightforward combinatorial 
calculation of all possible MCSs is computationally prohibitive (2n MCS computations for n 
molecules), we employed a randomized method to quickly identify substructures shared between 
large numbers of compounds (see Methods for details). We computed the MCS shared between 
two randomly chosen molecules, checked that this MCS contains at least a threshold number of 
atoms, removed all molecules that contain this MCS, then recorded the MCS and its associated 
molecules. This process is repeated until a prespecified fraction of molecules remain, and the 
process allows for variations in structural features to be conveniently coarsened and molecules to 
be productively grouped.  

Applying this analysis on the predicted hits, we identified and shortlisted MCSs according to the 
number of hits having in common, as a rudimentary cut-off, at least 12 atoms (Extended Data 
Fig. 6 and Supplementary Data 2). We verified that different atom number thresholds, including 
10 and 15, resulted in the identification of similar substructures (Extended Data Fig. 6). 
Intriguingly, large fractions (>40%) of all hits were associated with small numbers of MCSs 
(Extended Data Fig. 6). These MCSs included substructures indicative of known antibiotic 
classes. As expected from the active compounds in the training set (Supplementary Data 1), 
MCSs associated with hits contain substructures found in β-lactams and quinolones (Extended 
Data Fig. 6): these include variations of the cephalosporin ring (MCSs A1, A4, A6, A12) and the 
4-quinolone bicyclic ring (MCS A10). Less common substructures, including MCSs A9 and 
A11, also emerged. In contrast to the MCSs enriched in hits, sulfonamide-like substructures 
largely lacking heterocycles (MCSs B1-B12) were enriched in non-hits (Extended Data Fig. 6). 
While sulfonamide antibiotics including sulfamethoxazole comprise an important class of 
antibiotics in combination with trimethoprim, sulfonamide compounds (including 
sulfamethoxazole) were inactive as single-agent compounds in the training data, consistent with 
the model predictions. We anticipate that future work will model situations in which compounds 
become active only in combination with other drugs (e.g., sulfamethoxazole/trimethoprim). 
The MCSs associated with hits and non-hits, viewed as molecular inputs to Chemprop in their 
own right, produce prediction scores that may correlate (Pearson’s R>0.2) with the prediction 
scores of hits and non-hits, respectively (Extended Data Fig. 6 and Supplementary Table 9). 
Moreover, the prediction scores for all of MCSs A1-A12 were larger than those for MCSs B1-
B12, which were <10-6 (Supplementary Table 9). Supplementary Table 9 further indicates that 
MCSs associated with hits are never associated with non-hits and MCSs associated with non-hits 
are never associated with hits, demonstrating as well that the calculated MCSs are largely unique 
to hits and non-hits. However, MCSs A2, A3, A7, and A10 exhibited prediction scores <0.005, 
suggesting that the presence of these substructures alone is not sufficient for high prediction 
scores (Extended Data Fig. 6 and Supplementary Table 9). Indeed, while MCS A10 contains a 
quinolone ring and many quinolone-like compounds are predicted to be active, this approach 
does not view MCS A10 as specific enough as to be diagnostic of antibiotic activity.  
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As discussed in the main text, computing rationales allows us to identify substructures that 
directly determine high antibiotic prediction scores, as opposed to only identifying similar 
substructures shared by compounds with similar (high or low) prediction scores. We found that 
MCSs A1-A12 coincide with many such rationales computed from the 3,646 hits, indicating that 
the MCS- and rationale- based approaches to substructure identification can result in consistent 
substructures (Extended Data Fig. 6). Importantly, the prediction scores associated with all 
rationales were >0.1, even in cases where the MCS prediction scores were <0.005 and not 
diagnostic of antibiotic activity (Extended Data Fig. 6). This finding indicates that identifying 
rationales is more predictive than identifying the MCSs of hits alone.   
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Supplementary Note 3 
Prior knowledge of validated hits 

Compounds were searched for using their SMILES strings on PubChem, Google Patents, and 
ChEMBL. Additionally, compounds 1 and 2 were searched for using their CAS Registry 
Numbers (which were unavailable for compounds I and II; Extended Data Fig. 7) on SciFindern. 
In this way, we determined that all four compounds were not previously studied for their 
antibacterial activities against the bacterial strains considered in this study. In addition, we note 
here that compounds 1 and 2 have been previously screened in assays, including the inhibition of 
human p53 and serine/threonine kinase 33, and were found to be inactive56. 
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Supplementary Note 4 
Structure-activity relationship analyses 

Building on our study of compounds 1 and 2, we further explored the chemical space described 
by the rationale shared by the two compounds (Extended Data Fig. 10). By iteratively modifying 
the functional groups of the rationale and procuring the resulting compounds, we tested 17 
additional compounds and found that five (compounds 3-7) exhibit at least weak (MIC ≤64 
μg/mL) growth inhibitory activity against S. aureus RN4220, with various corresponding 
therapeutic windows (Extended Data Fig. 10 and Supplementary Data 2). This analysis further 
suggested that the presence of the benzoic acid group was associated with antibiotic activity: 
compounds 1-7 all contained this group, which is found in none of the 12 remaining inactive 
analogues (Supplementary Data 2). These results indicate that the structure-activity space of our 
rationale of interest is not flat, supporting the suggestion that compounds 1 and 2 hold promise 
for further optimization. Moreover, these preliminary structure-activity relationship analyses 
illustrate the ability of a rationale predicted by our deep learning approach to further guide 
traditional QSAR efforts and confirm that compounds 1 and 2 are members of a structural class 
with selective antibiotic activity. 
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Supplementary Data 

Supplementary Data 1. Training set of 39,312 compounds tested for antibiotic activity and 
cytotoxicity, in addition to 200 RDKit features used to augment the models and cytotoxicity 
testing results. Antibiotic activity was defined using a 20% relative mean growth cutoff in S. 
aureus RN4220. Cytotoxicity was defined using a 90% relative mean cell viability cutoff in 
HepG2 cells, HSkMCs, and IMR-90 cells. Data are from two biological replicates. 

Supplementary Data 2. Model predictions, rationales, and procured compounds from the 
ensemble Chemprop model. Compound SMILES strings and corresponding prediction scores 
are shown for all 3,646 hits, out of 12,076,365 compounds whose antibiotic activity and 
cytotoxicity against human cells were predicted. Rationale and scaffold SMARTS strings, 
vendor catalog information for all 283 procured and tested compounds shown in Fig. 3e of the 
main text, and vendor catalog information for all 17 procured and tested compounds as part of 
the structure-activity relationship analyses shown in Extended Data Fig. 10 are also provided, in 
addition to the maximal common substructure SMARTS strings for the analyses described in 
Supplementary Note 2 and Extended Data Fig. 6. 
Supplementary Data 3. Mutations arising in cells exposed to compounds. For each 
compound, results are shown for at least two independently passaged or suppressor mutant 
populations. All mutations that passed mapping filters are listed here. Black boxes highlight 
mutations in similar regions across sequencing replicates either present in the same gene, or 
present in an adjacent gene or intergenic region.  

Supplementary Data 4. Training and test data for models predicting proton motive force-
altering activity. Proton motive force-altering activity was defined using a 30% relative mean 
fluorescence change in S. aureus RN4220 in the presence of DiSC3(5), a proton motive force-
sensitive dye. 475 antibacterial compounds from Supplementary Data 1 were tested, and all 
inactive antibacterial compounds were assumed to not alter proton motive force. Data are from 
two biological replicates. 
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 Antibiotics HepG2 cytotoxicity HSkMC cytotoxicity IMR-90 cytotoxicity 
 Area under the receiver operating characteristic curve (AUROC) on withheld test set 

Chemprop 0.921 0.683 0.835 0.829 
Chemprop (no 

RDKit features) 0.899 0.682 0.818 0.817 

Best-performing 
random forest 0.938 0.671 0.801 0.830 

 P-value from DeLong’s test for differences in AUROC 
Chemprop vs. 
Chemprop (no 

RDKit features) 
1.36E-4 0.561 8.16E-05 8.97E-07 

Chemprop vs. best-
performing random 

forest 
0.149 0.216 8.04E-06 0.968 

Chemprop (no 
RDKit features) vs. 

best-performing 
random forest 

0.001 0.272 0.013 0.038 

Supplementary Table 1. Model benchmarking. 
Values were computed on the same 80%-20% train-test splits of the data. Models refer to those 
shown in Fig. 1 of the main text and Extended Data Figs. 2 and 3. AUROC, area under the 
receiver operating characteristic curve.  
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Compound  Mol. 
weight 
(Da) 

MIC (μg/mL) IC50 (μg/mL) [Cell viability 
at 10 μM, relative to 

DMSO vehicle]  

  S. 
aureus 
RN4220 

S. 
aureus 
USA300 
(MRSA) 

B. 
subtilis 
168 

E. coli 
BW25113 

A. baumannii 
ATCC17978 

P. 
aeruginosa 
PAO1 

HepG2 HSkMC IMR-
90 

1 (BRD-
K12804514) 374.6 2 4 2 >128 >128 >128 128 

[0.986] 
>128 
[0.952] 

128 
[0.955] 

2 (BRD-
K80450985) 419.1 2 4 2 >128 >128 >128 128 

[0.927] 
128 
[0.946] 

128 
[0.912] 

I (Z225617188) 392.5 16 16 n.d. n.d. n.d. n.d. 32 
[1.021] 

32 
[1.026] 

32 
[1.013] 

II (STK661606) 380.2 32 64 n.d. n.d. n.d. n.d. 128 
[1.025] 

64-128 
[1.035]  

64 
[1.019] 

8919377* 525.6 1 16 2 >32 >32 >32 n.d. n.d. n.d. 

7492221* 518.5 0.25 16 0.25 8 >32 >32 n.d. n.d. n.d. 

9300332* 437.4 0.5 >32 0.25 32 32 >32 n.d. n.d. n.d. 

8926827* 439.4 4 >32 0.5 >32 >32 >32 n.d. n.d. n.d. 

8914392* 508.4 8 >32 32 >32 >32 >32 n.d. n.d. n.d. 

8919389* 487.0 0.25 1 16 >32 >32 >32 n.d. n.d. n.d. 

8919381* 515.0 1 16 2 >32 >32 >32 n.d. n.d. n.d. 

STK784397* 528.6 <0.03 0.25 <0.03 1 0.5 8 n.d. n.d. n.d. 

STL018675* 361.4 0.25 8 0.12 0.12 0.25 0.5 n.d. n.d. n.d. 

STK249734* 527.6 0.25 4 0.5 0.12 16 16 n.d. n.d. n.d. 

STK784382* 448.5 <0.03 0.5 <0.03 2 2 16 n.d. n.d. n.d. 

9324160* 417.4 <0.03 0.5 <0.03 1 1 16 n.d. n.d. n.d. 

BRD-
K30397580† 411.3 32 32 n.d. n.d. n.d. n.d. 32 

[1.021] 
32 
[1.002] 

16  
[0.959] 

STK223827† 388.6 4 8 n.d. n.d. n.d. n.d. 64 
[1.001] 

64 
[0.901] 

32 
[0.923] 

BRD-
A35476492† 357.2 16 16 8 >128 >128 >128 >128 

[0.824] 
>128 
[0.785] 

128 
[0.899] 

BRD-
K09705226† 449.0 32 32 n.d. n.d. n.d. n.d. 32 

[0.959] 
32 
[1.010] 

32 
[0.994] 

BRD-
K74229244† 403.4 8 8 n.d. n.d. n.d. n.d. 32 

[0.945] 
32 
[0.996] 

32 
[0.955] 

BRD-
K71366765† 403.4 8 8 n.d. n.d. n.d. n.d. 64 

[0.944] 
64 
[0.995] 

64 
[1.012] 

BRD-
K11266665† 403.4 4 4 n.d. n.d. n.d. n.d. 32 

[0.942] 
32 
[0.910] 

32 
[0.911] 

BRD-
K97660061† 403.4 4 4 n.d. n.d. n.d. n.d. 32 

[0.955] 
32 
[0.981] 

32 
[0.954] 

BRD-
K81544562† 403.4 8 8 n.d. n.d. n.d. n.d. 64 

[0.941] 
64 
[0.973] 

64 
[1.014] 
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STK539876† 334.7 16 >128 n.d. n.d. n.d. n.d. 128 
[0.967] 

128 
[0.945] 

128 
[0.996] 

BRD-
K23677682† 401.4 8 8 n.d. n.d. n.d. n.d. 128 

[0.937] 
128  
[0.943] 

128 
[0.944] 

BRD-
K95863777† 417.4 4 4 n.d. n.d. n.d. n.d. 32 

[0.903] 
32 
[0.958] 

32 
[0.933] 

BRD-
A73398991† 409.3 16 32 8 >128 >128 >128 >128 

[1.053] 
>128 
[0.940] 

128 
[0.925] 

BRD-
K84278600† 417.4 16 16 n.d. n.d. n.d. n.d. >128 

[0.959] 
>128 
[0.945] 

>128 
[0.955] 

BRD-
K76701247† 417.4 4 4 n.d. n.d. n.d. n.d. 32 

[0.960] 
32 
[0.960] 

32 
[0.933] 

STL090984† 400.4 32 32 n.d. n.d. n.d. n.d. >128 
[0.923] 

>128 
[0.910] 

>128 
[0.907] 

BRD-
A42002693† 446.9 32 32 n.d. n.d. n.d. n.d. 32 

[0.912] 
32 
[0.906] 

32 
[0.930] 

Ampicillin 349.4 0.06 1 0.03 4 8 >32 >128 >128 >128 

Ciprofloxacin 331.3 0.16 8 0.1 0.03 0.2 0.1 >128 >128 >128 

Supplementary Table 2. Additional MIC measurements for validated compounds. 

* indicates a bona fide quinolone or β-lactam. † indicates a structurally novel, validated hit with 
no computed rationale, or one not associated with any of rationale groups G1-G5 (Fig. 3d of the 
main text and Supplementary Data 2). n.d., not determined. Values shown are representative of 
two biological replicates.  
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Supplementary Table 3. In silico predicted properties of four validated hits associated with 
rationale groups G1-G5.  
Log P values were estimated as the average of predictions from five physics-based, topological, 
and atomistic models using SwissADME50. TPSA values were calculated using the ESOL 
method using SwissADME50. All other properties were calculated using OpenBabel as part of 
SwissADME50. TPSA, topological polar surface area (Å²). For comparison, the last row shows 
average values of properties computed for known Gram-positive antibiotics by O’Shea and 
Moser (OM; ref. 33).   

# SMILES Mol 
weigh
t (Da) 

Num.  
heavy  
atoms 

Num.  
aro-
matic  
heavy  
atoms 

Num.  
rotat-
able  
bond 

Num.  
H-bond  
accept- 
or 

Num.  
H-
bond  
donor 

Mol. 
refra-
ctivity 

TPSA  Log  
P 

Lipinski  
violation 

Ghose  
criteria 
violation 

PAINS Brenk 
alert 

1 OC(=O)c1ccc(
cc1NC(=O)C
Oc1ccc(cc1Cl
)Cl)Cl 

374.6 23 12 6 4 2 88.76 75.63 3.8 None None None None 

2 OC(=O)c1cc(c
cc1NC(=O)C
Oc1ccc(cc1Cl
)Cl)Br 

419.1 23 12 6 4 2 91.45 75.63 3.81 None None None None 

I OC(C1=C(CS
C2OC(C3CC
CCC3)=NN=2
)C2=C(C=CC
=C2F)S1)=O 

392.5 26 14 5 6 1 99.69 129.76 4.59 None None None None 

II OC(=O)[C@
H]1CN(C(=O)
C1)c1ccc(cc1)
OCc1ccc(cc1
Cl)Cl 

380.2 25 12 5 4 1 98.86 66.84 3.25 None None None None 

OM N/A 813 N/A N/A N/A 16.3 7.1 N/A 243 2.1 N/A N/A N/A N/A 
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  MIC (μg/mL) 
Strain Resistance/Markers 1 2 Vancomycin 
Bacterial strains 
Gram-positive bacteria 
Staphylococcus aureus RN4220 Methicillin-susceptible (MSSA) 2 2 1 
Staphylococcus aureus 1-30P RN4220 passaged in compound 1 for 

30 days 
2 2 1 

Staphylococcus aureus 2-30P RN4220 passaged in compound 2 for 
30 days 

2 2 1 

Staphylococcus aureus 1-5SM Suppressor mutant of RN4220 in 
compound 1 for 5 days 

8 8 1 

Staphylococcus aureus 2-5SM Suppressor mutant of RN4220 in 
compound 2 for 5 days 

8 8 1 

Staphylococcus aureus USA300 Methicillin-resistant (MRSA), 
SCCmecIV 

4 4 1 

Staphylococcus aureus CDC 215 Vancomycin-intermediate, aadD, 
blaZ, erm(A), mecA, spc 

8 4 4 

Staphylococcus aureus CDC 216 Vancomycin-intermediate, aph(3')-
III, mecA, mph(C), msr(A) 

16 16 4 

Staphylococcus aureus CDC 217 Vancomycin-intermediate, blaZ, 
dfrG, mecA 

4 2 4 

Staphylococcus aureus CDC 218 Vancomycin-intermediate, aph(3')-
III, erm(A), mecA, spc, tet(K) 

2 2 8 

Staphylococcus aureus CDC 219 Vancomycin-intermediate, aac(6')-
aph(2''), aadD, erm(A), mecA, spc, 
tet(M) 

8 8 8 

Staphylococcus aureus CDC 220 Vancomycin-intermediate, aadD, 
blaZ, erm(A), mecA, spc 

4 2 4 

Staphylococcus aureus CDC 221 Vancomycin-intermediate, aac(6')-
aph(2''), mecA, tet(M) 

2 2 4 

Staphylococcus aureus CDC 222 Vancomycin-intermediate, blaZ 2 2 4 
Staphylococcus aureus CDC 223 Vancomycin-intermediate, mecA 2 2 4 
Staphylococcus aureus CDC 224 Vancomycin-intermediate, aph(3')-

III, erm(A), mecA, spc, tet(K) 
8 8 4 

Staphylococcus aureus CDC 225 Vancomycin-intermediate, aph(3')-
III, blaZ, mecA, mph(C), msr(A) 

2 2 4 

Staphylococcus aureus CDC 226 Vancomycin-intermediate, aph(3')-
III, blaZ, mecA, mph(C), msr(A) 

4 4 4 

Staphylococcus aureus CDC 561 AG/TC-resistant, aph-STPH, fosB, 
mecA 

4 4 2 

Staphylococcus aureus CDC 562 AG/TC-resistant, aph-STPH, DHA-
1, erm(A), mecA, spc, tet(38), tet(M) 

16 16 2 

Staphylococcus aureus CDC 563 AG/TC-resistant, aac(6')-aph(2''), 
aadD, aph-STPH, fosB, mecA 

4 4 1 

Staphylococcus aureus CDC 564 AG/TC-resistant, aac(6')-aph(2''), 
aadD, aph(3')-III, aph-STPH, DHA-
1, erm(A), mecA, mph(C), sat4A, spc 

2 4 2 

Staphylococcus aureus CDC 565 AG/TC-resistant, aph(3')-III, aph-
STPH, dfrG, erm(A), fosB, mecA, 
sat-4A, spc, tet(K), tet(M), Z 

4 8 2 

Staphylococcus aureus CDC 566 AG/TC-resistant, aac(6')-aph(2''), 
aph-STPH, fosB, mecA 

2 2 0.5 

Staphylococcus aureus CDC 567 AG/TC-resistant, aac(6')-aph(2''), 
aph(3')-III, aph-STPH, erm(C), fosB, 
mecA, sat-4A 

2 2 1 
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Supplementary Table 4. MICs of compound 1, compound 2 and vancomycin against 
various bacterial isolates, strains, and human cell types.  

Values shown are representative of two biological replicates.  

  MIC (μg/mL) 
Strain Resistance/Markers 1 2 Vancomycin 
Bacterial strains 
Gram-positive bacteria 
Staphylococcus aureus CDC 568 AG/TC-resistant, aph(3')-III, aph-

STPH, DHA-1, erm(A), sat-4A, spc, 
tet(38), tet(K) 

4 2 0.5 

Staphylococcus aureus CDC 569 AG/TC-resistant, tet(M) 8 16 0.5 
Staphylococcus aureus CDC 570 AG/TC-resistant, aac(6')-aph(2''), 

aadD, aph(3')-III, aph-STPH, DHA-
1, erm(A), mecA, mph(C), spc, tet(K) 

4 8 1 

Enterococcus avium CDC 571 AG/TC-resistant VRE, aac(6')-
aph(2''), erm(B), tet(O), VanA, 
VanH-A, VanR-Pt2, VanS-A, VanX-
A, VanZ-A 

2 2 16 

Enterococcus faecium CDC 572 AG/TC-resistant VRE, aph(3')-III, 
dfrG, VanA, VanH-A, VanR-Pt2, 
VanS-A, VanX-A, VanY-A, VanZ-
A 

4 2 32 

Staphylococcus aureus CDC 701 Oxazolidinone-resistant, mecA 16 16 1 
Staphylococcus aureus CDC 702 Oxazolidinone-resistant, mecA 8 8 2 
Staphylococcus aureus CDC 703 Oxazolidinone-resistant, mecA 2 2 0.5 
Staphylococcus aureus CDC 704 Oxazolidinone-resistant, mecA 4 4 1 
Staphylococcus aureus CDC 705 Oxazolidinone-resistant, mecA 2 4 1 
Staphylococcus aureus CDC 706 Oxazolidinone-resistant, mecA 2 2 1 
Staphylococcus aureus CDC 707 Oxazolidinone-resistant, mecA 4 8 1 
Staphylococcus aureus CDC 708 Oxazolidinone-resistant, mecA 2 2 2 
Staphylococcus aureus CDC 709 Oxazolidinone-resistant, mecA 2 4 1 
Staphylococcus aureus CDC 710 Oxazolidinone-resistant, mecA 2 2 1 
Staphylococcus aureus CDC 711 Oxazolidinone-resistant, mecA 4 8 2 
Staphylococcus aureus CDC 712 Oxazolidinone-resistant, mecA 8 8 1 
Enterococcus casseliflavus CDC 788 VRE 2 2 4 
Enterococcus gallinarum CDC 796 VRE, VanC 2 2 8 
Enterococcus casseliflavus CDC 797 VRE 2 2 2 
Enterococcus casseliflavus CDC 798 VRE 2 2 2 
Bacillus subtilis 168  2 2 0.25 
Gram-negative bacteria 
Escherichia coli BW25113  >128 >128 >128 
Escherichia coli RFM795 lptD4213 2 2 ≤2 
Escherichia coli JW5503-KanS ΔtolC832::FRT 2 2 >128 
Acinetobacter baumannii 
ATCC17978 

 >128 >128 >128 

Pseudomonas aeruginosa PAO1  >128 >128 >128 
Human cell types (IC50) 
HepG2  128 128 >128 
HSkMC  >128 128 >128 
IMR-90  128 128 >128 
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Hyperparameter Range Value used 

Chemprop model (antibiotics)   

Number of message-passing steps [2, 5] 5 

Neural network hidden size [900, 2000] 1600 

Number of feed-forward layers [1, 3] 3 

Dropout probability [0.05, 0.4] 0.35 

Chemprop model (HepG2 cytotoxicity)   

Number of message-passing steps [4, 5] 5 

Neural network hidden size [1500, 1700] 1600 

Number of feed-forward layers [2, 3] 3 

Dropout probability [0.3, 0.4] 0.35 

Chemprop model (HSkMC cytotoxicity)   

Number of message-passing steps [4, 5] 5 

Neural network hidden size [1500, 1700] 1600 

Number of feed-forward layers [1, 3] 3 

Dropout probability [0.3, 0.4] 0.35 

Chemprop model (IMR-90 cytotoxicity)   

Number of message-passing steps [4, 5] 5 

Neural network hidden size [1600, 1700] 1600 

Number of feed-forward layers [2, 3] 3 

Dropout probability [0.3, 0.4] 0.35 

Random forest model (antibiotics)   

Maximum depth [5, 40] 15 

Number of trees [20, 100] 100 

Number of features [20, 180] 20 

Random forest model (HepG2 cytotoxicity)   

Maximum depth [5, 40] 40 

Number of trees [20, 100] 40 

Number of features [20, 180] 180 

Random forest model (HSkMC cytotoxicity)   

Maximum depth [5, 40] 15 

Number of trees [20, 100] 100 

Number of features [20, 180] 20 

Random forest model (IMR-90 cytotoxicity)   

Maximum depth [5, 10] 10 
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Number of trees [20, 40] 40 

Number of features [20, 60] 40 

Chemprop model (leave-one-out for quinolones)   

Number of message-passing steps N/A 5 

Neural network hidden size N/A 1600 

Number of feed-forward layers N/A 3 

Dropout probability N/A 0.35 

Chemprop model (leave-one-out for β-lactams)   

Number of message-passing steps N/A 5 

Neural network hidden size N/A 1600 

Number of feed-forward layers N/A 3 

Dropout probability N/A 0.35 

Chemprop model (proton motive force alteration)   

Number of message-passing steps N/A 5 

Neural network hidden size N/A 1400 

Number of feed-forward layers N/A 2 

Dropout probability N/A 0.25 

Supplementary Table 5. Hyperparameters used for deep learning. 

For details, see Methods.   
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Supplementary Table 6. Common bacterial strains used in this study. 
 
  

Strain Genotype Source 
Staphylococcus aureus 
RN4220 (MSSA) 

Restriction-minus, 
modification-plus derivative 
of NCTC 8325, rsbU-, agr- 

Michael Gilmore Lab 

Staphylococcus aureus 
FPR3757 (MRSA USA300) 

USA300, SCCmecIV, pvl+ ATCC BAA-1556 

Bacillus subtilis 168 trpC2 ind- tyr+ ATCC 23857 
Escherichia coli BW25113 F-, Δ(araD-

araB)567, ΔlacZ4787(::rrnB-
3), λ-, rph-1, Δ(rhaD-
rhaB)568, hsdR514 

Lab stock 

A. baumannii ATCC17978 Cerebrospinal fluid isolate, 
reference strain 

ATCC 17978 

P. aeruginosa PAO1 Derivative of Australian PAO 
isolate, reference strain 

Lab stock 
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 HepG2 Chemprop model HSkMC Chemprop model IMR-90 Chemprop model 
HepG2 toxicity AUROC: 0.786 

AUPRC: 0.343 
MCC: 0.291 

AUROC: 0.791 
AUPRC: 0.343 
MCC: 0.286 

AUROC: 0.761 
AUPRC: 0.310 
MCC: 0.254 

Mitochondria 
toxicity (agonists 
and inactive 
compounds) 

AUROC: 0.835 
AUPRC: 0.290 
MCC: 0.310 

AUROC: 0.831 
AUPRC: 0.280 
MCC: 0.312 

AUROC: 0.809 
AUPRC: 0.279 
MCC: 0.277 

Mitochondria 
toxicity (antagonists 
and inactive 
compounds) 

AUROC: 0.805 
AUPRC: 0.404 
MCC: 0.217 

AUROC: 0.805 
AUPRC: 0.421 
MCC: 0.191 

AUROC: 0.705 
AUPRC: 0.295 
MCC: 0.154 

Supplementary Table 7. Performance metrics of Chemprop cytotoxicity models on Tox21 
datasets. 7,151 compounds were contained in the filtered HepG2 toxicity dataset, 5,726 
compounds were contained in the filtered mitochondria toxicity dataset containing agonists and 
inactive compounds, and 6,425 compounds were contained in the filtered mitochondria toxicity 
dataset containing antagonists and inactive compounds. 
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 PS > 0.1 PS > 0.2 PS > 0.3 PS > 0.4 PS > 0.5 

Fails HepG2 
Chemprop 

model 
429 (13.7%) 125 (4.0%) 40 (1.3%) 14 (0.4%) 4 (0.1%) 

Fails HSkMC 
Chemprop 

model 
562 (18.0%) 144 (4.6%) 46 (1.5%) 21 (0.7%) 5 (0.2%) 

Fails IMR-90 
Chemprop 

model 
850 (27.2%) 365 (11.7) 127 (4.1%) 24 (0.8%) 4 (0.1%) 

Fails all models 346 (11.1%) 80 (2.6%) 17 (0.5%) 4 (0.1%) 0 (0.0%) 

Supplementary Table 8. Performance metrics of Chemprop cytotoxicity models on a 
human metabolite dataset. 3,126 metabolites were considered. PS, prediction score.  
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MCS MCS 

PS 
Hits (3646) Non-hits (3355) MCS MCS PS Hits (3646) Non-hits (3355) 

  N Average 
hit PS 

N Average 
non-hit PS 

  N Average hit 
PS 

N Average 
non-hit PS 

A1 0.294 748 0.472 0 N/A B1 8.570E-09 0 N/A 172 4.482E-07 

A2 0.001 145 0.227 0 N/A B2 2.320E-08 0 N/A 121 4.412E-07 

A3 0.001 118 0.332 0 N/A B3 1.380E-07 0 N/A 88 5.866E-07 

A4 0.007 109 0.482 0 N/A B4 6.000E-08 0 N/A 85 5.222E-07 

A5 0.009 94 0.226 0 N/A B5 5.820E-08 0 N/A 84 4.694E-07 

A6 0.419 78 0.264 0 N/A B6 1.580E-07 0 N/A 60 4.436E-07 

A7 0.002 74 0.240 0 N/A B7 1.040E-07 0 N/A 55 4.747E-07 

A8 0.014 68 0.221 0 N/A B8 3.220E-08 0 N/A 45 5.102E-07 

A9 0.005 55 0.223 0 N/A B9 1.610E-07 0 N/A 32 6.080E-07 

A10 0.003 39 0.223 0 N/A B10 5.990E-07 0 N/A 29 6.315E-07 

A11 0.007 38 0.254 0 N/A B11 7.360E-07 0 N/A 23 5.781E-07 

A12 0.207 34 0.254 0 N/A B12 1.280E-07 0 N/A 22 4.466E-07 
Pearson’s R between MCS PS and average molecule PS for hits: 0.261, p-value 0.413 
Pearson’s R between MCS PS and average molecule PS for non-hits: 0.639, p-value 0.0254 
Pearson’s R between MCS PS and average molecule PS for hits and non-hits combined: 0.448, p-value 0.0280 

Supplementary Table 9. Average prediction scores of hits and non-hits associated with 
MCSs. Here, N denotes the numbers of associated hits or non-hits. PS, prediction score. MCS PS 
refers to the PS of the isolated MCS viewed as a molecular input to the ensemble Chemprop 
model, and the average molecule PS refers to the average PS of all hits or non-hits associated 
with the MCS of interest. 

 
 


