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Fig. S1. RAS/MAPK and EMT/EMP pathways are highly correlated and strongly
activated in claudin-low breast cancer subtype. (A and B) Distribution of sSSGSEA or EMT
scores for each molecular subtype of breast cancer in TCGA cohort, corresponding to (A) RAS
or MAPK pathway (sSGSEA score) and (B) EMT/EMP pathway (sSGSEA or EMT score (29)).
(C) Spearman correlations between KRAS signaling pathway (ssGSEA score) and EMT/EMP
pathway (sSGSEA score or EMT score (29)) in breast tumors from TCGA dataset. (D and E)
Distribution of ssGSEA or EMT scores for each molecular subtype of breast cancer in
METABRIC cohort, related to (D) RAS or MAPK pathway (ssGSEA score) and (E) EMT/EMP
pathway (ssGSEA or EMT score (29)). (F) Spearman correlations between KRAS signaling
pathway (ssGSEA score) and EMT/EMP pathway (SSGSEA or EMT score (29)) in breast
tumors from the METABRIC dataset. (G and H) Distribution of ssGSEA or EMT scores for
each molecular subtype of breast cancer in CCLE cohort, related to (G) RAS or MAPK pathway
(ssGSEA score) and (H) EMT/EMP pathway (ssGSEA or EMT score (29)). (1) Spearman
correlations between KRAS signaling pathway (sSGSEA score) and EMT/EMP pathway
(ssGSEA or EMT score (29)) in breast tumors from the CCLE dataset.
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Fig. S2. RAS-activation in HME-RASEr cells induces expression of EMT-TFs and a shift
in CD24/CD44/CD104/EpCAM phenotype. (A) Fold change in expression of mMRNA across
time for EMT-TFs SNAI1, TWIST1, and TWIST2 in HME-RASgr or HME-CTRL cells induced
with 4-OHT (IND) or not (NI). Median+ range (n=2 independent experiments in duplicate); (B)
Representative flow cytometry analysis of CD24, CD44, CD104, and EpCAM markers in
HME-RASEgr (RASer) and HME-CTRL (CTRL) cells after 49 days of 4-OHT treatment (IND)

or not (NI).
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Fig. S3. RAS-activation in HME2-RASer and HME3-RASEr cells induces expression of
EMT-TFs and a shift in CD24/CD44/CD104/EpCAM phenotype. (A) Immunoblot showing
the expression of HRASEr®!?Y, pERK1/2, ERK, ZEB1, ZEB2, SNAIL/SLUG, E-CADHERIN,
and VIMENTIN in HME2-RASgr cells, HME3-RASgr cells, and HME-CTRL cells at
indicated time points after 4-OHT treatment. MDA-MB 231 cell line was used as a positive



control for ZEB1, ZEB2, and SNAIL/SLUG expression. GAPDH level was used as a loading
control. (B) Fold change in expression across time of ZEB1 mRNA, miR200C and miR141 in
HME2-RASer and HME3-RASkr cells or in HME-CTRL cells induced with 4-OHT (IND) or
not (NI). Medianz range (n=2 independent experiments). (C) Representative FACS analysis of
CD24, CD44, CD104, and EpCAM markers in HME2-RASer and HME3-RASkr cells at D28
of induction with 4-OHT (IND) or not (N1). Kinetics analysis and quantification across time of
the percentage of CD247°"/CD44* cells, CD247°V/CD44* [EpCAM* cells, and CD44*/CD104*
cells after 4-OHT treatment. Median+ range (n=2 independent experiments).
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Fig. S4. Cellular plasticity and transformation capabilities after RAS activation are
ZEB1-dependent. (A) Experimental outline. miR200c expression was associated with GFP
expression. Cell sorting based on GFP"9" expression in HME-RASgr miR200c cells and HME-
RASer-empty cells. (B) miR200c expression in HME-RASgr-miR200c or HME-RASEgr-empty
cells induced with 4-OHT (IND). Mediant range (n=4 independent experiments). (C)
Immunoblotting of pERK in HME-RASEr-miR200c or in HME-RASgr-empty cells treated
with 4-OHT (+) or not (-) and analyzed at D4. GAPDH level was used as a loading control. (D)
ZEB1 and ZEB2 mRNA expression in HME-RASgr-miR200c or in HME-RASEer-empty cells



after 28 days of 4-OHT treatment (IND). Mediantrange (n=4 independent experiments). (E)
Immunoblotting of pERK and ZEB1 in HME-RASgr-miR200c or in HME-RASEer-empty cells
treated with 4-OHT (+) or not (-) and analyzed at D28. B-Tubulin level was used as a loading
control. Hs578T cell line was used as a positive control for ZEB1 expression. (F) Genomic
DNA sequencing by Sanger method for assessing HME-RASgr-CRISPR ZEBL1. Sequence
alignment of a CRISPR SCR clone and three CRISPR ZEB1 KO clones (clones #1, #2 and #3).
(G) Immunoblotting of pERK and ZEBL in the three HME-RASgr-CRISPR ZEB1 clones (#1,
#2 and #3) or in HME-RASgr-CRISPR SCR induced with 4-OHT (+) or not (-) and analyzed
at D28. GAPDH level was used as a loading control. Hs578T cell line was used as a positive
control for ZEB1 expression. (H) Fold change in expression (induced/not induced) of ZEB1,
ZEB2, and SNAI2 mRNA in the three HME-RASgr-CRISPR ZEB1 clones (#1, #2 and #3) or
in HME-RASEgr-CRISPR SCR induced with 4-OHT or not for 28 days. Relative expression was
determined by the AACt method, normalized to HPRT1 expression and divided by the
expression of the untreated sample at the same time point. Medianzrange (n=4 independent
experiments).
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Fig. S5. Identification of distinct senescence and EMP clusters in induced HME-RASEr.
Single-cell RNAseq analysis related to Fig.3 (A) Heatmap representing the expression of the
ten most up-regulated genes of each cluster compared to all other clusters. (B and C) Projection
of the trajectory analysis performed by the Slingshot algorithm along the first two axes of an



unsupervised Principal Component Analysis (PCA) of all cells. Cells are colored by clusters.
(B) Starting point of the trajectory analysis is cluster 1 (green circle), (C) Left panel: Starting
point of the trajectory analysis is cluster 2 (green circle); Right panel: Starting point of the
trajectory analysis is cluster 4 (green circle). (D) Cell fate deciphered by RNA velocity analysis
projected onto the computed UMAP. Cells are colored by cluster. Arrows represent the
probable next state of each cell based as resulted by scVelo.
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Fig. S6. Identification of distinct senescence and EMP clusters in induced HME-RASEr.
Single-cell RNAseq analysis with partial cell-cycle regression. (A) Unsupervised UMAP of the
transcriptome of all cells at all time points (DO, D3, D7, D14 and D20). Cells are colored by
their attributed cluster. (B) Main altered pathways by marker genes for each cluster. Gene ratio
presented as k/n, where K is the size of the overlap of our input with the specific gene set and n
is the size of the overlap of our input with all members of the collection of gene sets. qvalue
refers to false discovery rate. (C and D) Scores per cell for two transcriptomic pathways:
FRIDMAN SENESCENCE (ssgsea score) and EMT JPT (EMT cell line score from (29)).
Cells are grouped by clusters, each box representing the median and interquartile ranges.
Individual Wilcoxon tests, p-value is represented by stars (**p<=0.01 and ****p<=0.0001).
(E) Proportion of cells by cluster at each time point. Emerging clusters across time were colored
(cluster 1 in blue, cluster 2 in orange, and cluster 3 in green). (F) Projection of the trajectory
analysis performed by the Slingshot algorithm along the first two axes of an unsupervised PCA
of all cells. Cells are colored by clusters. Starting point of the trajectory analysis is cluster 1
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Fig. S7. ZEB1-dependent cellular plasticity is driven by a paracrine mechanism. (A)
Experimental outline of HME_d2GFP generation and expected read out; (B-E) Co-culture



assays. (B) Experimental outline and representative fluorescence images of co-culture assay.
(C) Representative flow cytometry analysis of GFP expression in HME_d2GFP cells co-
cultured with HME-RASEgr-dSRED (+HME-RASer-dSRED) cells after 14 days of induction
with 4-OHT (IND) or not (NI) and quantification of GFPMI" population across time.
Mediantrange (n=8 independent experiments) (Scale bars, 50 pum). (D) Representative flow
cytometry analysis of CD24 and CD44 markers in HME_d2GFPCS™PMigh cells co-cultured with
HME-RASEer-dsRED or HME-CTRL-dsRED cells, induced with 4-OHT (IND) or not (NI) for
21 days and quantification of CD24”°%/CD44* population from HME_d2GFPCFPhio" cells at
D14 and D21 (n=8 independent experiments). (E) ZEB1 expression in HME-d2GFP cells co-
cultured with HME-RASgr-dSRED cells after induction with 4-OHT and sorted at D14 based
on their GFP expression. Mediantrange (n=5 independent experiments in duplicate). (F)
Transformation potential analysis as assessed by a soft agar colony formation assay of
HME_d2GFP cells co-cultured with HME-RASer-dSRED (+HME-RASgr-dsRED) or HME-
CTRL-dsRED (+HME-CTRL-dsRED) cells, induced with 4-OHT (IND) or not (NI) for 21
days. Representative images and quantification of GFP-positive colonies (as defined by > 20
cells). Mediantrange (n=6 independent experiments) (Scale bars, 200 um). (G and H)
Transwell culture assays. (G) Quantification of GFP"9" population from HME_d2GFP cells co-
cultured with HME-RASgr-dSRED (+HME-RASgr-dSRED) or HME-CTRL-dSRED (+HME-
CTRL-dsRED) cells, induced with 4-OHT (IND) or not (NI) for 21 days. Medianzrange (n=3
independent experiments). (H) Quantification of CD247°%/CD44* population from
HME_d2GFPCFPhiah cells co-cultured with HME-RASEr-dsRED (+HME-RASEr-dSRED) or
HME-CTRL-dsRED (+HME-CTRL-dsRED) cells, induced with 4-OHT (IND) or not (NI) for
21 days. Medianzrange (n=3 independent experiments). P-values are calculated by one-way
ANOVA, Tukey multiple comparison test (****p<=0.001), or Student’s t-test (*<=0.1) as
appropriate.
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Fig. S8. ZEB1-dependent plasticity is driven by cytokines IL-6 and IL-1a secreted by
senescent cells. (A) Quantification of TGF-p ligands levels in HME-RASEr supernatants

following 4-OHT treatment compared to controls at D4, D6, D8, D10, D13, D17, D20, and



D27. Data are presented as fold change of secreted TGF-B ligands concentrations in HME-
RASer or HME-CTRL cells induced by 4-OHT (IND) or not (N1). (B) Immunoblotting of ZEB1
expression in HME-CTRL (CTRL) or HME-RASEgr (RASEr) cells induced by 4-OHT (IND)
or not (NI), treated with neutralizing antibodies or isotype controls and analyzed at D28.
Hs578T cell line was used as a positive control for ZEB expression. Data is representative of
three independent experiments (n=3 independent experiments). (C) Quantification of IL-1a and
IL-6 levels in HME-RASer or HME-CTRL supernatants following 4-OHT treatment and
treatment with senolytic drugs or the equivalent concentration of DMSO at D10 and D14. Data
are presented as fold change of secreted cytokine concentrations in HME-RASgr or HME-
CTRL cells induced by 4-OHT (IND) or not (NI) in each treatment condition. Medianzrange
(n=2 independent experiments). (D) Quantification of CD24"°%/CD44" population from HME-
d2GFPCFPhigh cells co-cultured with HME-RASer-dSRED cells induced with 4-OHT (+) or not
(-), treated with indicated neutralizing antibodies or isotype controls and analyzed at D20.
Mediantrange (n=6 independent experiments). (E) Quantification of CD24”°“/CD44+
population from HME-d2GFPC™PMigh cells cultured in transwell plate with HMIE-RASgr-dSRED
cells induced with 4-OHT (+) or not (-), treated with indicated neutralizing antibodies or isotype
controls and analyzed at D20. Mediantrange (n=4 independent experiments). P-values are
calculated by one-way ANOVA, Tukey multiple comparison test (*p <=0.05, **p <=0.01 and
***p <= 0.001).

SUPPLEMENTARY TABLES

Table S1: Cluster 1, downregulated genes (refers to Fig. 3)

Table S2: Cluster 2, up regulated genes (refers to Fig. 3)

Table S3: Cluster 3, down- and upregulated genes (refers to Fig. 3)
Table S4: Cluster 4, down- and upregulated genes (refers to Fig. 3)
Table S5: Cluster 5, down- and upregulated genes (refers to Fig. 3)
Table S6: Cluster 1, upregulated genes (refers to Fig. S6)

Table S7: Cluster 2, upregulated genes (refers to Fig. S6)

Table S8: Cluster 3, upregulated genes (refers to Fig. S6)



