1	Supplemental Figure 1. (A and B) Expression levels of the indicated genes in the ovaries (A)
2	and liver (B) of female WT and Aster-B KO mice. $n = 11/13$ for ovary; $n = 10/10$ for liver. (C)
3	Representative images of the female mice on chow diet feeding. (D) Body weight of female WT
4	and Aster-B-KO mice on chow diet at age of 12 weeks, 20 weeks and 30 weeks; $n = 20/31$ for 12
5	weeks; $n = 15/16$ for 20 weeks; $n = 13/13$ for 30 weeks. (E) Body weight of male WT and
6	Aster-B-KO mice on chow diet at age of 12 weeks, 20 weeks and 30 weeks; $n = 16/25$ for 12
7	weeks; $n = 11/13$ for 20 weeks; $n = 16/21$ for 30 weeks. All data are presented as mean \pm s.e.m.
8	P values were determined by two-sided Student's t-test (A, B, D and E). *****P < 0.00001.
9	Supplemental Figure 2. (A) Relative expression of <i>Gramd1b</i> in different tissues from the
10	mouse. n=5. (B and C) cDNA sequence of <i>Gramd1b1</i> (B) and <i>Gramd1b2</i> (C). (D) ClustalW
11	alignment of N-terminal region from Aster-B1 and B2. The rest of the proteins share the same
12	amino acid sequence. The position of the predicted helices in Aster-B1 and B2 are highlighted in
13	cyan and magenta, respectively. (E) Immunoblot analysis of Aster-B1 and -B2 after vehicle or
14	indicated cholesterol treatment for 4 hours.
15	Supplemental Figure 3. (A and B) Aster-B2 (A) and Aster-B2 truncated α -Helix (B) in Hela
16	cells imaged by confocal microscopy in 10% FBS (left), 1% LPDS (middle) or following
17	cholesterol loading for 1 h (right). Green, HA tagged Aster-B. Blue, DIPA. (C) Amino acid
18	composition of Aster-B1 and B2 N-terminal region. Non-polar residues in Aster-B1 are
19	highlighted in yellow and positively charged residues are highlighted in blue in Aster-B2. (D)
20	Aster-B2, Mito-tracker and KDEL-BFP were imaged by confocal microscopy in 10% FBS (left),
21	1% LPDS (middle), or following 100 μ M cholesterol: methyl-b-cyclo- dextrin complexes
22	loading for 1 h (right).

1	Supplemental Figure 4. (A) Average number of birth pups per female in 10 weeks; $n = 6/6$. (B)
2	Fertility rate analysis for female WT and Aster-B knock-out mice in 10 weeks. All data are
3	presented as mean \pm s.e.m. P values were determined by two-sided Student's t-test (A).
4	Supplemental Figure 5. (A and B) Total liver cholesterol (A) and triglyceride (B) in male WT
5	and Aster-B-KO mice after 10 weeks of WD feeding. n=10/10. (C and D) Plasma total
6	cholesterol (C) and triglyceride (D) in male WT and Aster-B-KO mice after 10 weeks of WD
7	feeding; n = 18/11 for cholesterol; n=19/11 for triglyceride. All data are presented as mean \pm
8	s.e.m. P values were determined by two-sided Student's t-test (A, B, C and D).
9	Supplemental Figure 6. (A) The cumulative food consumed per mouse from male WT versus
10	Aster-B-KO mice fed with WD for 4 weeks of study. n=6/4. (B) The body weight measured from
11	(A); $n=5/4$. (C) The Respiratory Exchange Ratio (RER) data from Figure 5C and 5D. $n=10/12$.
12	All data are presented as mean \pm s.e.m. P values were determined by two-way ANOVA (A, B) or
13	two-sided Student's t-test (C).
14	Supplemental Figure 7. (A) Representative image of mice with or without ovariectomy. (B)
15	Normalized body weight gain from Figure 1A, and the ovariectomized WT or Aster-B-KO mice
16	are from Figure 6A. $n = 10/8/11/15$. (C) Normalized body weight gain from Figure 1A and E2
17	treated Aster-B-KO mice from Figure 7A. The WT group combined the data from Figure 1A and
18	7A. $n = 21/11/15$.

19.20%

9.60%

9.20%

7.00%

6.60%

6.10%

5.20%

4.80% 4.80%

4.80%

4.40%

3.90%

3.90%

2.60%

1.70%

1.70%

1.70% 1.30%

0.90%

0.40%

в

M x F	Total Pups NO.	Pups/mou se	Total Litters NO.	Litters/mo use
WT x <mark>WT</mark>	60	10	11	1.83
WT x <mark>KO</mark>	55	9.17	8	1.33

Gene	Forward	Reverse
m Gramd1A	CAGCAGATGCTCTTCTCGGA	TCTGAGGATACACGAAGCCG
m Gramd1b	TCCCAATGCCATCCAAGTC	ACAAAGTGCCAGAGCTCC
m Gramd1c	CCGTGTCTTTCACATCAGTGC	ACTTCCCAGTTAGCGGGTTG
m Srebp2	ACCTAGACCTCGCCAAAGGT	GCACGGATAAGCAGGTTTGT
m Hmgcr	CTTGTGGAATGCCTTGTGATT	AGCCGAAGCAGCACATGAT
m Hmgcs	GCC GTG AAC TGG GTC GAA	GCA TAT ATA GCA ATG TCT CCT
m Ldlr	AGGCTGTGGGGCTCCATAGG	TGC GGT CCA GGG TCA TCT
m Sqle	GCCTCTCAGAATGGTCGTCT	CGCATGTCCCAGAATAAGGA
m Gdf9	GTCACCTCTACAATACCGTCCG	TAAACAGCAGGTCCACCATCGG
m Bmp15	GATTGGAGCGAAAATGGTGAGGC	GCTACCTGGTTTGATGCTAGAGG
m Caspase-3	GGAGTCTGACTGGAAAGCCGAA	CTTCTGGCAAGCCATCTCCTCA
m Bcl2	CCTGTGGATGACTGAGTACCTG	AGCCAGGAGAAATCAAACAGAG
m Bcl3	AGCAGTCGTCTCAGCTCCAATG	AGGCAGGTGTAGATGTTGTGGG
m p21	TCGCTGTCTTGCACTCTGGTGT	CCAATCTGCGCTTGGAGTGATAG
m p53	CTGGTTAGTCCTGAGACAGAGG	AGATGCAGCCAAACACAGGCAC
m Bax	AGGATGCGTCCACCAAGAAGCT	TCCGTGTCCACGTCAGCAATCA
m Esr1	GCCAGAATGGCCGAGAGAG	CCCCATAATGGTAGCCAGAGG
m Pgr	CTACTCGCTGTGCCTTACCATG	CTGGCTTTGACTCCTCAGTCCT
m Pck1	GGCGATGACATTGCCTGGATGA	TGTCTTCACTGAGGTGCCAGGA
m Gdf15	AGCCGAGAGGACTCGAACTCAG	GGTTGACGCGGAGTAGCAGCT
m Polg1	TAGCTGGCTGGTCCAAGAGT	CGACGTGGAGGTCTGCTT
m Nrfl	GACAAGATCATCAACCTGCCTGTAG	GCTCACTTCCTCCGGTCCTTTG
m Fasn	AAGTCCCAGAAATCGCCTATG	GGTATGGTTTCACGACTGGAG
m Acc	GTTCTGTTGGACAACGCCTTCAC	GGAGTCACAGAAGCAGCCCATT
m Scd1	TTCTTGCGATACACTCTGGTGC	CGGGATTGAATGTTCTTGTCGT
m Elovl6	CGGCATCTGATGAACAAGCGAG	GTACAGCATGTAAGCACCAGTTC
m Pgc1a	TATGGAGTGACATAGAGTGTGCT	GTCGCTACACCACTTCAATCC
m Ucp1	ACTGCCACACCTCCAGTCATT	CTTTGCCTCACTCAGGATTGG
m Adrb3	AGAAACGGCTCTCTGGCTTTG	TGGTTATGGTCTGTAGTCTCGG
m Cox8b	GAACCATGAAGCCAACGACT	GCGAAGTTCACAGTGGTTCC
m Cox4i1	ATTGGCAAGAGAGCCATTTCTAC	TGGGGAAAGCATAGTCTTCACT
m Cox5b	GCTGCATCTGTGAAGAGGACAAC	CAGCTTGTAATGGGTTCCACAGT
m Cox7a1	CAGCGTCATGGTCAGTCTGT	AGAAAACCGTGTGGCAGAGA

Supplemental Table 1. Q-PCR primer sequences