SUPPLEMENTARY MATERIALS

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Figure S1. Multidimensional scaling plot of TurboID data with the indicated TurboID fusion proteins, separated by N- (triangles) or C-terminal (circles) TurboID fusion. N- and C-terminal fusions do not cluster independently. BCV = biological coefficient of variation.

	230833	230833	230833	230833	230833	230833	258135	258135	258135	258135
RUNX	орона 10 µт.	<u>10 µm</u>	<u>10 µт</u>	<u>10 µm</u>	<u>10 µт</u>	<u>10 µm</u>	10 μm	<u>10 µm</u>	<u>, 10 µт </u>	<u>10 µт</u>
MYH11	_10 µт.	<u>10 μm</u>	<u>10 µm</u>	<u>10 µт</u>	 _10 μm_	<u>10 µm</u>	<u>10 µm</u>	10 μm,	<u>10 µт</u>	<u>10 µm</u>
Overlay	орона 10 µm	<u>10 µт</u>	10 µm	<u>10 µm</u>	<u>_10 µт</u>	<u>10 µm</u> ,	<u>10 µт</u>	10 µm	<u>10 µт</u>	<u>10 µт</u>
	417745	452075	452075	452075	595704	803661	803661	803661	803661 803661	Non-CBFB ::MYH11 924073
RUNX	<u>10 µт</u>	<u>10 μm</u>	 _10 μm	<u>10 µт</u>	10 µт	<u>10 µm</u>	<u>10 µт</u>	<u>,10 µт</u> ,	<u>10 µт</u>	μ ^{10 μm} ι
MYH11	<u>10 μm</u>	<u>10 μm</u>	_10 μm	<u>10 µт</u>	10 µm	<u>,10 μm</u> ,	алана 10 µт.	ро бо <u>10 µm</u>	<u>10 µm</u> 10 µm	<mark>10 µт</mark>
Overlay	<u>10 µт</u>	10 μm		<u>10 μm</u>	10 µm	<u>10 µт</u>	<u>10 µт</u>	<u>і0 µт</u>	<u>10 µт</u>	

Figure S2. Primary human AML cells stained with MYH11 (red) and RUNX1/2/3 (green). Overlap is shown in yellow. The number above each image refers to the unique patient identifier. All samples are from *CBFB*::*MYH11* patients except the final sample (924073). Note cytoplasmic MYH11 aggregates with RUNX colocalization in *CBFB*::*MYH11* patient samples. Overlay images for 258135 and 417745 are repeated from **Figure 5A**.

Figure S3. Primary human AML cells stained with DAPI (blue), MYH11 (red), and RUNX1/2/3 (green). MYH11/RUNX overlap is shown in yellow. The number above each image refers to the unique patient identifier. All samples are from *CBFB*::*MYH11* patients. Note cytoplasmic MYH11 aggregates with RUNX colocalization.

Figure S5. *RUNX2* gene expression levels in human AML from the TCGA AML study (1) with the indicated mutations/oncofusions. Black line indicates average *RUNX2* expression in healthy donor cells, and the dotted red line indicates the average *RUNX2* expression in AML cells. Red squares indicate biallelic *RUNX2* mutant samples.

Figure S6. A) Multidimensional scaling plot of RNA-Seq data of validation cohort samples from **Figure 7E**). Note that each subgroup has a unique expression signature. B) and C) Venn diagrams of upregulated (B) and downregulated (C) genes relative to healthy donor CD34 cells. Note that *CBFB::MYH11* and *RUNX1::RUNX1T1* samples have distinct sets of dysregulated genes, but also, that most dysregulated genes are also shared with *NPM1*^c AMLs; many of these probably represent a more general AML-associated expression signature that is not specific for CBF AMLs.

Figure S7. Normalized spectral counts of ubiquitin pathway-related differentially-interacting proteins between CBFB::MYH11-TurboID (red boxes, n=8) and CBFB-TurboID (blue boxes, n=12) in murine hematopoietic cells. Note increased interactions of several ubiquitin pathway proteins with CBFB relative to CBFB::MYH11. Unpaired t test, **p<0.01, ****p<0.0001.

 Table S1: Normalized spectral counts for PML::RARA-TurboID differentially-interacting proteins

 versus TurboID alone

Table S2: Proteins in curated nuclear complexes. Protein names in red and bold indicate alternative gene names.

 Table S3: Normalized spectral counts for RUNX1::RUNX1T1-TurboID differentially-interacting

 proteins versus TurboID alone

 Table S4: Normalized spectral counts for CBFB::MYH11-TurboID differentially-interacting

 proteins versus TurboID alone

Table S5: Normalized spectral counts for CBFB-TurboID differentially-interacting proteins

 versus TurboID alone

 Table S6: Normalized spectral counts for differentially interacting-proteins between CBFB

 TurboID and CBFB::MYH11-TurboID

Table S7: Normalized RNA-Seq reads for differentially-expressed genes between murine hematopoietic cells transduced with *Empty Vector* MSCV-IRES-GFP (EV) or *CBFB*::*MYH11* MSCV-IRES-GFP (CM), with passive *CBFB*^{N104A}::*MYH11* MSCV-IRES-GFP samples.

Table S8: Normalized RNA-Seq reads for differentially-expressed genes between human healthy donor CD34⁺ cells and human *RUNX1*::*RUNX1T1* AML samples, with passive *CBFB*::*MYH11* and *NPM1^c*-mutated AMLs.

 Table S9: Normalized RNA-Seq reads for differentially-expressed genes between human

 healthy donor CD34⁺ cells and human CBFB::MYH11 AML samples, with passive

 RUNX1::RUNX1T1 and NPM1^c-mutated AMLs.

Table S10: Normalized RNA-Seq reads for differentially-expressed genes between human healthy donor CD34⁺ cells and human *NPM1^c*-mutated AML samples, with passive *RUNX1*::*RUNX1T1* and *CBFB*::*MYH11* AMLs.

Table S11: Human RNA-Seq samples

Table S12: Human AML immunofluorescence and Western blot samples

Repressor Cells		Туре	Species	Details	Ref
SIN3A	COS-7	Kidney fibroblast cell line	Cercopithecus aethiops	Co-transfected RUNX1 CBFB::MYH11 GAL4 fusion	(2, 3)
	ME-1	CBFB::MYH11 leukemia cell line	Homo sapiens	Endogenous	(3, 4)
	COS-7	Kidney fibroblast cell line	Cercopithecus aethiops	Co-transfected HDAC8 and CBFB::MYH11	(3)
HDAC8	32Dcl2	Myeloid cell line	Mus musculus		(5)
	ME-1	CBFB::MYH11 leukemia cell line	Homo sapiens	Interaction not detected	(3)
	COS-7	Kidney fibroblast cell line	Cercopithecus aethiops	Co-transfected HDAC1 and CBFB::MYH11	(6)
HDAC1	ME-1	CBFB::MYH11 leukemia cell line	Homo sapiens	Co-transfected	(6)
	Primary AML	Cbfb::Myh11 knock-in	Mus musculus	Endogenous	(6)
BMI-1	ME-1	CBFB::MYH11 leukemia cell line	Homo sapiens	Endogenous	(4)
	HeLa	Cervical cancer cell line	Homo sapiens	Endogenous	(7)
RING1B	ME-1	CBFB::MYH11 leukemia cell line	Homo sapiens	Endogenous	(7)
	HeLa	Cervical cancer cell line	Homo sapiens	Endogenous	(7)

Table S13. Summary of reported interactions between CBFB::MYH11 and transcriptional

 repressors. None of these proteins were detected as CBFB::MYH11 interactors in primary

 mouse hematopoietic cells by TurboID proximity labeling (**Figure 2G**, **Table S4**).

Cells	Туре	Species	Method	Localization	Notes	Ref
COS-7	Kidney fibroblast cell line	Cercopithecus aethiops	N/C split	Both	GAL4-tagged CBFB::MYH11	(2)
NIH3T3	Fibroblast cell line	Mus musculus	IF N/C split	Nuclear Cytoplasmic Both	Requires RUNX1 Independent of RUNX1 Requires MYH11 C-terminus/ACD Sequesters RUNX1	(2, 8– 10)
Embryo nic fibrobla sts	Primary fibroblasts	Mus musculus	B-gal	Both	Cbfb::Myh11 knock-in at Cbfb locus Location inferred from RUNX1 location	(10)
Ba/F3	Pro-B cell line	Mus musculus	IF N/C split	Nuclear Both	RUNX1 required MYH11 C- terminus/ACD required	(11– 13)
32Dcl3	Myeloid cell line	Mus musculus	IF N/C split	Nuclear		(5, 11)
Jurkat	T cell line	Homo sapiens	IF	Cytoplasmic		(14)
K562	Eyrthro- leukemia cell line	Homo sapiens	IF	Cytoplasmic		(15)
AML	Primary AML	Homo sapiens	IF N/C split	Nuclear	Endogenous CBFB::MYH11	(16)
C2Cl2	Myoblast cell line	Mus musculus	IF	Cytoplasmic		(17)
293	Embryonic kidney	Homo sapiens	IF	Nuclear and cytoplasmic		(18)

Table S14. Summary of CBFB::MYH11 subcellular localization reported by

immunofluorescence (IF) or nuclear-cytoplasmic fractionation and Western blotting (N/C split) organized by cell type. Note that nuclear-cytoplasmic fractionations have reported nuclear CBFB::MYH11 in cell lines with verified cytoplasmic CBFB::MYH11 by IF, attributed to precipitation of CBFB::MYH11 aggregates with nuclei (10).

Supplemental Video S1: 3D reconstruction of murine hematopoietic cell expressing CBFB::MYH11-GFP. Transduced cells were spun onto coverslips and allowed to recover normal shape overnight to minimize flattening artifacts. Cells were then stained for DAPI (blue), CBFB::MYH11-GFP (direct GFP imaging), and RUNX1 (red); CBFB::MYH11-GFP overlap with RUNX1 is shown in yellow. Serial confocal images were obtained, then reconstructed into a 3D video using Volocity software (Quorum Technologies).

Supplemental Video S2: 3D reconstruction of murine hematopoietic cell expressing CBFB^{N104A}::MYH11-GFP. Transduced cells were spun onto coverslips and allowed to recover normal shape overnight to minimize flattening artifacts. Cells were then stained for DAPI (blue), CBFB^{N104A}::MYH11-GFP (direct GFP imaging), and RUNX1 (red). Serial confocal images were obtained, then reconstructed into a 3D video using Volocity software (Quorum Technologies).

SUPPLEMENTARY METHODS

Proteomics Data Processing: Unprocessed data from the mass spectrometer were converted to peak lists using Proteome Discoverer (version 2.1.0.81, Thermo-Fischer Scientific). The MS2 spectra from peptides with +2, +3 and +4 charge states were analyzed using Mascot software(19) (Matrix Science, London, UK; version 2.5.1). Mascot was set up to search against a custom non-redundant database of mouse proteins (16,997 entries, based on mouse proteome download from Uniprot March 2021). The digestion enzyme was trypsin with a maximum of 4 missed cleavages allowed. The searches were performed with a fragment ion mass tolerance of 50 ppm and a parent ion tolerance of 25 ppm. Carbamidomethylation of cysteine was specified in Mascot as a fixed modification. Deamidation of asparagine, deamidation of glutamine, pyro-glutamate formation from n-terminal glutamine, acetylation of protein N-terminus and oxidation of methionine were specified as variable modifications. Peptides were filtered in Scaffold (version 5.2.1, Proteome Software Inc., Portland, OR) at 1% false-discovery rate (FDR) by searching against a reversed protein sequence database and a minimum of 2 peptides were required for protein identification.

WORKS CITED

1. Cancer Genome Atlas Research Network, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. *N Engl J Med.* 2013;368(22):2059–2074.

2. Lutterbach B, et al. The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. *Proc Natl Acad Sci U S A*. 1999;96(22):12822–12827.

3. Durst KL, et al. The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. *Mol Cell Biol*. 2003;23(2):607–619.

4. Mandoli A, et al. CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. *Leukemia*. 2014;28(4):770–778.

5. Qi J, et al. HDAC8 Inhibition Specifically Targets Inv(16) Acute Myeloid Leukemic Stem Cells by Restoring p53 Acetylation. *Cell Stem Cell*. 2015;17(5):597–610.

 Richter LE, et al. HDAC1 Is a Required Cofactor of CBFβ-SMMHC and a Potential Therapeutic Target in Inversion 16 Acute Myeloid Leukemia. *Mol Cancer Res*. 2019;17(6):1241–1252.

7. Cordonnier G, et al. CBFβ-SMMHC Affects Genome-wide Polycomb Repressive Complex 1 Activity in Acute Myeloid Leukemia. *Cell Rep.* 2020;30(2):299-307.e3.

8. Wijmenga C, et al. Core binding factor beta-smooth muscle myosin heavy chain chimeric protein involved in acute myeloid leukemia forms unusual nuclear rod-like structures in transformed NIH 3T3 cells. *Proc Natl Acad Sci U S A*. 1996;93(4):1630–1635.

9. Lu J, et al. Subcellular localization of the alpha and beta subunits of the acute myeloid leukemia-linked transcription factor PEBP2/CBF. *Mol Cell Biol*. 1995;15(3):1651–1661.

10. Adya N, et al. The Leukemic Protein Core Binding Factor β (CBF β)–Smooth-Muscle Myosin Heavy Chain Sequesters CBF α 2 into Cytoskeletal Filaments and Aggregates. *Mol Cell Biol.* 1998;18(12):7432–7443.

11. Cao W, et al. CBF beta-SMMHC, expressed in M4Eo AML, reduced CBF DNA-binding and inhibited the G1 to S cell cycle transition at the restriction point in myeloid and lymphoid cells. *Oncogene*. 1997;15(11):1315–1327.

12. Cao W, et al. The core binding factor (CBF) alpha interaction domain and the smooth muscle myosin heavy chain (SMMHC) segment of CBFbeta-SMMHC are both required to slow cell proliferation. *J Biol Chem.* 1998;273(47):31534–31540.

13. Kummalue T, Lou J, Friedman AD. Multimerization via its myosin domain facilitates nuclear localization and inhibition of core binding factor (CBF) activities by the CBFbeta-smooth muscle myosin heavy chain myeloid leukemia oncoprotein. *Mol Cell Biol.* 2002;22(23):8278–8291.

14. Kanno Y, et al. Cytoplasmic Sequestration of the Polyomavirus Enhancer Binding Protein 2 (PEBP2)/Core Binding Factor α (CBF α) Subunit by the Leukemia-Related PEBP2/CBF β -SMMHC Fusion Protein Inhibits PEBP2/CBF-Mediated Transactivation. *Mol Cell Biol.* 1998;18(7):4252–4261.

15. Liu P, et al. CBFB-MYH11 Fusion Sequesters RUNX1 in Cytoplasm to Prevent DNMT3A Recruitment to Target Genes in AML. *Front Cell Dev Biol.* 2021;9:1807.

16. Liu PP, et al. Identification of the chimeric protein product of the CBFB-MYH11 fusion gene in inv(16) leukemia cells. *Genes Chromosomes Cancer*. 1996;16(2):77–87.

17. Tanaka Y, et al. The chimeric protein, PEBP2 beta/CBF beta-SMMHC, disorganizes cytoplasmic stress fibers and inhibits transcriptional activation. *Oncogene*. 1998;17(6):699–708.

15

18. Zhao L, et al. The C-terminal multimerization domain is essential for leukemia development by CBFβ-SMMHC in a mouse knockin model. *Leukemia*. 2017;31(12):2841–2844.

19. Perkins DN, et al. Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis*. 1999;20(18):3551–3567.