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Recent investigations have clearly demonstrated
that enhancement or repression of nucleic acid syn-
thesis is an obligatory concomitant of the physio-
logical response of plants to plant growth regulators.
Thus the regulation of cell elongation in sovbean
hypocotyl by indole-3-acetic acid (IAA) accompanie:*s
and is dependent on RNA synthesis (10). 2,4-Di-
chlorophenoxyacetic acid (2,4-D) stimulates synthe-
sis of ribosomal RNA (11). The gibberellins en-
hance messenger-like RNA synthesis in barley
endosperm (22) and both DNA synthesis in and
DNA content of non-dividing cells of lentil epicotyl
(14). On the other hand, DNA synthesis has been
reported to be suppressed by application of 2,4-D to
peanut cotyledon (3,4) and of dormin to duckweed
(21). In the present investigation we find that
2,4-D and 1AA, but not gibberellic acid inhibit DNA
synthesis by E. coli DNA polymerase supported by
free DN A, chromatin or nucleohistone prepared from
pea embryo. The range of concentrations at which
the inhibition occur suggest that interference with
DNA synthesis may play a role in the toxic or
herbicidal effects of these plant growth regulators.

DNA polymerase, prepared according to a modi-
fication (18) of the method Richardson et al. (17)
through step 7, had a specific activity of 800 units
per mg of protein using “activated” DNA as primer
and about 180 with calf thymus DNA as primer.
The chromatin fraction of both dwarf pea (var.
Progress No. 9) and normal pea (var. Alaska)
were prepared from 40 hour embryonic axes accord-
ing to the procedure of Huang and Bonner (8).
Nucleohistone was prepared from the chromatin
fraction by shearing and differential centrifugation
(2). Chromatin can serve as primer for both RN A
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and DNA polymerases, but only DNA polymerase
will utilize nucleohistone as primer in a limited
DNA in witro synthesis (8,18,19). TIsolation of
native uncomplexed DNA from the chromatin frac-
tion and characterization of these DNA fractions
have been previously described (2,18). FEach ml
of the DNA polymerase reaction mixture contained:
potassium phosphate buffer pH 7.2, 40 pmoles ;
MgCl,, 4 pmoles; 2-mercaptoethanol, 0.6 wmole ;
deoxynucleoside triphosphates of guanosine, thymi-
dine, cytidine and adenosine (*H-labeled. Schwarz.
10 pc/umole), 0.02 umole each: DNA polvmerase,
1.3 units (calf thymus DNA as primer). The
primer concentrations in nucleotide equivalents of
DNA (18) were 0.02, 0.29, 0.10, and 0.20 pmole
per ml for DNA, nucleohistone, pea chromatin and
dwarf pea chromatin, respectively. DNA svnthe-
sized was measured by the incorporation of 3H-
dAMP into perchloric acid-insoluble material (18).
“Enzyme after” controls were run. The rates are
presented as mumoles of DNA synthesized [dAMP
incorporated X 3.6 (18)] per ml reaction mixture
per 30 minutes at 37°. The plant growth regulators
were obtained from Cal Biochem.

Figure 1 shows the effect of adding 2,4-D, 1A A
and GA to DNA polvmerase reaction mixtures,
Both 24-D and 1AA inhibit E. coli DNA poly-
merase. The inhibition is manifested in the presence
of DNA, nucleohistone, or chromatin primers.
When calculated on the basis of percentage inhibi-
tion, inhibition by both 24-D and TAA was most
efficient in the presence of chromatin and least
efficient in the presence of free DNA. Thus in the
presence of (.15 mm 24-D, the interpolated per-
centage inhibition with DNA. nucleohistone and
chromatin as primers are 40, 51, and 81, respectively.
Similarly, in the presence of 0.5 mm TAA the corre-
sponding percentage inhibitions were 33, 48, and 38,
respectively.

It is not possible from the data presented to
ascertain the nature of the variation of the different
inhibitory effects in the presence of these primers,
On the basis of simple Michaelis kinetics, differences
in K,, and K; values, but not in initial primer
concentration, could account for the variations. It
has been suggested that some plant growth regula-
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Fic. 1. Effect of the oconcentration 24-dichloro-
phenoxyacetic acid (@), indole-3-acetic acid () and
gibberellic acid (half-closed circle) on E. coli DNA poly-
merase with DNA, nucleohistone and chromatin of nor-
mal peas and the chromatins of dwarf pea as primers.

tors may act as allosteric effectors of DNA poly-
merase (21). On the other hand, the IAA inhibition
may be due, as in the case of the indole-derived anti-
biotic mitomycin (23), to formation of a polvmerase-
resistant complex with DNA. The inhibition by
24-D may be related to the specific inhibition of
in vivo DNA synthesis by phenethyl alcohol (1).
Are the data on the inhibition by 2,4-D and TAA
pertinent to the physiological action of plant growth
regulators? The inhibition by TAA occurs at con-
centrations several orders of magnitude greater than
concentrations at which growth regulator effects and
nucleic acid synthesis enhancement are manifested.
Thus the interpolated millimolar concentrations of
TAA for 50 9, inhibition with DNA nucleohistone
and chromatin are 2.1, 1.1 and 0.7, respectively.
[nhibition of DN A polymerase by 2,4-D appeared
to be substantial in a concentration range of about
1 order of magnitude (10™#-10* M) lower than the
range in which TAA was effective. This is still
much higher than the concentrations (10 *=107 M)
at which 24-D, when applied to plants, stimulates
growth. It is however in the same range of con-
centration found for the inhibition of DNA syn-
thesis. Thus, at 1.25 X 10 M 24-D caused a
12 9, inhibition of DNA synthesis in peanut cotyle-
don as measured by the incorporation of 32P (3).
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Although the molecular basis of herbicidal action
has been the subject of a great deal of speculation
and controversy (5,7,12), only recently have sug-
gestions been forwarded that DNA polymerase in-
hibition may be involved (3,13,18). It should be
pointed out that it may be necessary to apply these
herbicides in a concentration range a few orders of
magnitude greater than those used in these experi-
ments in order to attain comparable levels at their
putative locus of action, presumably nuclear DNA.
We suggest that the inhibition of DNA polymerase
by very high concentrations of auxins may in part
be responsible and lead to their herbicidal effects.
Thus inhibition of chloroplast DNA polymerase
(20) could lead to accumulation of phosphate esters
(15), higher metabolic rates and chlorosis (16).

Gibberellic acid did not, within experimental
error (= 59,) influence the activity of DNA- or
nucleohistone-supported DNA  polymerase. With
normal pea chromatin as primer there appeared to
be a barely perceptible increase at concentrations
between 1072 M and a slight inhibition at about
102 M. In the presence of dwarf pea chromatin
a 25 9, increase in polymerase activity was observed
at 10"t M gibberellic acid. It is of interest to note
that gibberellin applied at concentrations of about
3 X 10* M promotes a 35 9% enhancement of DNA
synthesis in elongating, non-dividing cells of lentil
epicotyl (14). Some, but not all, sex steroids have
been reported to cause small (ca. 10 9) stimulation
of mammalian DNA polymerase (6). On the other
hand, synthesis of DNA-like RNA in isolated nuclei
of dwarf peas was enhanced as much as 100 % in
the presence of 10 % M gibberellic acid (7).
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