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associated with disease and
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challenging. We have identified

specific regulatory elements in 30

UTRs that are enriched for variants

that impact gene expression or

phenotype and have developed a

tool specifically designed to

interpret 30 UTR variants.
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ARTICLE

Regulatory features aid interpretation
of 30UTR variants

Lindsay Romo,1,* Scott D. Findlay,2 and Christopher B. Burge2,*
Summary
Our ability to determine the clinical impact of variants in 30 untranslated regions (UTRs) of genes remains poor. We provide a thorough

analysis of 30 UTR variants from several datasets. Variants in putative regulatory elements, including RNA-binding protein motifs, eCLIP

peaks, and microRNA sites, are up to 16 times more likely than variants not in these elements to have gene expression and phenotype

associations. Variants in regulatory motifs result in allele-specific protein binding in cell lines and allele-specific gene expression differ-

ences in population studies. In addition, variants in shared regions of alternatively polyadenylated isoforms and those proximal to polyA

sites are more likely to affect gene expression and phenotype. Finally, pathogenic 30 UTR variants in ClinVar are up to 20 times more

likely than benign variants to fall in a regulatory site. We incorporated these findings into RegVar, a software tool that interprets regu-

latory elements and annotations for any 30 UTR variant and predicts whether the variant is likely to affect gene expression or phenotype.

This tool will help prioritize variants for experimental studies and identify pathogenic variants in individuals.
Introduction

Despite the ubiquity of exome sequencing in modern hu-

man genetics, our ability to determine the clinical impact

of genetic variants remains limited. The average person

has 20,000 variants in their exome, most of which are

rare in the population.1 The effect of rare variants in cod-

ing regions can be predicted by their impact on protein

amino acid composition.2–4 However, many variants in

the ClinVar variant database are noncoding variants of un-

certain significance.5 The impact of these variants is diffi-

cult to predict due to our incomplete knowledge of the

function of noncoding regions.

The 30 untranslated region (30 UTR) comprises the bulk

of noncoding sequences present in exomes and is impor-

tant for regulation of messenger RNA (mRNA) processing,

stability, translation, and localization. Sequence-specific

RNA-binding proteins (RBPs) interact with cognate RNA

motifs at specific 30 UTR positions.6 Such RBPs often recruit

effector proteins to the mRNA that can alter transcript sta-

bility, translational efficiency, and intracellular mRNA

localization.7 Altered transcript stability and translation

impact protein abundance, while altered transcript locali-

zation can impact protein function.7 Recognition of poly-

adenylation signals (PASs) within 30UTRs directs cleavage

and polyadenylation of the mRNA transcript. Many

30UTRs contain more than one functional PAS, and alter-

native polyadenylation (APA) yields transcripts of different

lengths containing different sets of RBP and microRNA

(miRNA) target sites.8 miRNAs are small noncoding RNAs

that bind to 30 UTRs when complexed with proteins in

miRNPs.9 Binding is mediated primarily by complemen-

tarity between the 30 UTR target and nucleotides 2–7 or
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2–8 of the miRNA called the seed sequence. miRNA bind-

ing decreases transcript stability or represses translation.10

RBP motifs in the 30 UTR can be predicted from

in vitro binding studies using RNA Bind-n-Seq (RBNS),

RNACompete, or other assays or can be identified in cells

via enhanced crosslinking and immunoprecipitation

(eCLIP).11,12 miRNA sites can be predicted in silico from

base complementarity and sequence conservation or

can be identified in cells using crosslinking and

sequencing.13,14 Variants in the 30 UTR, especially those

that disrupt RBP interactions, miRNA binding, or cleavage

and polyadenylation, are likely to impact mRNA function

and may be deleterious, potentially contributing to

disease.

Several metrics have been developed to predict the path-

ogenicity of noncoding variants.15–20 However, these met-

rics don’t take into account the unique regulatory features

of 30 UTRs, such as APA, RBP interactions, or miRNA bind-

ing. More general methods that may implicate 30 UTR var-

iants include expression quantitative trait loci (eQTLs),

which link variants to gene-expression changes, and

genome wide association studies (GWASs), which link var-

iants to phenotypes.21–24 However, these methods don’t

suggest mechanisms, detect association rather than causal-

ity, and can only interrogate common variants. Experi-

mental methods, such as massively parallel 30 UTR reporter

assays, can address molecular functions of variants, with

the caveats that variants are assayed in artificial genomic

contexts and are over expressed.25,26 Saturation genome

editing can generate possible genomic variants in clinically

important regions, with clonal cell lines used to assess phe-

notypes.27 Though effective in identifying pathogenic var-

iants, this method is laborious and expensive.
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Exome and genome sequencing are becoming less

expensive and more rapid, but data interpretation remains

the limiting step. For many individuals, exome or genome

sequencing results in a diagnosis that alters clinical man-

agement and can be lifesaving.28,29 More general and

accessible methods of variant characterization could there-

fore be highly impactful. We propose that 30 UTR variants

that disrupt (or create) specific types of regulatory elements

are more likely to alter function and contribute to disease,

aiding in the identification and interpretation of patho-

genic 30 UTR variants.

Here, we show that single-nucleotide variants (SNVs) in

locations that overlap RBP motifs, eCLIP peaks, and

miRNA sites are both more evolutionarily conserved and

more likely than other variants to be associated with

phenotypic or gene-expression changes. Many of these

variants are causal, as they are enriched for allele-specific

RBP binding in cell lines and allele-specific gene-expres-

sion differences in population studies. eQTL variants in po-

tential regulatory elements are more likely to be GWAS

hits, and pathogenic 30 UTR variants in ClinVar are more

likely to fall in a regulatory element than benign variants.

We also show that variants in certain 30 UTR regions, e.g.,

proximal to polyA sites, are more likely to be linked to

gene expression changes or phenotypes. Finally, we pro-

vide a high-throughput R package, RegVar, which assesses

regulatory elements and annotations associated with any

30 UTR variant(s) of interest and predicts whether the

variant is likely to affect gene expression or phenotype.

We expect the program will help prioritize variants for

experimental studies and identify thousands of pathogenic

variants.
Material and methods

eQTL processing
eQTL variant call files fine-mapped using the deterministic

approximation of posteriors method (DAP-G) were downloaded

from the GTex project (https://storage.cloud.google.com/adult-

gtex/bulk-qtl/v8/fine-mapping-cis-eqtl/GTEx_v8_finemapping_

DAPG.tar) and intersected with terminal 30 UTRs using BEDTools,

as defined by the region from the GENCODE stop codon to the

most distal polyA Database peak.24,30–32 Because many variants

in 30 UTRs (and elsewhere) are in linkage disequilibrium, it can

be difficult to discern causal variants. Fine-mapping is a statistical

method to distinguish the effects of variants in linkage disequilib-

rium blocks.33 Fine-mapping eQTLs or GWAS hits results in a pos-

terior inclusion probability (PIP) for each variant that represents

the likelihood that each is causal of expression differences or phe-

notypes.34 For each variant-tissue combination, only the tissue

with the highest PIP was used, except for the transcript expression

analysis (see below).

GWAS processing
Sum of single effects (SuSiE) fine-mapped UK Biobank GWAS

variant call files were downloaded from the Finucane lab

(https://www.dropbox.com/s/cdsdgwxkxkcq8cn/UKBB_94traits_

release1.1.tar.gz?dl¼0) and intersected with 30 UTRs, as
The America
above.35 All variant-phenotype combinations were considered

in analysis.
Identifying variants in putative 30 UTR regulatory

elements
30 UTRs were defined as above. To identify variants in putative

RBP motifs, reference/alternative alleles and their surrounding

genomic sequence were processed with RBPamp.36 Variants over-

lapping an RBNS motif with an affinity of >0.33 of the ideal

motif were considered to be in RBP motifs. Alternate alleles over-

lapping a motif with an affinity of 0.66 or more compared to the

ideal motif were considered preserving, and alternate alleles that

caused the motif affinity to drop below 0.33 compared to the

ideal were considered disrupting. To identify variants in eCLIP

peaks, variants were intersected with eCLIP coordinates down-

loaded from the Encyclopedia of DNA Elements (ENCODE)

(https://www.encodeproject.org/search/?type¼Experiment&assay_

title¼eCLIP&files.file_type¼tsv).12 For Figure 3A, we considered

RBPs with at least fifty variants in peaks to allow sufficient power

to detect PIP differences. RBPamp eCLIP-Proximal (ReP) sites

were defined as motifs matching the highest affinity RBPamp

motif in the vicinity of each of the eCLIP peaks. Variants in

possible conserved family miRNA sites and their seed types and

site conservation were defined by TargetScan (https://www.

targetscan.org/cgi-bin/targetscan/data_download.vert80.cgi).13
Annotation of 30 UTR variants
PolyA signals/sites and 30 UTR isoformswere identified from aggre-

gate 30-seq data generated from multiple tissues and cell lines

(http://cbio.mskcc.org/leslielab/ApA/atlas/#).37 Calling of polyA

sites and removal of peaks from genomic polyA priming was per-

formed on 30-seq data as described previously.38 We considered

variants proximal to polyA sites if they fell within 50 nucleotides

of a 30-seq peak. The relationship between distance to polyA site

and PIP becomes nonsignificant in regression models for variants

more than 50 nucleotides away. Shared regions of APA isoforms

were regions proximal to the first polyA site. Partially shared re-

gions were between the first and penultimate polyA site, whereas

unique regions were distal to the penultimate polyA site.
Conservation
Variants were merged with conservation information

from PhastCons 100-way scores to identify conserved

(PhastCons > 0.5) or non-conserved (PhastCons < 0.5) variants

(https://bioconductor.org/packages/release/data/annotation/html/

phastCons100way.UCSC.hg38.html).39 For miRNA sites, the

TargetScan conservation designation was used.13
Statistical analysis
The proportion of causal variants in an element (the fraction with

a PIP of greater than 0.25) was calculated using pairwise propor-

tion z tests. The proportions causal for variants in elements was

compared to that for variants not in elements using a Fisher’s exact

test. When comparing PIPs, a paired Wilcoxon rank-sum test was

used. For odds ratios, a Fisher’s exact test was used to determine

confidence intervals and significance. For the generalized linear

model, we used a binomial distribution to model a binary score

(GWAS or eQTL PIP greater or less than/equal to 0.5). Goodness

of fit was assessed via Hosmer-Lemeshow test. All p values were

corrected using the false discovery rate method.
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eQTL expression analysis
The relative expression of transcripts with the alternate versus refer-

ence allele was determined by the transcript normalized effect size

(NES) from GTex.24 The NES is the slope of the eQTL regression

line comparing expression of transcripts with the alternative and

reference alleles; more positive NES values indicate higher gene

expression in individuals with the alternative allele and vice versa.24

Each PIP-tissue combination was considered for every eQTL.

Binding Estimation of Allele-specific Protein-RNA

(BEAPR) analysis
All variants with heterozygous genotypes in eCLIP peaks in K562

and HepG2 cells, as well as their predicted eCLIP allele specificity

as defined by BEAPR analysis, were kindly provided by the Xiao

lab (personal communication).40 Only 30 UTR variants were consid-

ered, and variants in RBPmotifs (with reference allele affinity>0.05

of alternate allele) matching the eCLIP RBPs (defined as above) were

compared to variants only in eCLIP peaks but not in motifs.

Expression control
To control APA results for gene expression, HepG2 and K562 RNA

sequencing data was downloaded from ENCODE (https://www.

encodeproject.org/rnaget-report/?type¼RNAExpression).12 The

fraction of causal eQTL variants was compared between genes

with various numbers of canonical APA isoforms but nonsignifi-

cant differences in mean transcripts per million (TPM) expression.

ClinVar analysis
Variant call files were downloaded from ClinVar (https://ftp.ncbi.

nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz) and inter-

sectedwith 30 UTR coordinates/annotations and putative regulato-

ry elements as above.5 Only variants with known clinical impact

(pathogenic or benign) were considered.

CADD scores
Raw as well as scaled Combined Annotation Dependent Depletion

(CADD) scores for all gnomAD variants were downloaded from the

CADD website (https://krishna.gs.washington.edu/download/

CADD/v1.6/GRCh38/gnomad.genomes.r3.0.snv.tsv.gz) and inter-

sected with eQTL variants.15,41 The rawCADD scores of variants in

putative regulatory elements were compared to those for controls.

RegVar
The development version of the RegVar R package is available for

download on GitHub at https://github.com/RomoL2/RegVar. The

RegVar tool characterizes user-provided 30 UTR variants by their

regulatory features as described. A variant is predicted to be an

eQTL or GWAS hit if its log-odds are greater than 0.01 (eQTL) or

0.0075 (GWAS) using our logistic regression model (see statistical

analysis). These thresholds maximize sensitivity and specificity.

Gene annotation
Disease-associated genes were defined as the union of Blekhman

2008 and Berg 2013 and downloaded from GitHub (https://

github.com/QingboWang/gene_lists).42,43

TIA1 cytotoxic granule associated RNA binding protein

(TIA1)-knockdown gene-expression analysis
GC-corrected RNA sequencing data from before and after TIA1

shRNA knock down in K562 and HepG2 cells was downloaded
352 The American Journal of Human Genetics 111, 350–363, Februar
from ENCODE (https://www.encodeproject.org/experiments/

ENCSR694LKY/and https://www.encodeproject.org/experiments/

ENCSR057GCF/).12 Genes with TIA1 eCLIP peaks or ReP sites

were identified via RegVar and then intersected with the TIA1

knockdown dataset.

In vitro allele parallel reporter assay
Fourpairs of 101nucleotide 3ʹUTR fragments consisting of reference

or variant allelesþ/� 50 bases of flanking sequence were ordered in

oPoolsOligo Pool format (IDT) and cloned into amodifiedversionof

the pmirGLO (Promega) downstream of a GFP open reading frame

via BsaI sites introduced by site-directed mutagenesis (Agilent). The

plasmid library was transfected into human embryonic kidney

(HEK)293cellsusingLipofectamine3000 (LifeTechnologies) andto-

tal RNAwas collected 48 h later using the RNeasymini kit (Qiagen).

Plasmid RNA was reverse transcribed with a gene-specific primer

(50GCATTCTAGTTGTGGTTTGTCCA30) and Superscript IV (Life

Technologies). Libraries were amplified, and two replicates of each

sample were uniquely dual indexed using custom primers. RNA

andplasmidDNAinput read counts for each fragmentwereobtained

using IlluminaMiseq. For each variant, the alt: ref variant activity is

the odds ratio calculated as (RNAalt/DNAalt)/(RNAref/DNAref).

These data are published in aggregate in Findlay et al.44
Results

Identification of causal 30 UTR variants

We developed an analysis pipeline to identify features that

might differentiate 30 UTR variants that impact gene

expression or phenotype (Figure 1). We used three sources

of 30 UTR variants: fine-mapped eQTLs identified by GTEx

(82,903 variants), fine-mapped GWAS hits from the UK

Biobank (174,065 variants), and variants with heterozy-

gous genotypes in eCLIP peaks (2,856 variants).22,24,40

Fine-mapping is a statistical method that yields a PIP for

each eQTL or GWAS hit representing the likelihood that

each is causal for the observed association.33,34

Variants were first annotated by APA isoform location and

then intersected with putative regulatory elements. The spe-

cificcategoriesof elements studied includedRBP-bindingmo-

tifs from in vitro studies, eCLIP peaks, ReP sites, and miRNA

sites (see material and methods).11–13,37 Here, we defined

ReP sites for RBPs with both in vitro and in vivo binding data

as the highest-affinity motif for the RBP in the vicinity of

each of its eCLIP peaks.11,12 To determine whether variants

in specific regulatoryelementor annotationcategoriesprefer-

entially impact gene expression or phenotype, we compared

the PIP for variants located in these elements versus controls.

Allele-specific eCLIP binding events were used to assess

whether variants in motifs altered RBP binding.40

30 UTR variants in putative regulatory elements are

associated with altered gene expression

We hypothesized that variants in RBP motifs and/or eCLIP

peaks often impact transcript expression by altering binding

of regulatory RBPs. Overall, most eQTL variants have low

fine-mapped PIP values (Figure S1). However, we found

that high-PIP eQTLs are slightlymore likely thannon-eQTLs
y 1, 2024
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Figure 1. Variant processing pipeline schematic
We compared the probability that eQTLs and GWAS hits affect gene expression (eQTLs) or phenotype (GWAS hits) for variants in eCLIP
peaks, RBP motifs, and various 30 UTR annotation categories. We compared the likelihood of overlapping an RBP motif for variants with
and without allele-specific eCLIP binding. SNV, single nucletoide variant; eCLIP, enhanced crosslinking and immunoprecipitation;
RBNS, RNA Bind-n-Seq; PIP, posterior inclusion probability; RBP, RNA binding protein.
to be located in an in vitro-derived RBPmotif, over four times

more likely to be in an eCLIP peak, andover nine timesmore

likely to be in a ReP site (Figure 2A). These observations sup-

port our hypothesis that each of these classes of elements is

enriched for variants that alter expression. Variants located

in eCLIP peaks and ReP sites also have significantly higher

PhastCons 100-way conservation scores than controls even

after matching for gene-expression level, providing further

evidence that these classes are enriched for regulatory func-

tion (Figure 2B).45

We considered the proportion of eQTL variants with

PIP>0.25 (i.e., variants at least 25% likely toalter expression)

as a summary statistic, which we call ‘‘proportion causal.’’

Although the precise PIP cutoff used is somewhat arbitrary,

repeating our key analyses using different PIP thresholds

yielded similar results (Figure S2). We found that eQTLs in

RBPmotifs and those ineCLIPpeakshadahigherproportion

causal than variants outside of these elements, and that var-

iants in RBPmotifsweremore likely to be causal if conserved

(Figure 2C). Unfortunately, the number of eQTL variants in

ReP sites was too low to perform a similar analysis.

We hypothesized that variants in miRNA target sites

typically disrupt miRNA binding, resulting in increased

mRNA levels. Indeed, high-PIP eQTLs are over twice as

likely to fall in conserved miRNA sites than non-eQTL var-

iants (Figure 2D). miRNAs with greater complementarity to

target transcripts (longer seed matches: 8mer > 7mer-

m8 > 7mer-a1) exert stronger regulatory effects.13 We

found that eQTLs in conserved 8mer sites of miRNAs in

broadly conserved families have three times higher propor-

tion causal than controls (Figure 2E).

30 UTR variants in putative regulatory elements likely

cause expression changes

To determine whether variants in miRNA sites increase

gene expression as expected, we compared the NES
The America
of causal (PIP > 0.25) eQTLs that disrupt miRNA motifs

to those outside of predicted regulatory elements.

The NES measures the magnitude and direction in

which eQTLs change gene expression.24 Variants pre-

dicted to disrupt conserved miRNA motifs predomi-

nantly have positive NES (p < 0.001, Wilcoxon rank-

sum test), suggesting a direct relationship between

disrupted miRNA binding and increased expression

(Figure 2F).

If variants in RBP motifs and eCLIP peaks commonly

alter gene expression, we would expect some to be

pathogenic. The CADD score is a metric that discrimi-

nates between benign and pathogenic variants based

on their evolutionary deleteriousness. We found that

variants in eCLIP peaks and RBP motifs have signifi-

cantly higher CADD scores (Figure S3). As CADD score

does not incorporate RBP motif or eCLIP information,

higher scores reflect other features of RBP motifs, such

as conservation and base composition. We found that

variants in eCLIP peaks, conserved miRNA sites, or

ReP sites are more likely to cause gene-expression

changes than controls even when comparing sets with

matched CADD scores (Figure 2G). Thus, considering

eCLIP, miRNA, and ReP information can substantially

add to the information in CADD scores for identifica-

tion of functional variants.

To test the idea that expression differences associated

with eQTLs in RBP motifs result from differential binding

of RBPs, we analyzed allele-specific eCLIP binding.40 Vari-

ants with heterozygous genotypes that exhibit allele-spe-

cific eCLIP enrichment are up to four times more likely

to be located in a motif for the corresponding RBP than

variants that do not (Figure 2H). This observation supports

that the gene-expression changes associated with variants

in eCLIP peaks and RBP motifs noted above commonly

result from changes in RBP binding.
n Journal of Human Genetics 111, 350–363, February 1, 2024 353
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Figure 2. 30 UTR variants in RBP motifs, eCLIP peaks, and miRNA sites are associated with gene-expression changes
(A) Odds of an eQTL variant being in predicted RBP sites versus control variants (PIP < 0.001) as minimum PIP increases; odds ratio is
shown with 95% confidence intervals.
(B) Comparison of PhastCons score distributions for eQTL variants in ReP sites (green), eCLIP peaks (purple), RBP motifs (yellow), or
outside of known regulatory elements (black).
(C) Proportion causal (PIP > 0.25) with 95% confidence intervals for eQTL variants not in RBP motifs or eCLIP peaks compared to var-
iants in RBP motifs or eCLIP peaks.
(D) Odds of an eQTL variant being in predicted miRNA site versus control variants (PIP < 0.001) as minimum PIP increases, as in (A).
(E) Proportion causal with 95% confidence intervals for variants not inmiRNA sites compared to variants inmiRNA sites of different seed
types.
(F) Variant NES (fromGTEx) on gene expression for high-confidence (PIP> 0.9) eQTLs disruptingmiR motifs (green), or not in RBP/miR
motifs or eCLIP peaks (gray).
(G) Proportion causal with 95% confidence intervals (left) for variants not in RBPmotifs or eCLIP peaks compared to variants in ReP sites
or eCLIP peaks, matched for raw CADD score (right).
(H) Odds of variants with heterozygous genotypes in HepG2 and K562 cells being in an RBP motif for decreasing allele-specific eCLIP
binding p values, with 95% confidence intervals.
For all panels, *p < 0.01.
Enrichment for RBP motifs and eCLIP peaks among

eQTLs is driven by a subset of RBPs

Wenext examinedwhichRBPs are responsible for increased

PIPs among eQTLs in eCLIP peaks. RBPs with high-PIP

eQTLs in eCLIP peaks included those known to bind the

30 UTR to alter mRNA stability, such as polyA binding pro-
354 The American Journal of Human Genetics 111, 350–363, Februar
tein cytoplasmic 4 (PABPC4) and La ribonucleoprotein 4

(LARP4).46,47 In contrast, RBPs with fewer high-PIP eQTLs

in eCLIP peaks included transcription factors or repressors,

such as BCL2 associated transcription factor 1 (BCLAF1), as

well as primarily nuclear proteins, such as heterogeneous

nuclear ribonucleoprotein L (HNRNPL), KH-type splicing
y 1, 2024
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Figure 3. Certain RBP motifs and eCLIP peaks are enriched among eQTLs and alter expression
(A) Proportion causal (with 95% confidence interval) for variants in eCLIP peaks for different RBPs, for all RBPs with R50 variants in
eCLIP peaks. The proportion causal for variants not in any eCLIP peak was 0.05 (dashed line). *p < 0.01.
(B) Mean PIP for eQTLs in eCLIP peaks but not RBP motifs (y axis) versus mean PIP for eQTLs in RBP motifs but not eCLIP peaks, for all
RBPs in both datasets. Shown is the regression line with Pearson correlation coefficient.
(C) Distribution of RBPs among ReP sites at different minimum eQTL PIP cutoffs. Shown are RBPs representing at least 0.1% of all ReP
sites.
(D) Variant NES (from GTEx) on gene expression for high-confidence (PIP > 0.9) eQTLs not in RBP motifs or eCLIP peaks (gray), and for
high-confidence eQTLs predicted to disrupt (red) or preserve (blue) HNRNPK motifs. *p < 0.01.
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Figure 4. 30 UTR variants in RBP motifs, eCLIP peaks, and miRNA sites are associated with phenotypes
(A) Comparison of PhastCons score distributions for GWAS variants in eCLIP peaks, RBP motifs, or no known regulatory elements.
(B) Proportion causal (proportion of GWAS hits with PIP > 0.25) with 95% confidence intervals for variants not in RBP motifs or eCLIP
peaks compared to variants in RBP motifs or eCLIP peaks.
(C) As in (B), but for variants in a single motif or CLIP peak compared to variants in more than one motif or peak in genes matched by
gene expression.
(D) Odds of a GWAS variant being in predictedmiRNA site versus control variants (PIP< 0.001) asminimumPIP increases; shown is odds
ratio with 95% confidence intervals.
(E) Proportion causal with 95% confidence intervals for variants not inmiRNA sites compared to variants inmiRNA sites with increasing
predicted seed strength.
(F) Proportion causal with 95% confidence intervals (left) for variants not in RBPmotifs or eCLIP peaks compared to variants in ReP sites
or eCLIP peaks, matched for raw CADD score (right).
For all panels, *p < 0.01.
regulatory protein (KHSRP), and KH domain containing

RNA binding (QKI) (Figure 3A). Mean PIP values were posi-

tively correlated across RBPs for variants in RBP motifs and

those in eCLIP peaks (Figure 3B), suggesting that these two

subsets of variants function similarly, with some RBPs im-

pacting expression more often than others.

To further explore which RBPs may most commonly

impact expression, we examined ReP sites among high-

PIP eQTLs and found that several motifs, including those

for heterogenous nuclear ribonucleoprotein K (HNRNPK),

are highly represented (Figure 3C). HNRNPK is a multi-

functional RBP involved in both transcriptional and

post-transcriptional mRNA processing that binds 30 UTRs

at C-rich motifs to alter stability of target mRNAs.48–50

We found that high-confidence eQTLs that disrupt

HNRNPK motifs are associated with higher transcript

expression than those that preserve motifs or are located

outside of HNRNPK motifs (Figure 3D). This observation

suggests that most HNRNPK binding tends to destabilize

mRNAs in tissues assessed for eQTLs.
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30 UTR variants in putative regulatory elements likely

result in phenotypic changes

Recent studies have demonstrated limited overlap between

GWAS hits and eQTLs and found that many genes with

eQTLs are under weak selective constraint and are likely

less functionally important than genes with GWAS

hits.51 Therefore, it was of interest to explore the extent

to which eQTL variants that change gene expression by

disruption of RBPmotifs have phenotypes. To assess the ef-

fect of 30 UTR variants on phenotypes, we analyzed GWAS

data generated by the UK Biobank and fine-mapped by the

Finucane lab.22 Overall, GWAS variants have lower PIPs

than eQTL variants after fine-mapping. Otherwise, the dis-

tribution of GWAS and eQTL variants along the 30 UTR was

similar and uniform (Figure S1).

GWAS hits in eCLIP peaks had much higher conserva-

tion scores than those outside of eCLIP peaks, even those

in an RBPmotif (Figure 4A). To determine whether variants

in regulatory elements result in phenotype changes, we

compared PIPs for variants in RBP motifs, eCLIP peaks,
y 1, 2024
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Figure 5. Variants in single or common
30 UTRs more often impact gene expres-
sion and phenotype
(A) Proportion causal (proportion of eQTL
variants with PIP greater than 0.25) with
95% confidence intervals for variants in
various 30 UTRs and proximal (<50 nucle-
otides) or distal to polyA sites.
(B) Proportion causal with 95% confidence
intervals for eQTL variants in genes with
various numbers of canonical APA iso-
forms (total genes include 5,335 APA and
3,360 single isoform).
(C) Proportion causal for GWAS variants in
various 30 UTRs, as in (A).
(D) Proportion causal for GWAS variants in
genes with various numbers of APA iso-
forms, as in (B).
For all panels, *p < 0.01 compared to left-
most group, and error bars represent 95%
confidence intervals.
and controls. GWAS hits in these elements have higher

PIPs compared to variants outside of these sites

(Figure 4B). (Too few ReP sites overlapped to permit similar

analyses of this class.) Conservation has a larger impact on

GWAS variant PIP than on eQTL PIP (Figure 4B), likely

because variants that affect phenotype are under stronger

selection than those that merely affect gene expression,

consistent with recent studies comparing GWAS hits and

eQTL variants.51 Also potentially contributing to observed

differences in PIP is the fact that most GWAS traits are cat-

egorical whereas eQTLs are continuous.

Recent research has suggested that variants in ‘‘RBP

hubs’’—locations where multiple RBPs bind–have lower

allele frequencies compared to variants in single eCLIP

peaks. However, these studies did not control for the bias

in eCLIP data toward genes with higher expression, a prop-

erty that is associated with higher conservation.52 Regard-

less, we found that variants located in multiple overlap-

ping eCLIP peaks or RBP motifs are slightly more likely to

be causal of phenotypes than those in single peaks/motifs,

even after controlling for gene expression (Figure 4C), sup-

porting that such variants are enriched for function. Bind-

ing of multiple RBPs to a region may increase the likeli-

hood that the variant alters binding of at least one

protein ormay enrich for sites that havemultiple or impor-

tant functions.

Variants in miRNA sites are also enriched for association

with GWAS phenotypes. As PIP increases, GWAS variants

are up to sixteen times more likely to be located in
The American Journal of Human Gen
conserved miRNA target sites. How-

ever, GWAS variants are actually

mildly depleted from non-conserved

miRNA sites, suggesting that such

sites rarely impact phenotype

(Figure 4D). Similar to eQTLs, GWAS

hits in miRNA sites have higher

PIPs, especially those in 8mer seeds,

which have up to 15-fold higher pro-

portion of causal variants than vari-
ants outside of regulatory elements (Figure 4E). We did

not see a significant association between the number of

distinct miRNA family targets overlapping a variant and

the proportion of high-PIP GWAS variants, but statistical

power was limited (Figure S4). Concerns have been raised

regarding the accuracy of computational methods for pre-

dicting miRNA sites and the ability of these predicted sites

to impact phenotype.53 Our results suggest that computa-

tionally predicted miRNA sites, especially conserved tar-

gets for conserved miRNA families, are strongly enriched

for causal variants affecting both gene expression and

phenotype.

As observed for eQTLs, we found that GWAS hits in

eCLIP peaks and RBP motifs have significantly higher

CADD scores (Figure S3). Variants in eCLIP peaks,

conserved miRNA sites, or ReP sites are more likely to be

causal, even when CADD scores are matched, again sup-

porting the argument for supplementing CADD scoring

with regulatory information to improve discrimination

of pathogenic variants (Figure 4F).

Effects of 30 UTR variants on expression and phenotype

depend on APA isoforms

APA can impact mRNA localization, translation, and/or

steady-state transcript expression.8 We found that the pro-

portion causal was 2-fold higher for eQTLs proximal to

polyA sites (within 50 nt) than for eQTLs further from

the PAS, formajor isoform categories (Figure 5A). eQTL var-

iants within 50 nt of a polyA site tend to occur in more
etics 111, 350–363, February 1, 2024 357



proximal APA isoforms compared to other eQTLs (Figure

S5A). eQTLs falling in this region where core PAS motifs

are located likely impact expression via changing the loca-

tion or efficiency of cleavage and polyadenylation.8

The eQTL enrichment in single 30 UTR isoform genes,

especially proximal to PAS, is not unexpected. A variant

in a regulatory element in a single 30 UTR gene, especially

a PAS-proximal variant, may be more likely to affect

expression than a similar variant in an APA gene because

single-isoform UTRs tend to be shorter and have fewer reg-

ulatory elements, whereas APA genes tend to have more

redundant regulatory elements and PAS.8 Thus, a variant

in a single-isoform gene is more likely to disrupt a unique

regulatory element or PAS, whereas a variant in an APA

gene is more likely to disrupt a redundant regulatory

element or PAS. Another possibility that is supported by

prior studies is that single-UTR genes are more likely to

be regulated by expression changes from RBP and miRNA

binding, whereas multi-UTR genes are more likely to be

regulated by isoform abundance changes from APA.37

Therefore eQTLs, which are variants that impact expres-

sion, are more likely to be identified in single-UTR genes,

as these genes are more likely than APA genes to be regu-

lated by expression changes.

We further examined which subsets of RBPs may be

responsible for the higher proportion of causal eQTLs

proximal to PAS. As expected, we found motifs for RBPs

known to bind near PAS such as LARP4 are enriched

among PAS-proximal eQTLs, and motifs for RBPs known

to bind distal to PAS, such as UPF1 RNA helicase and

ATPase (UPF1), are depleted Figure S6(Figure S5B).

We also observed that the PIPs of eQTLs are higher in

genes with single 30 UTR isoforms and in common regions

of 30 UTRs from APA genes than in ‘‘partially shared’’ (alter-

native) UTR regions of the same genes (Figure 5A). The

likely explanation is that presence in all transcripts from

a gene versus only some transcripts increases the magni-

tude of the impact on gene expression for common types

of variants. Considering the relationship between eQTL

PIP and the number of APA isoforms, we found that vari-

ants in genes with fewer APA isoforms have a higher pro-

portion of causal variants, likely for similar reasons

(Figure 5B). These findings persisted after controlling for

30 UTR length, distance to the stop codon, and gene expres-

sion, and the number of eQTL variants per gene did not

vary substantially with APA isoform number Figure S5

(Figure S6). Unlike eQTLs, GWAS hits did not have higher

PIPs near polyA sites; however, we do see a trend toward

higher PIP for GWAS variants in common regions or in 30

UTRs with a single PAS (Figure 5C). Variants in genes

with fewer APA isoforms also have higher GWAS PIPs, as

seen for eQTLs (Figure 5D).

Regulatory features help to identify pathogenic 30 UTR
variants

Here, we have shown that conserved variants in RBP and

miRNA sites within common 30 UTR regions of genes
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with fewer APA isoforms are more likely to impact gene

expression and phenotype. These features can be incorpo-

rated into a generalized linear model to predict whether a

variant is an eQTL or GWAS hit based on its regulatory fea-

tures (Figure S7). The model coefficients for each feature

represent the increase in the odds of a variant being a

causal GWAS hit or causal eQTL (with PIP > 0.5) if the

variant overlaps the feature. As expected, conservation

score has the largest predictive value for GWAS hits,

whereas proximity to PAS is most predictive for eQTLs

(Figure 6A). Similar to recent studies, we found limited

overlap between eQTLs and GWAS hits.51 This limited

overlap may be due to differences in discovery methods

and gene features, as discussed by Mostafavi et al.51 In

addition, many genes are expected to tolerate differences

in expression without impacting phenotype; thus, most

eQTLs are not expected to be GWAS hits. For our variants

overall, only 17% of GWAS hits were supported by eQTL

evidence. We hypothesized that incorporation of regulato-

ry information can improve overlap between GWAS and

eQTLs. Indeed, we found that 35% of 6,764 eQTLs in

eCLIP peaks and all 140 eQTLs in conserved miRNA sites

were GWAS variants (PIP > 0.001, Figure 6B). Additionally,

whereas only 39% of eQTLs are GWAS variants, nearly 50%

of variants in regulatory elements are GWAS variants (data

not shown). Thus, regulatory elements are enriched for

both eQTL and GWAS variants and explain more pheno-

typic differences than eQTLs alone, likely because some

regulatory elements affect aspects of mRNA function

(translation, localization, etc.) that are not reflected in

gene-expression measurements. Incorporation of regulato-

ry features significantly improves the overlap between

GWAS and eQTL variants compared to prior analyses.51

We show that regulatory analysis of noncoding variants

using several orthogonal methods aids in identification of

causal eQTLs and GWAS hits, many of which are expected

to be pathogenic. Of conserved 30 UTR variants with

known clinical significance in the ClinVar database, vari-

ants in RBP motifs are 3 times more likely and variants in

eCLIP peaks are over 20 times more likely than variants

not in regulatory elements to be pathogenic (Figure 6C).

(Too few ClinVar variants were located in conserved

miRNA sites to permit analysis.) Conservation had little

if any impact on these findings as the degree of conserva-

tion between these ClinVar variant subsets was similar

(Figure S8).

Our results indicate that regulatory analysis of 30 UTR

variants can aid in prioritization of variants for functional

analysis and detection of pathogenic variants in individ-

uals. To this end, we developed a program, RegVar, that

characterizes 30 UTR variants by their annotations, conser-

vation, and predicted regulatory elements (Figure 6D). This

tool will enable prioritization of 30 UTR variants for func-

tional analysis, potentially contributing to improved diag-

nosis and treatment. Many variants in ClinVar are located

in UTRs, and most of these variants are of uncertain signif-

icance.5 Prioritization of specific variants for experimental
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Figure 6. Characterization of 30 UTR variants into their annotations and regulatory elements helps prioritize variants for functional
analysis and disease classification
(A) Exponential of logistic regression model coefficients with 95% confidence intervals. The model independent variable is binary (PIP
greater or less than/equal to 0.5), and *p < 0.05.
(B) Intersection of eQTL variants in different putative regulatory elements with GWAS hits; dots are weighted by intersect size and error
bars are 95% confidence intervals.
(C) Odds of a ClinVar 30 UTR variant in RBP motifs or eCLIP peaks being pathogenic versus variants not in a predicted regulatory
element; shown is odds ratio with 95% confidence intervals.
(D) RegVar workflow and example output for two ClinVar 30 UTR variants of uncertain clinical significance (genomic coordinates are
in hg38).
(E) Odds of a pathogenic ClinVar 30 UTR variant being predicted by RegVar to be an eQTL versus all 30 UTR gnomAD variants, with 95%
confidence intervals.
(F) Odds of a pathogenic ClinVar 30 UTR variant being in a predicted regulatory element (miRNA site, RBPmotif, or eCLIP peak) versus all
30 UTR gnomAD variants, with 95% confidence intervals.
(G) Odds of a gnomAD 30 UTR variant predicted by RegVar to be an eQTL to be in a disease-associated gene versus 30 UTR gnomAD var-
iants not predicted to be eQTLs, with 95% confidence intervals.
(H) Difference in reference versus alternative allele reporter RNA expression in cell lines for select ClinVar variants. Confidence intervals
are standard deviation of two technical replicates.
For all panels except (A), *p < 0.01.
analysis will be beneficial to the thousands of people who

have no genetic diagnosis despite whole-exome or whole-

genome sequencing.

Variants causing disease typically have low allele fre-

quency in the general population as a result of natural se-

lection, whereas the GWAS and eQTL analyses have statis-

tical power only to detect variants of relatively high

frequency. RegVar enables functional analysis of both com-

mon and rare variants due to its descriptive and predictive

abilities. Any single 30 UTR variant or variant call format

file can be supplied to RegVar, and RegVar will describe po-

tential functional impacts of each variant based on

sequence (RBP motifs, miRNA seeds), functional datasets

(GWAS, eCLIP, and eQTLs), and clinical annotations
The America
(ClinVar). In addition, RegVar will predict whether the

variant is likely to be an eQTL or GWAS variant based on

our regression model (Figure 6A).

We provide several analyses to demonstrate the ability of

RegVar to discriminate functional and/or pathogenic vari-

ants from variant datasets. RegVar identified significant

enrichment for predicted eQTL variants among known

pathogenic variants in ClinVar compared to gnomAD var-

iants, which are expected to be benign (Figure 6E). In addi-

tion, pathogenic ClinVar variants are over 20 times more

likely than gnomAD variants to fall in a regulatory element

identified by RegVar (Figure 6F). Finally, for the subset of

gnomAD variants that fall in 3’seq gene annotations, vari-

ants that are predicted to be eQTL or GWAS variants are
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more likely to occur in disease-associated genes than those

that are not predicted to impact expression or phenotype

(Figure 6G).

We selected several ClinVar variants that we character-

ized by RegVar to further illustrate its potential

(ClinVar variants c.*1622A>T [ClinVar: RCV000319698.5]

[GenBank:NM_007375.4(TARDBP)]; c.*1289A>T [ClinVar:

VCV000874917.4] [GenBank: NM_001033044.4(GLUL)];

c.*36A>G [ClinVar: VCV000879046.4] [GenBank: NM_

005445.4(SMC3)]; and c.*64T>C [ClinVar: VCV0

00883795.5] [GenBank: NM_001065.4(TNFRSF1A)].

All of these variants are predicted by RegVar to overlap

multiple regulatory sites. To test the variants for their abil-

ity to directly modulate transcript levels, a parallel reporter

assay was conducted via transfection of allelic pairs of frag-

ments for each variant in HEK293 cells (see material and

methods). RNA sequencing demonstrated allele-biased

expression for each variant (Figure 6H).

Variant RCV000319698.5 is a variant of uncertain signif-

icance for amyotrophic lateral sclerosis type 10 in the TAR

DNA binding protein (TARDBP) gene. This disease is known

to occur in an autosomal-dominant fashion due to haploin-

sufficiency.54 The variant is in a ReP site for heterogeneous

nuclear ribonucleoprotein C (HNRNPC), and is predicted

to disrupt motifs for far upstream element binding protein

3 (FUBP3), heterogeneous nuclear ribonucleoprotein C

like 1 (HNRNPCL1), heterogeneous nuclear ribonucleopro-

tein D like (HNRNPDL), RNA binding motif protein 15B

(RBM15B), TIA1, and tRNA selenocysteine 1 associated

protein 1 (TRNAU1AP). It is also in seeds for miR-4282

and miR-5096 and in a common region of a gene with

only two isoforms. The variant is predicted by RegVar to

be an eQTL. VCV000874917.4 is a variant of uncertain sig-

nificance for congenital brain dysgenesis due to glutamine

synthetase deficiency in the gene glutamate-ammonia

ligase (GLUL). It is in a TIA1 ReP site; in motifs for FUBP3,

HNRNPCL1, HNRNPDL, RBM15B, TIA, TRNAU1AP, and

ELAV like RNA binding protein 4 (ELAVL4); and in a miR-

5692 seed. It is in a common region of an APA gene and is

less than 50 nucleotides away from the nearest PAS.

VCV000879046.4 is a variant of uncertain significance

for Cornelia de Lange syndrome 3 in the structural mainte-

nance of chromosome 3 (SMC3) gene. This is an autosomal

dominant disease caused by haploinsufficiency, and SMC3

is intolerant to loss-of-function mutations.55 The variant

falls in a pumilio RNA binding family member 2 (PUM2)

ReP site, motif, and eCLIP peak. PUM2 is known to desta-

bilize RNA.56 There is higher expression of the alternative

allele compared to the reference allele in cells, as expected

for a variant that disrupts binding of a destabilizing RBP.

This variant is predicted by RegVar to be both an eQTL

and a GWAS variant, is highly conserved, is in the com-

mon region of a gene with two isoforms, and is less than

50 nucleotides to a PAS, all supporting its functionality.

VCV000883795.5 is a variant of uncertain significance

for tumor necrosis factor (TNF) receptor-associated peri-

odic fever syndrome in the TNF receptor superfamilymem-
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ber 1A (TNFRSF1A) gene. This is an autosomal dominant

disease, with haploinsufficiency as a mechanism. There is

higher expression of the alternative allele in cells, and

the variant disrupts a TIA1 site. To confirm that TIA1 is ex-

pected to destabilize target RNAs, we analyzed RNA

sequencing data from the ENCODE database before and af-

ter TIA1 knock down in HepG2 and K562 cells. As expected

for a destabilizing RBP, we found genes with TIA1 eCLIP

peaks exhibited increased expression after TIA1 knock

down in both cell lines (Figure S9A). In addition, genes

that exhibited differential expression after TIA1 knock

down were significantly enriched for TIA1 ReP motifs

(Figure S9B). TNFRSF1A itself exhibits a 1.3-fold increase

in expression after TIA1 knockdown.

These variants should be investigated as potentially

pathogenic, as in vitro data support their regulatory activ-

ity, and RegVar suggests several possible mechanisms of ac-

tion for each. These examples highlight the power of

RegVar to quickly analyze any 30 UTR variant and provide

possible mechanisms of pathogenicity, unlike more time-

intensive strategies, such as cellular assays.25 In addition,

as RegVar provides analysis of variants based on popula-

tion datasets and functional in vitro studies of variants in

their natural context, including eCLIP and RBNS, it avoids

false positives and negatives generated by these other

methods due to their reliance on overexpressed variants

in artificial genomic contexts.
Discussion

Characterization of noncoding variants is required to

expand the impact of exome and genome sequencing on

the clinical sphere. Here, we show that 30 UTR variants in

eCLIP peaks, RBP motifs, miRNA seed sites, and common

APA isoform regions proximal to polyA sites are associated

(often strongly) with gene expression changes, pheno-

types, and pathology.We provide a tool, RegVar, to help re-

searchers and clinicians prioritize noncoding variants for

functional analysis based on their location in regulatory el-

ements. RegVar can process many variants in parallel and

can be readily integrated into bioinformatic pipelines for

systematic variant annotation. We anticipate that this pro-

gram will be used to interpret the over 10,000 ClinVar var-

iants of uncertain significance in putative 30 UTR regulato-

ry elements.

Newmodels are being developed to predict whether var-

iants have cis-regulatory effects on gene expression or

phenotype.57–60 These models incorporate many variant

annotations, but have not incorporated RBP motif, miRNA

target, or eCLIP peak data. Our general linearized model

suggests that up to 10% more high-confidence GWAS

hits or eQTL variants can be explained with incorporation

of these features. Our findings will improve discrimination

of pathogenic variants, as we show that 30 UTR variants

with the same CADD score are more likely to affect gene

expression or phenotype if they fall in these regulatory
y 1, 2024



elements. In addition, our tool, RegVar, fills an important

unmet need in noncoding variant interpretation,

providing variant effect prediction.

Recent findings show that eQTLs are mostly found in less

constrained genes with simple regulatory architecture,

compared to GWAS hits, which are more likely to be found

in functionally important genes.51 This could suggest that

predicting variants that impact gene expression has limited

clinical utility. However, we found that eQTL variants in

regulatory elements are more likely to be GWAS hits, indi-

cating that including regulatory features into eQTL models

will help distinguish phenotypically important eQTLs.

Most individuals with undiagnosed rare diseases have

exome rather than genome sequencing performed despite

the increased power of genome sequencing.61 This is

largely due to limitations on interpretation of noncoding

variants.62 Our findings argue that clinical sequencing

should extend further into the 30 UTR to improve patho-

genic variant detection. This could be done by extending

exome capture slightly without significantly increasing

the cost of sequencing. Recently published guidelines for

interpretation of noncoding variants require querying

multiple databases.63 We propose noncoding variants

should be systematically assessed using RegVar and re-

ported with sequencing results. RegVar will decrease the

workload for noncoding variant interpretation by incorpo-

rating multiple datasets into one user-friendly tool.

Despite the advances our study makes into interpreta-

tion of noncoding variants, there remain some limitations.

Our findings are based on GWAS and eQTL variants, which

are more common in the population than Mendelian dis-

ease-causing variants. In addition, GWAS hits and eQTL

variants are mostly of low PIP after fine-mapping, suggest-

ing that most variants in these datasets are not truly causal.

However, we found that pathogenic ClinVar variants, like

eQTLs and GWAS hits, are more likely to be in RBP motifs

and eCLIP peaks, suggesting our results are generalizable to

rare, pathogenic variants. We anticipate that our work will

result in targeted experimental studies of individual vari-

ants that will aid in disease diagnosis.

Our data provide a thorough analysis of 30 UTR variants

from several computational and population-wide datasets.

We found variants that exhibit allele-specific binding in

cells are more likely to be in predicted motifs, suggesting

these computational methods predict in vivo regulation.

We limitedour study to the 30 UTRbecause this is an impor-

tant regulatory region ignored by current methods of

variant effect prediction; however, RBPs, and to a more

limited extentmiRNAs, also bind other noncoding regions

such as introns or 50 UTRs. Our results may extend to these

areas as well, and these will be important future areas of

study as variants in these regions also remain difficult to

interpret.
Web resources

GitHub, RegVar R package, https://github.com/RomoL2/RegVar
The America
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Supplemental information can be found online at https://doi.org/
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SUPPLEMENTAL FIGURES 

 
 
Figure S1: Comparison of eQTL variant and GWAS hit distribution along 3'UTR (A), proximity to nearest 
polyA signal (B), and PIPs (C). Vertical lines represent means for each distribution. 
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Figure S2: eQTL findings are robust even with a more stringent summary statistic PIP threshold. A 
Proportion of eQTLs with PIP greater than a minimum cutoff for variants not in RBP motifs or eCLIP peaks 
compared to variants in RBP motifs, eCLIP peaks, and ReP sites, with 95% confidence intervals. B Fraction 
causal (proportion of eQTLs with PIP>0.5) for variants not in RBP motifs or eCLIP peaks compared to variants 
in RBP motifs or eCLIP peaks. C Fraction causal for variants not in miRNA sites compared to variants in miRNA 
sites with increasing predicted seed strength. D Fraction causal for eQTL variants in genes with various numbers 
of canonical alternatively polyadenylated (APA) isoforms. 
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Figure S3: Variants in putative regulatory elements have higher 
CADD scores. Comparison of raw combined annotation dependent 
depletion (CADD) score distributions for eQTLs (A) or GWAS hits (B) in 
various putative regulatory elements versus controls.  

 
 

 
 
Figure S4: Trend towards higher PIP for 
variants predicted to disrupt more than one 
miRNA site.  Fraction causal with 95% 
confidence intervals for GWAS variants not in 
miRNA sites compared to variants in increasing 
number of sites. 
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Figure S5: Comparison of eQTLs proximal versus distal to PAS demonstrates enrichment for known polyA 
binding proteins. A distribution of eQTLs distal (>50 nt, left panel) and proximal (<50nt, right panel) to PAS (x 
axis is isoform ordinal number divided by total isoforms per gene). Differences are nonsignificant. B 
Comparison of fraction of PAS-distal versus PAS-proximal eQTLs falling in RBP eCLIP sites, with 95% confidence 
intervals. * indicates p<0.01. 
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Figure S6: eQTL findings are not due to stop proximity, 3'UTR length, number of eQTLs per gene, or gene 
expression. A Fraction causal (proportion of eQTL variants with PIP greater than 0.25) with 95% confidence intervals 
for variants in various 3'UTR regions (left), after matching distance to canonical stop codon (right). B Distribution of 3'UTR 
length (left) with fraction causal and 95% confidence intervals for eQTL variants in genes with various numbers of 
canonical alternatively polyadenylated (APA) isoforms (middle left) after matching gene 3'UTR length (middle right). On 
right is the distribution of number of eQTLs per gene for genes with varying isoform numbers. C Distribution of gene 
expression (left) with fraction causal and 95% confidence intervals for eQTL variants in genes with various numbers of 
canonical alternatively polyadenylated (APA) isoforms (middle) after matching gene expression (right). 
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Figure S7: Performance of generalized linear models. 
Logistic regression analysis was performed to predict GWAS 
and eQTL variants (PIP>0.5). A variant was predicted to be 
an eQTL or GWAS hit if its log-odds was greater than 0.01 
(eQTL) or 0.0075 (GWAS). These thresholds maximized 
sensitivity and specificity. Goodness of fit was assessed via 
Hosmer-Lemeshow Test with a chi squared of 1.0204 and p-
value of 0.9981 for the eQTL model and a chi squared of 
13.262 and p-value of 0.1032 for the GWAS model. 

 

 
 
Figure S8: enrichment for pathogenic 
variants in regulatory elements is not 
solely due to conservation. Shown is mean 
phastCons score with standard deviation for 
variants in each category. 
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Figure S9: TIA1 binding sites regulate gene expression via TIA1 binding. A Genes with TIA 
eCLIP peaks exhibit increased expression after TIA1 knockdown in cell lines. B Genes that are 
differentially expressed after TIA1 knockdown are significantly enriched for TIA1 motifs. 
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