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to identify driver mutations
within oncogenic pathways

Xinjun Wang,1,* Caroline Kostrzewa,1 Allison Reiner,1 Ronglai Shen,1 and Colin Begg1,*
Summary
Distinguishing genomic alterations in cancer-associated genes that have functional impact on tumor growth and disease progres-

sion from the ones that are passengers and confer no fitness advantage have important clinical implications. Evidence-based

methods for nominating drivers are limited by existing knowledge on the oncogenic effects and therapeutic benefits of specific var-

iants from clinical trials or experimental settings. As clinical sequencing becomes a mainstay of patient care, applying computa-

tional methods to mine the rapidly growing clinical genomic data holds promise in uncovering functional candidates beyond

the existing knowledge base and expanding the patient population that could potentially benefit from genetically targeted thera-

pies. We propose a statistical and computational method (MAGPIE) that builds on a likelihood approach leveraging the mutual ex-

clusivity pattern within an oncogenic pathway for identifying probabilistically both the specific genes within a pathway and the

individual mutations within such genes that are truly the drivers. Alterations in a cancer-associated gene are assumed to be a

mixture of driver and passenger mutations with the passenger rates modeled in relationship to tumor mutational burden. We

use simulations to study the operating characteristics of the method and assess false-positive and false-negative rates in driver nomi-

nation. When applied to a large study of primary melanomas, the method accurately identifies the known driver genes within the

RTK-RAS pathway and nominates several rare variants as prime candidates for functional validation. A comprehensive evaluation of

MAGPIE against existing tools has also been conducted leveraging the Cancer Genome Atlas data.
Introduction

It is nowwell known that cancer is a genetic disease that de-

velops through the accumulation of somatic mutations.

When individual tumors are subjected tomutation analysis,

countless mutations are identified. A major challenge is to

identify genes that carry driver mutations, the ones that

are pivotal in producing uncontrolled tumor growth. Such

genes areknownasdriver genes.Anumberof computational

methods and tools have been developed, falling within

several overarching categories. MutSigCV,1 DriverML,2

ActiveDriver,3 and OncodriveFML4 are frequency-based ap-

proaches that target genes exhibitingmutation rates surpass-

ing anticipated levels; OncoDriverCLUST5 and MSEA6

operate ashotspot-basedmethods, excelling in thedetection

of gain-of-function mutations within specific protein do-

mains; DawnRank7 and DriverNet8 are network-based

methods aiming to uncover clusters of driver genes through

leveraging prior knowledge of pathways, proteins, or genetic

interactions.

Another major technical concept that has influenced

research in this field is mutual exclusivity. If somatic muta-

tions in two (or more) genes tend not to occur together in

the same tumor, then this is evidence that the disruption

of the genes involved are leading to similar effects. Pres-

ence of such mutual exclusivity is strong evidence that

the genes are cancer-associated genes.9 Important findings

on mutual exclusivity through existing large-scale
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sequencing studies include EGFR and KRAS in lung adeno-

carcinoma (LUAD)10–12 and the RTK-RAS pathway primar-

ily involving BRAF, NRAS, and NF1 in melanoma.13,14

Studies of this phenomenon usually involve searching

for evidence of mutual exclusivity of genes in a ‘‘pathway’’

of genes that are believed to possess related effects. A num-

ber of authors have studied this problem from a statistical

perspective, developing several techniques. The methods

called Dendrix15 and Mutex16 define criteria or score met-

rics based on searching for themutually exclusive gene sets

using a greedy approach. MEMo9 and gcMECM17 are based

on a search for mutually exclusive genes using graph or

network-based approaches. WeSME18 and FaME19 employ

computational-oriented methods that can scale up to

genome-wide analysis. CoMEt20 and WExT21 employ a

permutation-based test for mutual exclusivity. A method

by Szczurek et al.,22 MEGSA,23 DISCOVER,24 TiMEx,25

and MEScan26 utilize probabilistic model-based tests to

assess the significance of mutual exclusivity in a given

gene set.

Most of these methods focus on de novo search of gene

sets (from the around 22,000 genes in the human genome)

that display mutual exclusivity. In this article, we turn our

attention to leveraging the mathematical property of

mutual exclusivity for identifying probabilistically both

the specific genes within a pathway and the individual mu-

tations within such genes that are truly the drivers. The

evaluation of mutual exclusivity occurs within pre-defined
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pathways of genes, i.e., collections of genes that have been

shown in previous research to share biological functions.27

A major assumption is that, within any given pathway,

only one of the mutations observed can be the ‘‘driver’’

for that tumor, though there could be additional drivers

in other pathways.

We build our method around the likelihood function

developed by Hua et al.23 In their model, a mutation in a

given gene can represent either a driver or a passenger mu-

tation. Passenger mutations in this context represent

random, non-consequential background somatic muta-

tions that are a result of the genetic instability common-

place in tumor cells. We limit attention to non-synony-

mous mutations, except for the calculation of tumor

mutational burden (TMB), a confounding factor. The

global patterns of mutual exclusivity in the data allow

the model to identify the proportion of tumors that

possess a driver in the pathway based on the assumption

that the driver mutations are completely mutually exclu-

sive, i.e., a tumor can contain at most 1 driver in the

pathway under investigation. A test of the hypothesis

that this proportion is zero thus represents a test of mutual

exclusivity of the set of genes under consideration. By

applying this repeatedly to different subsets of genes in

the pathway, one can find the most significant subset,

and thus conclude that this subset of genes consists of

the drivers. Hua et al. made the assumption that the rela-

tive proportions of drivers versus passengers in each gene

have a common proportionality.23 In our approach, we

relax this assumption, allowing us to estimate the propor-

tions of driver mutations for each gene and then, through

Bayes’ rule, to determine probabilistically which muta-

tions in each tumor are drivers and which ones are passen-

gers. By mapping all of these probabilities, we can deter-

mine for which genes drivers predominate. Also, these

individual probabilities allow us to shed light on

which types of mutation within any given gene show up

as drivers frequently. These results are driven fundamen-

tally by the global empirical patterns of mutual exclusivity

in the dataset.

In summary we show that our method goes beyond

using statistical tests for mutual exclusivity to create a

framework for inferring probabilistically which genes

have the strongest evidence as drivers and which muta-

tions within these genes are specifically identified as

drivers. We show through detailed analysis of the RTK-

RAS pathway in a large sample of melanomas how the

method confirms the prominence of a small number of

recurring mutations in well-known genes in this pathway

and identifies some rare individual mutations that appear

to be important. We benchmark our method against seven

existing tools for driver-gene nomination, leveraging the

Cancer Genome Atlas (TCGA) data from 11 cancer sites

for a comprehensive evaluation under real-world sce-

narios. The method has been implemented in a Python

package named MAGPIE (mutual exclusivity analysis of

cancer-associated genes and variants and their probability
228 The American Journal of Human Genetics 111, 227–241, Februar
of being driver) and is available on GitHub at https://

github.com/tarot0410/MAGPIE.
Material and methods

Our data framework involves a set of N tumors, and the analysis is

restricted to a set of M genes in the pathway under consideration.

That is, the analytic framework is pathway specific. The data could

include sequencing of genes in other pathways, but analyses of

these other pathways would be conducted independently. That

is, any given tumor may have multiple driver genes, but a key

assumption is that there can only be one driver mutation in the

pathway under consideration.
MEGSA framework
We initially construct our strategy on the MEGSA (mutually

exclusive gene set analysis) likelihood-based analysis introduced

by Hua et al.23 Let xi ¼ ðxi1;.; xiMÞ denote the observed binary

mutation status of tumor i (i ¼ 1; .; N), where xij ¼ 1 if a

non-synonymous alteration is observed in the jth gene (j ¼ 1;

.; M) and 0 otherwise. Any observed mutation must be either

a driver mutation or a passenger mutation. Only one driver mu-

tation from the pathway is possible in a given tumor. As a result,

all driver mutations observed must be mutually exclusive, i.e., no

two drivers can occur in a given tumor. We define g (0 %g%1Þ
as the proportion of tumors in the study cohort that have a driver

mutation in the pathway under investigation. Let pj denote the

relative frequency of such tumors that possess a driver mutation

in the jth gene in the pathway with
PM

j¼1 pj ¼ 1 and 0% pj %1.

Independent of driver mutations, each gene has a constant pas-

senger mutation rate, denoted by pj for the j
th gene. The log likeli-

hood of the observed data is

logLðg;p;XÞ ¼
XN
i¼1

log

(
ð1 � gÞ

YM
j¼1

p
xij
j

�
1 � pj

�1� xij

þg
XM
j¼1

pjIfxij ¼1g
Y
ksj

p
xik
k ð1 � pkÞ1� xik

)
:

(Equation 1)

For the purpose of developing a statistical test of mutual exclu-

sivity, Hua et al. made the assumption that the relative fre-

quencies of driver mutations in each gene are proportional to

the passenger mutation rates, i.e., pjfpj. Thus, the log likelihood

is reduced to

logLðg;p;XÞ ¼
XN
i¼1

log

8>>><>>>:ð1 � gÞ
YM
j¼1

p
xij
j

�
1 � pj

�1� xij

þg
1PM

k¼1

pk

XM
j¼1

pjIfxij ¼1g
Y
ksj

p
xik
k ð1 � pkÞ1� xik

9>>>=>>>;:

(Equation 2)

To test the fundamental null hypothesis that there is no mutual

exclusivity in the pathway, a likelihood ratio test can be employed.

This is, in effect, a test of the hypothesis H0 : g ¼ 0 versus the

alternative ðH1Þ that g > 0, where the test statistic has a null dis-

tribution of 0:5c2
0 þ 0:5c2

1:
23
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Proposed approach
MEGSA is a powerful tool to quantify the overall mutual exclu-

sivity in the pathway or to select a subset of genes that reflect

mutual exclusivity most strongly. Although the method we pro-

pose in this article is adapted from the MEGSA framework, the

problem it solves is fundamentally different. Our method is

designed to identify specifically which tumors possess a driver

mutation and to identify the driver if more than one mutation

in the pathway is present. It is further able to identify which var-

iants within a given gene have the capacity to be driver variants.

We follow the model proposed in Equation 1. However, unlike

Hua et al. we do not assume pjfpj, a critical assumption in the

MEGSA approach. We further reformulate the likelihood into a

mixture model framework. Assume that the gene membership

of the driver mutation for tumor i in the study cohort is denoted

by zi ¼ ðzi0; zi1;.; ziM ). Tumors with zik ¼ 1; k > 0 have driver

mutations in the kth gene. Tumors with zi0 ¼ 1 do not possess

a driver mutation. We emphasize that zi is unobserved and

must be inferred. Let t ¼ ðt0; t1;.; tMÞ denote the vector of pro-

portions of tumors having each gene-specific driver mutation,

i.e., tk ¼ pðzik ¼ 1). Note that in this new notation tk represents

the absolute relative frequency of tumors with drivers in the kth

gene (or no driver in the case of k ¼ 0), while in the earlier no-

tation pj represents the corresponding relative frequency of the

presence of a driver in the jth gene among tumors that have

drivers in the pathway. Following a standard mixture model

framework, the log likelihood of the observed data is

logLðt;p;XÞ ¼
XN
i¼1

log

(XM
k¼0

tkfkðxijpÞ
)

(Equation 3)

where fkðxijpÞ ¼

8>>>>><>>>>>:

YM
j¼1

pj
xij ð1 � pjÞ1� xij ; k ¼ 0

xik

pk
xik ð1 � pkÞ1� xik

YM
j¼1

pj
xij ð1 � pjÞ1� xij ; k > 0

is the cluster-specific probability density function of xi.

Equations 3 and 1 are in fact equivalent. To be specific, t0 ¼
1 � g and tk ¼ gpk for k > 0. As before, g ¼ 1 � t0

quantifies the overall influence of a pathway, i.e., the propor-

tion of tumors with a driver mutation in the pathway,

while tk; k > 0, quantifies the relative frequency for

which gene k is the driver. One of the advantages of using a

mixture model framework is that tk
0s are defined both under

the null hypothesis of no driver mutations in the cohort (i.e.,

t0 ¼ 1 or g ¼ 0) and under the alternative (i.e., t0 < 1 or

g > 0: there exists evidence of a mutually exclusive pattern),

while for the MEGSA model the pj
0s are undefined under the

null hypothesis.

Parameters ftkg and fpjg can be estimated using the expecta-

tion-maximization (EM) algorithm.28 The complete data log like-

lihood is

logLðt;p;zjXÞ ¼
XN
i¼1

XM
k¼0

zik log
�
tkfkðxijpÞ

�
: (Equation 4)

In the E step, we compute the posterior probability wik ¼
pðzik¼ 1jxiÞ at the tth iteration:

w
ðtÞ
ik ¼ bt ðtÞk fk

�
xi

��bpðtÞ�PM
s¼0

bt ðtÞs fsðxijbpðtÞÞ
:

The America
In the M step, Equation 4 is maximized in terms of ftkg and fpjg
with wik fixed at w

ðtÞ
ik :

bt ðtþ1Þ
k ¼ W

ðtÞ
k

N
and bpðtþ1Þ

j ¼
PN
i¼1

xij
�
1 � w

ðtÞ
ij

�
N � W

ðtÞ
j

where W
ðtÞ
k ¼ PN

i¼1w
ðtÞ
ik .

In general, given initial estimates fbtð0Þk g and fbpð0Þ
j g, the EM algo-

rithm then iterates between E step and M step until the estimates

converge.
Adjustment for tumor mutational burden
Up to now, the model has been based on the assumption that

the passenger mutation rates fpjg are considered constant

across the set of tumors. In fact, this assumption is quite unre-

alistic since the overall TMB is known to vary widely across

tumors and is, in many oncologic settings, an influential prog-

nostic factor.29 To address this important potential confounder,

we extend the method to allow adjustment for the effect of

mutational burden in the model. Let yi denote the TMB score

for tumor i. We have elected to compute the raw TMB score

for each tumor by counting the total number of observed mu-

tations (including both synonymous and non-synonymous

mutations) among all sequenced genes and use a centered

log-scaled score as the input to the model. This represents the

overall propensity for mutations to occur in a specific tumor.

Due to this dependency, we now identify the passenger muta-

tion rates using fpijg rather than fpjg. In our later example

mutational burden is represented by the total number of muta-

tions observed across all genes that are genotyped, not just

those in the pathway under investigation. Since pij is bounded

by 0 and 1, a natural approach to adjust for mutational burden

is to use

logit
�
pij

� ¼ b0j þ b1yi; (Equation 5)

where b0j represents the baseline log odds of the passenger muta-

tion rate for the jth gene, and b1 measures the common influence

of mutational burden on the passenger mutation rate for all genes

in the pathway. Since we are primarily interested in estimating the

probabilities ftkg, which represent the relative frequencies for

which each gene is the driver, fb0jg and b1 are effectively nuisance

parameters in the model. The conditional data density for xi |yi is

p
�
xi

��yi� ¼
XM
k¼0

p
�
xi; zik¼ 1

��yi�
¼

XM
k¼0

p
�
xi

��yi; zik ¼ 1
�
p
�
zik¼ 1

��yi�: (Equation 6)

We assume zityi s.t. pðzik ¼ 1
��yiÞ ¼ pðzik ¼ 1Þ ¼ tk, and as a

result Equation 6 is reduced to

p
�
xi

��yi� ¼
XM
k¼0

tkp
�
xi

��yi; zik ¼ 1
�
: (Equation 7)

The log likelihood of the observed data adjusting for mutational

burden is

logLðt;b0;b1;X;YÞ ¼
XN
i¼1

log

(XM
k¼0

tkgk
�
xi

��yi; zik ¼ 1
�)

(Equation 8)
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where
gk
�
xi

��yi; zik ¼ 1;b0; b1

� ¼

8>>>>><>>>>>:

YM
j¼1

pij
xij
�
1 � pij

�1� xij ; k ¼ 0

xik

pik
xikð1 � pikÞ1� xik

YM
j¼1

pij
xij
�
1 � pij

�1� xij ; k > 0
is the cluster-specific probability density function of xi condi-

tional on yi and pij ¼ 1

1þe
�ðb0jþb1yi Þ. There are no analytical solutions

for bbðtþ1Þ
0j and bbðtþ1Þ

1 in the M step if using the EM algorithm. Thus,

we use limited-memory BFGS (L-BFGS)30 implemented in PyTorch

to minimize the negative log likelihood function and estimate

ftkg, fb0jg, and b1.
A statistical test to establish mutual exclusivity
Our proposed methodology seeks to identify drivers from a frame-

work of observed mutual exclusivity. However, before performing

such an analysis on a chosen pathway we propose first conducting

a statistical test of the null hypothesis of no mutual exclusivity,

i.e., a test of the hypothesis that g ¼ 0, or equivalently, t ¼
ðt0; t1; .; tMÞ ¼ ð1;0; .; 0Þ. In their original development of

the MEGSA model, Hua et al. derived an asymptotic likelihood ra-

tio test. Their limiting distribution depends crucially on the

assumption that the relative frequencies of driver mutations in

each gene are proportional to the passenger mutation rates, an

assumption we dropped as indicated earlier. Consequently, we

propose to compute the empirical p value by using a parametric

bootstrap approach.

Let q ¼ ðt;b0;b1Þ denote the parameters in our model. We

introduce the following bootstrap estimator for the restricted (un-

der null) and unrestricted settings, respectively.

~q ¼ arg max
q˛QH0

logLðqÞ; and bq ¼ arg max
q˛Q

logLðqÞ (Equation 9)

where Q ¼ Qt3Qb0
3Qb1 is the full parameter space and QH0

¼
fq ˛Q : t ¼ ð1;0;.;0Þg.
We propose the bootstrap likelihood ratio statistic

LR ¼ � 2ðlogLð~qÞ � logLðbqÞÞ (Equation 10)

as the test statistic for the null hypothesis.

To construct the test, we generate B bootstrap samples (algo-

rithm will be introduced later) denoted by XðbÞ;b ¼ 1;2;.;B. De-

noting by LR� the test statistic from the observed dataset and LRðbÞ

its value from the bth bootstrap dataset, the empirical p value is

p ¼
1þPB

b¼1 IfLRðbÞ RLR�g
1þ B

: (Equation 11)

The following data generation algorithm is employed both to

create the null distribution (when g ¼ 0Þ and to generate datasets

under positive levels of mutual exclusivity for our later simulations

ofmodel properties. (1) Generate the latent genemembership zi ¼
ðzi0; zi1;.; ziM) of the driver mutation in each tumor i (note that

zi0 ¼ 1;ci when we are generating a reference distribution under

the null hypothesis). Specifically, zij
g�i:i:d: Multinomialð1; tÞ where
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t ¼ ðt0; t1;.; tMÞ. Tumor i has a driver mutation in the kth gene

(k ¼ 1;.;M) if zik ¼ 1. Otherwise, it does not possess a driver mu-
tation and zi0 ¼ 1. (2) Generate the centered log-scale mutational

burden (yi) for each tumor i: yi
g�i:i:d: Nð0;sÞ. (3) Generate the individ-

ual mutations as xij ¼ 1 if zij ¼ 1 and xij � Binomialð1;pijÞ other-
wise, where pij is computed using Equation 5 with given fb0jg; b1
and yi. For simulating data replicates, s; fb0jg and b1 are pre-speci-

fied. For generating bootstrap data samples, we set b1 ¼ bb1, the esti-

mated b1 by fitting ourmodel to the observed data, and then solved

for b0j using the following equation

qj ¼ 1

N

XN
i¼1

pij ¼ 1

N

XN
i¼1

1

1þ e�ðb0jþb1yiÞ (Equation 12)

where qj denotes the overall mutation rate for jth gene in the

observed data. Equation 12 allows for the bootstrap samples to

maintain the association between pij and yi while controlling

the similar overall mutation rate for each gene. There is no

closed-form solution for b0j in Equation 12, so we solved for b0j
numerically using Newton’s method.
Identifying driver mutation for each tumor and specific

variants within a gene
For every tumor we seek to identify the drivermutation or to deter-

mine that there is no driver mutation in the pathway. This can be

inferred probabilistically from the posterior probabilities

computed through Bayes’ rule. In the absence of adjustment for

mutational burden the posterior probability that the mutation

in the kth gene (k > 0) in the pathway is the driver is

wik ¼ pðzik¼ 1jxiÞ ¼ btkfkðxijbpÞPM
s¼0

bt sfsðxijbpÞ : (Equation 13)

When k ¼ 0, Equation 13 provides the probability that tumor i

does not have any driver mutation in the pathway. If a tumor is

observed to have mutations in multiple genes, the most-likely

driver mutation can be determined using

z�i ¼ arg maxkwik: (Equation 14)

Similarly, the posterior probability under the scenario of adjust-

ing for mutational burden is

wik ¼ p
�
zik ¼ 1

��xi; yi
� ¼ btkgk�xi

��yi; bb0; bb1

�
PM
s¼0

bt sgs�xi

��yi; bb0; bb1

� : (Equation 15)

Further, we can gauge the relative influence of individual vari-

ants within genes as drivers by averaging these posterior probabil-

ities across the tumors in which the specific variant was observed.

Let xijðlÞ denote the mutation status (1 ¼ yes; 0 ¼ no) of variant l
y 1, 2024



from gene j in tumor i, where variant l is nested within gene j.

The observed mutation frequency for variant l (in gene j) is

NjðlÞ ¼
XN
i¼1

xijðlÞ; (Equation 16)

and the average posterior probability that variant l is a driver is

PjðlÞ ¼ 1

NjðlÞ

XN
i¼1

xijðlÞwij; (Equation 17)

a term we refer to as the ‘‘driver frequency.’’
Application of MAGPIE: The InterMEL study
The InterMEL study involves genomic sequencing of primary tu-

mors from individuals with stage IIA–IIIB melanomas. Data from

the InterMEL study serve as an illustrative example for demon-

strating the application of MAGPIE. The InterMEL study protocol

was approved by the institutional review boards (ethics commit-

tees) at each participating institution,material and data user agree-

ments are in place, and research has been conducted according to

the principles expressed in the Declaration of Helsinki. The need

for informed consent was waived by the ethics committees due

to the retrospective nature of the study.
Results

Weapply themethod to the InterMEL consortiumdataset of

early-stage melanoma tumors31,32 (Database of Genotypes

and Phenotypes [dbGaP] study accession: phs003099.v1.p1)

and conduct an analysis on the RTK-RAS pathway for an

illustration of how MAGPIE works and what it delivers. We

then apply the method to three different pathways within

11 different cancer sites from TCGA data and benchmark

its performance with several other existing methods. Lastly,

we explore, via simulations, the properties of the method.
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Figure 1. Illustration of the observed binary mutation status,
estimated posterior probability of drivermutation, and the distri-
bution of binary tumor mutational burden for the 18 genes with
the highest estimated driver frequency in the RTK-RAS pathway
Illustration of MAGPIE: Data from the InterMEL study

Our analysis is based on 495 tumor samples genotyped to

date through the InterMEL study. DNA samples were

sequenced at Memorial Sloan Kettering Cancer Center us-

ing the Integrated Mutation Profiling of Actionable Cancer

Targets, or MSK-IMPACT, a clinically validated and US

Food and Drug Administration (FDA)-approved hybridiza-

tion capture-based, next-generation sequencing assay

developed to guide cancer treatment.33,34 This involved

sequencing of 468 cancer-associated genes.

For our illustration of themethod, we focus solely onmu-

tations in the RTK-RAS pathway, the major known pathway

that influences the development of melanomas.14,35 The

MSK-IMPACT panel includes 38 genes from the RTK-RAS

pathway where the list of pathway genes are as defined by

Sanchez-Vega et al.27 It is well known that mutations occur

in melanomas frequently in several genes in this pathway,

most prominently the genes BRAF and NRAS. Mutations in

these two genes are almost alwaysmutually exclusive. How-

ever, mutual exclusivity has not been studied systematically

for other genes in this pathway. Also, hotspot mutations

occur very frequently at the 600th residue in BRAF (hereafter
The America
referred to as BRAF Val600 variant) and the 61st residue in

NRAS (hereafter referred to as NRAS Gln61 variant), but the

importance of mutations altering other residues is less clear.

The data reveal that 91% of the 495 tumors had a muta-

tion in the RTK-RAS pathway. However, our estimate ofbg ¼ 0.76 (p value ¼ 0.001) indicates that in only 76% of

the tumors is one of the mutations considered to be the

driver. TMB varies widely with a standard deviation of

1.1 for the log tumor burden and an estimated effect of

b1 ¼ 1.21. Figure 1 displays data (top) and model estimates

(bottom) for the 18 genes with the highest estimated

values of tj (proportion of tumors carrying a driver muta-

tion in gene j). Figure S1 displays the results for all 38

genes. The top panel displays a structured waterfall plot

of the observedmutations. The twomost frequently occur-

ring genes at the top of the figure, BRAF and NRAS, are

almost always mutually exclusive, the exceptions being

the 4 cases at the extreme left of the figure. It is further

noticeable that mutations in these genes frequently occur

in the absence of mutations in any of the other genes in

the pathway (see the right-most columns in the BRAF

and NRAS rows). This high degree of general mutual exclu-

sivity is the key pattern in the data that influences our

analysis, confirming a high probability of a driver for mu-

tations observed in these two genes. This is reflected in the

bottom panel of Figure 1 where the depth of the shade in-

dicates the strength of evidence that the mutation in

question is the driver. Quantitative details are provided

in Table 1, which displays the relative frequencies for

which mutations in the genes occur alongside the portion

of these occurrences that are flagged as drivers by our

method. This gene-specific driver frequency is the esti-

mated tj. Interestingly, the method suggests that NRAS is

the driver in all tumors involvingNRASmutations, notably

the 4 tumors in which BRAF and NRASmutations occurred

simultaneously. Moving down the gene list, the analysis

suggests that KIT mutations, which occur in about 5% of

tumors, is the driver about half of the time, NF1mutations

are drivers in about 1/4 of the 26% of tumors that harbor
n Journal of Human Genetics 111, 227–241, February 1, 2024 231



Table 1. Summary of the observedmutation frequency and the estimated driver frequency for each gene among the top genes ranked by
the estimated driver frequency in the RTK-RAS pathway from the InterMEL study

Gene Mutation frequency Driver frequency

BRAF 0.402 0.382

NRAS 0.196 0.196

NF1 0.261 0.069

KIT 0.051 0.026

FGFR4 0.091 0.010

KRAS 0.014 0.010

MAPK1 0.032 0.009

ALK 0.131 0.009

HRAS 0.026 0.008

JAK2 0.040 0.007

ERBB2 0.065 0.006

ERBB3 0.057 0.006

NTRK2 0.065 0.005

PTPN11 0.065 0.004

RIT1 0.024 0.004

MAP2K1 0.071 0.004

MAP2K2 0.046 0.003

IGF1R 0.004 0.002
NF1mutations, and that there is limited evidence of driver

status for the low-frequency genes. Although NF1 has a

relatively high mutation rate, our method downgrades its

importance as a driver gene because of its strong associa-

tion with high TMB, which is displayed in the bottom

panel of Figure 1 where a dark line indicates that the muta-

tional burden for that tumor is in the top 25th percentile.

In general, tumors with high mutational burden are less

likely to have a driver mutation identified after model

adjustment, but the final posterior probability vector for

each tumor computed with the estimated parameter values

also depends on other factors (e.g., the proportion of tu-

mors with mutation in a given gene that are singletons).

Table S1 summarizes the results for all 38 genes.

Finally, we illustrate results for individual variants

within driver genes. In Table 2, we provide the frequencies

and average posterior probabilities for each of the 48

distinct variants observed in BRAF. High probabilities are

generally assigned when the variant occurs as a singleton,

and lower probabilities are assigned when other variants in

the pathway occur. Very low probabilities occur when a

driver variant in a different gene is observed. Thus, the 4

variants at the bottom of this table are the variants (on

the extreme left in Figure 1) that occurred alongside an

NRAS mutation.

BRAF variants have been studied extensively and classi-

fied into a few major classes with varying potency in

oncogenicity based on differences in dimerization

requirement and RAS dependency (class 1 mutations are
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Val600 mutations that activate the pathway downstream

as monomers; class 2 comprises RAS-independent dimers

that activate kinase activity; class 3 variants show dimin-

ished kinase activity but signal as RAS-dependent di-

mers).36–39 Table 2 shows that the BRAF variants with

high estimated probability of being a driver (>90%)

include most of the functionally potent class 1 and class

2 variants. OncoKB is a widely popular evidence-based

variant annotation tool that integrates such known

biologic and oncogenic effects,40 which can provide

orthogonal evidence about the classifications. Notably,

the probabilities are generally higher for variants classified

as oncogenic by OncoKB. Furthermore, we observed

that c.1781A>C (GenBank: NM_004333.4) (p.Asp594Ala)

variant, despite not being classified as a BRAF class 1–3

mutation, exhibits a high estimated driver probability

of 0.92 and is categorized as oncogenic by OncoKB.

Other rare BRAF variants identified with high estimated

probabilities, such as c.1843G>A (p.Gly615Arg), c.1404_

1406delTGGinsAAA (p.Phe468_Gly469delinsLeuLys),

c.1808G>A (p.Arg603Gln), c.95_100delGCGCCG (p.

Gly32_Ala33del), and c.983C>T (p.Pro328Leu), currently

lack established biological and clinical evidence. These var-

iants merit investigation for functional validation. Individ-

ual variant analyses of four additional genes are provided

in Table S2. For KIT, KRAS, and STK11, there is clearly a

strong correlation between the MAGPIE classification and

the OncoKB reference, with truncation mutations having

notably higher probabilities in the case of the tumor
y 1, 2024



Table 2. Variant analysis

BRAF Mutationa Type Prob. Freq. OncoKB Classification Co-occurring mutations

c.1406G>C (p.Gly469Ala) missense >0.99 1 oncogenic class 2 –

c.2209G>A (p.Gly737Ser) missense >0.99 1 – – BRAF c.1799T>A (p.Val600Glu)a

c.1799T>G (p.Val600Gly) missense >0.99 2 likely oncogenic class 1 –

c.2191C>T (p.Pro731Ser) missense >0.99 2 – – BRAF c.1798G>A (p.Val600Met)a;
BRAF c.1799T>G (p.Val600Gly)a

c.1457_1471delATGTGAC
AGCACCTA (p.Asn486_Pro490del)

in frame >0.99 1 likely oncogenic class 2 –

c.1843G>A (p.Gly615Arg) missense >0.99 1 – – –

c.1756G>A (p.Glu586Lys) missense >0.99 2 likely oncogenic – BRAF c.1799T>A (p.Val600Glu)a

c.1404_1406delTGGinsAAA
(p.Phe468_Gly469delinsLeuLys)

missense 0.99 1 – – –

c.1997T>A (p.Ile666Asn) missense 0.99 1 – – BRAF c.1799T>A (p.Val600Glu)a

c.1798G>A (p.Val600Met) missense 0.99 3 inconclusive class 1 –

c.1799T>A (p.Val600Glu) missense 0.99 116 oncogenic class 1 –

c.1801A>G (p.Lys601Glu) missense 0.98 4 likely oncogenic class 2 –

c.1798_1799delGTinsAG
(p.Val600Arg)

missense 0.98 8 oncogenic class 1 –

c.1798_1799delGTinsAA
(p.Val600Lys)

missense 0.98 31 oncogenic class 1 –

c.1808G>A (p.Arg603Gln) missense 0.97 1 – – –

c.1790T>G (p.Leu597Arg) missense 0.97 1 likely oncogenic class 2 –

c.95_100delGCGCCG
(p.Gly32_Ala33del)

in frame 0.97 1 – – –

c.1405G>A (p.Gly469Arg) missense 0.96 3 oncogenic class 2 –

c.1789_1790delCTinsTC
(p.Leu597Ser)

missense 0.96 2 likely oncogenic class 2 –

c.983C>T (p.Pro328Leu) missense 0.95 1 – – –

c.2212T>C (p.Phe738Leu) missense 0.94 1 – – –

c.950C>T (p.Ser317Phe) missense 0.94 1 – – –

c.1750C>T (p.Leu584Phe) missense 0.93 1 inconclusive – –

c.1397G>A (p.Gly466Glu) missense 0.93 1 oncogenic class 3 –

c.952C>T (p.Pro318Ser) missense 0.92 2 – – BRAF c.1798_1799delGTinsAA
(p.Val600Lys)a

c.1781A>C (p.Asp594Ala) missense 0.92 1 oncogenic – –

c.990T>G (p.Ile330Met) missense 0.92 1 – – –

c.1780G>A (p.Asp594Asn) missense 0.91 2 oncogenic class 3 –

c.421C>T (p.Pro141Ser) missense 0.91 1 – – –

c.1454T>G (p.Leu485Trp) missense 0.90 1 likely oncogenic class 2 –

c.1781A>G (p.Asp594Gly) missense 0.90 2 oncogenic class 3 –

c.1796C>T (p.Thr599Ile) missense 0.85 1 likely oncogenic class 2 –

c.1495A>G (p.Lys499Glu) missense 0.85 1 likely oncogenic – –

c.1244C>T (p.Ala415Val) missense 0.85 1 – – –

c.1033C>T (p.Pro345Ser) missense 0.85 1 – – –

c.1397G>C (p.Gly466Ala) missense 0.85 1 oncogenic class 3 –

c.1391G>A (p.Gly464Glu) missense 0.80 1 oncogenic class 2 –

(Continued on next page)
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Table 2. Continued

BRAF Mutationa Type Prob. Freq. OncoKB Classification Co-occurring mutations

c.2203C>T (p.Arg735Trp) missense 0.75 1 – – –

c.1165C>T (p.Arg389Cys) missense 0.74 1 – – –

c.755G>A (p.Arg252Gln) missense 0.74 1 – – –

c.1753C>T (p.His585Tyr) missense 0.68 1 – – –

c.2195C>T (p.Ser732Phe) missense 0.66 1 – – –

c.980G>A (p.Gly327Glu) missense 0.66 1 – – –

c.1400C>T (p.Ser467Leu) missense 0.59 3 oncogenic class 3 NRAS c.181C>A (p.Gln61Lys)b

c.31G>A (p.Gly11Ser) missense <0.01 1 – – NRAS c.37G>T (p.Gly13Cys)b

c.1352A>T (p.Glu451Val) missense <0.01 1 – – NRAS c.37G>T (p.Gly13Cys)b

c.1501G>A (p.Glu501Lys) missense <0.01 1 inconclusive – NRAS c.35_36delGTinsAG
(p.Gly12Glu)b

c.1733A>T (p.Lys578Met) missense <0.01 1 – – NRAS c.181C>A (p.Gln61Lys)b

aGenBank: NM_004333.4 (BRAF).
bGenBank: NM_002524.4 (NRAS).
suppressor STK11. For NRAS, almost all of the observed

variants both have a high assigned probability and are

classified as either oncogenic or likely oncogenic by

OncoKB.

Benchmarking MAGPIE against existing tools using

TCGA data

To further assess MAGPIE’s performance in real-world sce-

narios, we applied it to a comprehensive set of independent

analyses involving three distinct pathways (RTK-RAS, PI3K,

and Wnt) across 11 cancer sites, utilizing TCGA data.

Pathway genes are defined based on the framework estab-

lished by Sanchez-Vega et al.27 Table 3 summarizes the

following descriptive statistics and estimates for individual

tumor sites and/or pathways: the number of tumors from

each tumor site (# of tumors); relative frequencyofobserved

mutations (mut freq); estimated proportion of tumors pos-

sessing a driver mutation (driver freq); p value of the corre-

sponding significance test for mutual exclusivity (p val).

The results reveal that the RTK-RASpathway exhibits signif-

icant mutual exclusivity (p value < 0.05) in eight distinct

cancer sites, encompassing breast cancer (BRCA), lower-

grade glioma (LGG), uterine corpus endometrial carcinoma

(UCEC), LUAD, head and neck squamous cell carcinoma

(HNSC), papillary thyroid carcinoma (THCA), urothelial

bladder cancer (BLCA), and cutaneous melanoma (SKCM).

The PI3K pathway is deemed significant in five cancer

sites—BRCA, LGG, UCEC, LUAD, and SKCM—and nearly

reaches the threshold for significance in HNSC (p value ¼
0.051). The Wnt pathway shows a significant mutually

exclusive pattern in seven cancer sites, namely LGG,

UCEC, LUAD, HNSC, prostate adenocarcinoma (PRAD),

BLCA, and SKCM.

Figure 2 provides a comprehensive overview of the

driver genes identified. The size of the bubbles in the graph

corresponds to the relative frequency of mutations associ-
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ated with a specific gene (x axis) within the corresponding

cancer site (y axis). The depth of shade of these bubbles in-

dicates the ratio of the estimated driver mutation rate to

the observed mutation rate for a given gene. This ratio

effectively represents the conditional probability that an

observed mutation is considered a driver alteration. Strong

driver genes are expected to exhibit a substantial bubble

size and a dark tone, ensuring easy visual discernment.

Within the RTK-RAS pathway, several potent driver

genes emerge across diverse cancer sites. Specifically,

BRAF is identified as a strong driver gene in THCA and

SKCM, as is EGFR in LUAD. The roster of strong drivers in-

cludes FGFR2 in UCEC, FGFR3 in BLCA, KRAS in UCEC

and LUAD, and NRAS in SKCM. In the context of the

PI3K pathway, strong driver genes are as follows: PIK3CA

in UCEC, HNSC, BRCA, and BLCA; PIK3R1 in UCEC;

PPP2R1A in UCEC; and STK11 in LUAD. In the Wnt

pathway, the strong drivers encompass AMER1 in SKCM

and CTNNB1 in UCEC and SKCM. A number of driver

genes displaying moderate or weaker significance are also

identified. These genes, though challenging to discern

from bubble charts, can be identified from their estimated

driver frequencies in Tables S3–S5.

Next, we benchmark the performance of MAGPIE against

existing methods for driver gene identification. Although

MAGPIE is designed to identify driver genes and individual

variants at any frequency, in fact the identification of rare

drivers is a unique strength. For the purpose of comparing

itwith existing frequency-basedmethods,wehave restricted

attention to genes that have both been identified as statisti-

cally significant for mutual exclusivity and have an esti-

mated driver frequency of at least 1%. We compare

MAGPIE with published results from seven existing

methods: MutSigCV,1 DriverML,2 ActiveDriver,3 and

OncodriveFML4—each a frequency-based approach target-

ing genes exhibiting mutation rates surpassing anticipated
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Table 3. Results of independent MAGPIE analyses on individual pathways in each tumor site

Sitea # of tumors

RTK-RAS PI3K Wnt

Mut freq Driver freq p val Mut freq Driver freq p val Mut freq Driver freq p val

BRCA 987 0.217 0.090 0.017 0.475 0.400 <0.001 0.098 0.039 0.266

LGG 520 0.221 0.115 0.033 0.187 0.095 0.032 0.056 0.034 0.029

UCEC 508 0.614 0.385 <0.001 0.904 0.719 <0.001 0.575 0.309 <0.001

LUAD 503 0.809 0.632 <0.001 0.400 0.205 0.002 0.314 0.140 0.002

HNSC 489 0.409 0.177 0.024 0.317 0.246 0.051 0.225 0.093 0.011

THCA 486 0.728 0.723 <0.001 0.047 0.008 0.599 0.037 0.010 0.249

PRAD 477 0.117 0.069 0.370 0.094 0.044 0.313 0.094 0.062 0.004

LUSC 464 0.597 0.213 0.356 0.407 0.221 0.186 0.349 0.157 0.288

BLCA 399 0.684 0.398 <0.001 0.451 0.194 0.435 0.291 0.145 0.049

SKCM 365 0.942 0.895 <0.001 0.504 0.228 0.005 0.553 0.188 0.014

KIRC 353 0.235 0.080 0.317 0.195 0.054 0.909 0.079 0.049 0.129

aTCGA disease codes and abbreviations: BRCA, breast cancer; LGG, lower grade glioma; UCEC, uterine corpus endometrial carcinoma; LUAD, lung adenocarci-
noma; HNSC, head and neck squamous cell carcinoma; THCA, papillary thyroid carcinoma; PRAD: Prostate adenocarcinoma; LUSC, lung squamous cell carci-
noma; BLCA, urothelial bladder cancer; SKCM, cutaneous melanoma; KIRC: clear cell kidney carcinoma.
levels. OncoDriverCLUST5 focuses onhotspot detection and

identifyinggenesdisplayingamarkedbias towardmutations

clusteringwithin regionsencodingspecificproteindomains;

DawnRank7 employs a sub-network framework to rank

genes based on their downstream impact within interaction

networks; and Dendrix15 is devoted to identifying mutually

exclusive gene sets through ameasure quantifying the intri-

cate balance between coverage and exclusivity. The driver

genes, identified through these competingmethods applied

to TCGA data, are comprehensively documented in Han

et al.2

In Figure 3, we present a concise summary of the results

from four cancer sites (SKCM, LUAD, UCEC, and BLCA)

that compares the driver genes identified by the different

methods, facilitating a comprehensive comparative anal-

ysis. The complete results for all 11 cancer sites are summa-

rized in Figure S3. Given that there is limited ground truth

to judge if a gene is indeed a driver, we focus on the extent

of agreement between MAGPIE’s selections and those of

other methodologies.

The overall impression from these results is that the

methods broadly target the same genes but there are wide

discrepancies in the results. The major, known driver genes,

such as BRAF, NRAS, EGFR, KRAS, and NF1 in the RTK-RAS

pathway; PIK3CA, PTEN, and PIK3R1 in the PIKS pathway;

and APC and CTNNB1 for Wnt, are all identified for their

key cancer sites by multiple methods. Of note, MAGPIE is

generally consistent in identifying these key genes, unlike

some of the competitors. Some particular observations

include the following. In RTK-RAS, MAGPIE uniquely iden-

tifies KRAS in SKCM and RIT1 in LUAD, and the results sup-

ported are by previous research.41,42 Conversely, for PI3K,

MAGPIE fails to identify PTEN as a driver for UCEC. Howev-

er, in this site PTEN’s omission as a driver stems from the

fact that a substantial majority of PTENmutations co-occur
The America
with mutations in PIK3CA and PIK3R1. Furthermore, muta-

tions in PIK3CA and PIK3R1 exhibit a notable level of

mutual exclusivity (Figure S2). Consequently, the algo-

rithm’s preference leans toward selecting PIK3CA and

PIK3R1 as driver genes while excluding PTEN. Finally,

MAGPIE nominates CTNNB1 and APC as drivers in SKCM,

LUAD, and BLCA. This aligns with findings by Karachaliou

et al., who observed a mutually exclusive mutation pattern

of APC and CTNNB1 in TCGA-SKCM data, and further es-

tablished an association between APC/CTNNB1 mutations

and adverse outcomes in stage IVmelanoma.43 The implica-

tions of APC/CTNNB1 in LUAD and BLCA, however, war-

rant further comprehensive examination.

We further evaluated the performance of each method

with quantitative metrics by using the driver genes curated

in the Catalogue of Somatic Mutations in Cancer

(COSMIC) Cancer Gene Census (CGC) as the benchmark.

The current release of the CGC includes over 700 evidence-

based, manually curated cancer-driver genes (release v98,

May 23, 2023).44 We consider all genes in the three path-

ways as the gene pool, among which the true positive

genes are those collected in the CGC. Sensitivity and spec-

ificity are summarized for each method within individual

tumor types along with the average Youden’s index across

all tumor types (Table S6). Here, we excluded KIRC from

the analysis because there is no associated driver gene

found in the CGC, and we further combined LUAD and

LUSC into one category named ‘‘LUNG’’ following the

CGC’s coding convention. Overall, MAGPIE is ranked 3rd

among all eight methods according to the average You-

den’s index. Finally, we want to clarify that this quantita-

tive evaluation could be biased because the CGC classifies

driver genes using a conservative approach, and thus the

reference driver gene list used in the analysis is unlikely

to be a complete set.
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Figure 2. Bubble plots showing the likeli-
hood of individual genes within a pathway
as driver across different tumor sites
(A) RTK-RAS pathway.
(B) PI3K pathway.
(C) Wnt pathway. TCGA disease codes and
abbreviations: BRCA, breast cancer; LGG,
lower-grade glioma; UCEC, uterine corpus
endometrial carcinoma; LUAD, lung
adenocarcinoma; HNSC, head and neck
squamous cell carcinoma; THCA, papillary
thyroid carcinoma; PRAD, prostate adeno-
carcinoma; LUSC, lung squamous cell carci-
noma; BLCA, urothelial bladder cancer;
SKCM, cutaneous melanoma; KIRC, clear
cell kidney carcinoma.
Operating characteristics of the method

We have conducted simulations to examine the properties

of the method. There are many different features of a

pathway that could potentially affect these properties.

We have elected to generate data by using selected features

of the RTK-RAS pathway that were estimated from the

InterMEL data and then to vary some key aspects of these

results to explore the influence of selected features. Specif-

ically, we focus on a pathway with three types of genes: (1)

strong driver genes that function as drivers most of the

time (like BRAF and NRAS), (2) moderate driver genes

that sometimes function as drivers and sometimes do not

(like NF1), and (3) genes that are presumed to never be

drivers. Details of their overall and driver frequencies are

provided in Table 4. We consider two general configura-

tions, denoted by A and B. Configuration A refers to the

low-noise setting in which two genes are generated from

each type. Configuration B refers to the high-noise setting

in which the number of non-driver genes is increased to
236 The American Journal of Human Genetics 111, 227–241, February 1, 2024
10. The probabilities in Table 4 corre-

spond to pathways where mutual ex-

clusivity is present. When we evaluate

the test size under the null hypothesis

of no exclusivity (Table S7), we use

configuration A under the assumption

that all genes in the configuration

have driver rates of 0%. As previously

described in the data generation algo-

rithm, the centered log-scale muta-

tional burden was generated from a

normal distribution with standard de-

viation s ¼ 1. b0j was set to maintain

the designed overall and driver muta-

tion frequency under each setting as

summarized in Table 4. For all settings,

we simulated 1,000 data replicates un-

der our model structure, and for each

test, we generated 1,000 bootstrap

samples.

We first examined the properties of

the initial significance test to deter-
mine the evidence that mutual exclusivity exists in the

pathway, using Equation 11. We calculated the size of

the test for sample sizes ranging from 500 to 5,000 under

a model in which there was no effect of TMB (b1 ¼ 0)

and under a model in which the effect of TMB was in the

range of that observed in the real dataset (b1 ¼ 1). The re-

sults are summarized in Table S7, where the test size is

computed as the average proportion of null hypothesis re-

jections among the 1,000 simulated data replicates. We

observe that the test size of our proposed bootstrap-based

test is, in general, close to the nominal level of 5% across

different settings.

Next, we explored the ability of the model to identify

drivers in individual tumors.We used two distinct statistics

for this purpose. First, we evaluated overall measures that

characterize the true-positive rates (TPRs) and false-posi-

tive rates (FPRs) for identifying whether or not a tumor

has a driver in the pathway. For this calculation, the overall

FPR is given by
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Figure 3. Driver gene nomination by different
methods (selected cancer sites)
(A) RTK-RAS pathway.
(B) PI3K pathway.
(C) Wnt pathway. TCGA disease codes and abbrevia-
tions: SKCM, cutaneous melanoma; LUAD, lung
adenocarcinoma; UCEC, uterine corpus endometrial
carcinoma; BLCA, urothelial bladder cancer.
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Table 4. Characteristics of simulated genes

Gene type

Mutation frequencies Configuration (# genes)

Overall Driver
A
low noise

B
high noise

Strong sriver 20% 20% 2 2

Moderate driver 20% 10% 2 2

Non-driver 20% 0% 2 10
Overall FPR ¼ 1PN
i¼1

Izi0 ¼1

XN
i¼1

Izi0 ¼1Iargmaxk wik >0:

(Equation 18)

The corresponding TPR is given by

Crude overall TPR ¼ 1PN
i¼ 1

Izi0s1

XN

i¼1
Izi0s1Iargmaxk wik >0:

(Equation 19)

Table 5 summarizes the results of overall accuracy, where

FPR and TPR in the table are calculated as the average

among the 1,000 simulated data replicates. We observe

that, in general, FPR decreases and TPR increases with larger

sample size. When there exists an association between pas-

senger mutation rate and TMB (i.e., b1 ¼ 1), our method

tends to classify fewer mutations as drivers, reducing both

FPR and TPR. Conversely, elevation in pathway noise tends

to make our method nominate more driver mutations,

increasing both FPR and TPR. However, the effect of such

noise diminishes with a larger sample size.

Finally, we explored diagnostic accuracy at a more gran-

ular level, seeking to determine the accuracy of driver iden-

tification for the different individual gene configurations.

For this purpose, we define the gene-specific false-positive

and true-positive rates (gFPR and gTPR). That is, our FPR

in this context measures, among tumors with a mutation

in gene j that is not a driver, what proportion are incorrectly

flagged as a driver:

gFPRj ¼ 1PN
i¼1

Ixij ¼1Izij ¼0

XN
i¼1

Ixij ¼1Izij ¼ 0Iargmaxk wik ¼ j:

(Equation 20)

The corresponding true gene-specific positive rate mea-

sures, among tumors with a mutation in gene j that is a

driver, what proportion are correctly flagged as a driver:

gTPRj ¼ 1PN
i¼1

Ixij ¼1Izij ¼1

XN
i¼1

Ixij ¼1Izij ¼ 1Iargmaxk wik ¼ j:

(Equation 21)

Results are provided in Table S8, where, as before, the

gFPR and gTPR values are averages across all simulated da-
238 The American Journal of Human Genetics 111, 227–241, Februar
tasets. It is worth noting that the previously defined overall

FPR and crude overall TPR are not simple weighted aver-

ages of gFPR or gTPR across genes, as the denominators

in those formulas are not the same. We do not compute

gFPR for strong driver genes because in our simplified

construct there are no tumors that have non-driver muta-

tions in these genes (i.e., no passenger mutations identi-

fied). Similarly, we do not compute gTPR for non-driver

genes. For strong driver genes, we observe that the average

gTPR is close to 1 in almost all scenarios (e.g., small sample

size or high noise). Similarly, the method also performs

well in screening out non-driver genes, evidenced by the

extremely small gFPR across different scenarios. For moder-

ate driver genes, those that can often be either a driver or a

passenger, it is clearly more challenging for the method to

identify drivers accurately, with gFPRs ranging from 0.340

to 0.477 across our various configurations, while the gTPRs

range from 0.851 to 0.942. As was shown previously in Ta-

ble 5, with greater association between passenger mutation

rate and TMB, our method tends to classify fewer muta-

tions as drivers, reducing both FPR and TPR. Conversely,

the presence of increasing noise has minimal impact at

an individual gene level.
Discussion

Our goals in developing this methodology were to find a

strategy for identifying potential driver mutations in a tu-

mor and assigning probabilities to the potential candi-

dates. We built our strategy on a model that frames the se-

lection on the presence of mutual exclusivity patterns in

the data. Among the many groups that have studied

mutual exclusivity in this context, we elected to build on

the ideas of Hua et al.23 since their model was firmly based

on well-established statistical principles. The underlying

model is structured around the assumption that there

can be at most 1 driver in the pathway in any individual

tumor, and this is in itself an assumption that may not

be correct. However, this assumption does provide a solid

framework in which to examine mutual exclusivity. We

observe in our detailed analysis of data from the

InterMEL study that the method produces results that

appear to be highly plausible in that they align with

known evidence about the RTK-RAS pathway. However,

the RTK-RAS example represents a pathway for which the

mutual exclusivity between BRAF and NRAS is especially
y 1, 2024



Table 5. Overall accuracy

Configuration Sample size Mutational burden

Accuracy

FPR TPR

A
Low noise

500 b1 ¼ 0 0.210 0.994

b1 ¼ 1 0.156 0.968

1,000 b1 ¼ 0 0.211 0.999

b1 ¼ 1 0.154 0.969

5,000 b1 ¼ 0 0.212 1.000

b1 ¼ 1 0.153 0.971

B
High noise

500 b1 ¼ 0 0.247 0.997

b1 ¼ 1 0.187 0.973

1,000 b1 ¼ 0 0.213 0.999

b1 ¼ 1 0.166 0.973

5,000 b1 ¼ 0 0.212 1.000

b1 ¼ 1 0.155 0.972
profound, and thus may present an easier task than for

pathways without highly prevalent variants that are very

strongly mutually exclusive. However, our more compre-

hensive analysis of multiple pathways and cancer sites us-

ing TCGA data also demonstrates that MAGPIE generally

identifies the known cancer-associated genes in addition

to identifying other genes worthy of further investigation.

The comparative analyses using multiple methods demon-

strate wide variation in the results, demonstrating only

modest levels of agreement among the methods. However,

without a gold standard reference it is difficult to distin-

guish the methods on the basis of accuracy in identifying

driver genes.

We believe that our method has strong potential for

shedding light on which mutations are potentially patho-

genic in a specific gene. In the melanoma BRAF example

we presented, the Val600 variants identified as pathogenic

are well characterized and are targets for FDA-approved

therapies. However, approximately 35% of all BRAF muta-

tions occur outside the Val600 codon.38 The functional

impact and therapeutic potential of non-Val600 BRAFmu-

tations is an active research topic, yet existing knowledge

in this area is limited. Our analysis of BRAF identified var-

iants other than the common Val600 variants that may be

potentially pathogenic. These represent the kinds of vari-

ants that could be prime candidates for experimental vali-

dation using modern in vitro and in vivo strategies.45

We emphasize that our strategy is focused on a single

pathway and is based on the pivotal assumption that

there can be only one driver in the pathway in any given tu-

mor. However, in any given tumor there are very likelymul-

tiple drivers, each occurring in distinct pathways. While

one could perform our analysis independently for distinct

pathways in order to identify amore complete set of drivers,

a future research task is to expand our approach to permit a

simultaneous analysis of multiple pathways.
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Figure S1: Illustration of the Observed Binary Mutation Status, Estimated Posterior 
Probability of Driver Mutation, and the Distribution of Binary Tumor Mutational Burden 
(TMB) for the RTK-RAS Pathway from the InterMEL Study. All 38 genes are included. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S2. Illustration of the Observed Binary Mutation Status, Estimated Posterior 
Probability of Driver Mutation, and the Distribution of Binary Tumor Mutational Burden 
(TMB) for the PI3K Pathway from TCGA-UCEC Data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S3. Driver Gene Nomination by Different Methods for All Eleven Cancer Sites. A: RTK-
RAS pathway; B: PI3K pathway; C: Wnt pathway. TCGA disease codes and abbreviations: 
BRCA, breast cancer; LGG, lower grade glioma; UCEC, uterine corpus endometrial carcinoma; 
LUAD, lung adenocarcinoma; HNSC, head and neck squamous cell carcinoma; THCA, papillary 
thyroid carcinoma; PRAD: Prostate adenocarcinoma; LUSC, lung squamous cell carcinoma; 
BLCA, urothelial bladder cancer; SKCM, cutaneous melanoma; KIRC: clear cell kidney 
carcinoma. 
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