
Mechanism of charge transport in lithium thiophosphate
Supporting Information

Lorenzo Gigli,1, † Davide Tisi,1, † Federico Grasselli,1 and Michele Ceriotti1, ∗

1Laboratory of Computational Science and Modeling, Institut des Matériaux,
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FIG. S1. Learning curves for all the potentials.

I. ML MODELS

We construct the MLPs using the well-established SOAP-GAP approach [1] to fit energies E and atomic force
components {fl}Nl=1, where N is the number of atoms, by means of Kernel Ridge Regression. In other words, we write
the target properties as a sum of local, atom-centered, contributions:

E =
∑
i∈A

Ei(Ai) =
∑
i∈A

∑
j∈S

wjK(Ai, Sj) (S1)

fl = −∇lE (S2)

In this equation, Ai represents the environment surrounding atom i and Ei(Ai) the energy associated with it.
Each of these local energies is then expanded as a sum of kernel contributions K(Ai, Sj) that measure the correlation
between the environment Ai and a set of representative environments Sj , the so-called sparse set S. The definition
of the sparse set from the original training set is a necessary step in the ML regression procedure as it controls the
computational cost of calculating energies and forces and sets a boundary to the number of kernel contributions
that need to be computed at the fitting step. The kernel K(Ai, Sj) needs to be computed using a set of structural
fingerprints and an explicit form of the kernel function K. In this paper, we use the SOAP power spectrum features
p as described in Bartók et al. [1] and K is a polynomial kernel:

K(Ai, Sj) = (pi · pj)
ζ (S3)

where ζ = 2. Finally, the weights wj related to each atomic environment are determined by ridge regression. Further
details on how to appropriately construct MLPs with the SOAP-GAP method can be found in [2].

We use this approach to fit a reliable potential at the PBEsol level (ML-PBEsol). Since the training sets computed
with r2SCAN and PBE0 are smaller due to their larger computational complexity, we find it beneficial to construct the
corresponding MLPs by using the ML-PBEsol model as a baseline and fit an accurate model for the target functional
using a two-level machine learning scheme [3]. This means that we fit a new model using Eq. (S1), where the target
energies and forces now represent the deviations between ML-PBEsol and the r2SCAN/PBE0 target. We then add
this additional contribution to the baseline model to obtain the final model. In this way, we manage to leverage the
accuracy of the baseline model to the more expensive reference and find that the resulting model is more accurate
than the direct model.

All the ML models are obtained using librascal [4] and they share the same hyperparameters, shown in Table S1.
In addition, the atomic environment is defined by a smooth cutoff function with a long-algebraic decay of the form:

u(r) =
c

c+ (r/r0)m
(S4)
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with c = 1, r0 = 3.5 Å and m = 4. All the models are constructed with both feature and sample sparsification
computed using the Farthest Point Sampling implemented in skmatter [5]. The models use a total of 600 sparse
features, 4500 sparse environments for the GAP-PBEsol model and 5000 sparse environments for the other two delta
models. Fig. S1 shows the behaviour of the root mean square error (RMSE) of energy and forces for all the models
as function of the number of training structures.

interaction cutoff 5 Å

nmax 8

lmax 6

Gaussian smearing 0.3 Å

radial basis Gaussian Type Orbitals

TABLE S1. Parameters of the SOAP-GAP fits used in librascal [6]

II. KERNEL PRINCIPAL COMPONENT ANALYSIS

KPCA1

KP
CA

2

Li

KPCA1

P

KPCA1

S

training set
trajectory

FIG. S2. KPCA per species of the local environments in the training dataset (blue) and the projection of the environments of
a trajectory computed with the ML-PBEsol at 700K (orange), where rotations of PS4 tetrahedra are present, on the training
dataset KPCA map. The first two principal component, which account for 70% and 14% of the total variance of the dataset
environments’ feature vectors, are displayed.

In our work, we showed that the conductivity of Li3PS4 is largely affected by the rotation of the PS4 tetrahedra,
during the dynamics. These events are generally rare, particularly at low temperatures, but given their relevance, it is
essential that they are well-represented in our training set. To show that this is indeed the case, we perform a (sparse)
kernel principal component analysis (KPCA) [7] of the local environments of each atomic species in the training
dataset, and we project the local environments of the snapshots of a trajectory where these rotations are present
on the KPCA map of the training set. Fig. S2 contains, for each species, the first two principal components (which
explain 84% of the total variance) for environments in the dataset (blue) and in a trajectory with ML-PBEsol at 700
K (orange). One can see that all the environments from the trajectory are fully contained in the region defined by
the environments from the training dataset. The authors are aware that a projection into two principal components,
like in Fig. S2, might not be a complete assessment of the robustness and accuracy of the training set [8]. In order to
give further evidence that our dataset well describes the complex environments that occur during the rotation of the
tetrahedra, in the next section we compute the local prediction rigidity (LPR) introduced in Ref. [9].

III. LOCAL PREDICTION RIGIDITY

The LPR is a quantitative metric of how robust the locally decomposed predictions of ML models are. It essentially
captures how prone to changes (or conversely, “rigid”) a given local prediction is under perturbation of the model,
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FIG. S3. Histogram of local environments and their local prediction rigidity (LPR) values expressed in base 10 logarithm, for
environments contained in the training set (blue) and in a trajectory computed with the ML-PBEsol at 700K (orange), where
rotations of PS4 tetrahedra are present. Each panel corresponds to environment of a different atomic species. The triangle-
shaped markers correspond to the environments of P (or S) that is included in a tetrahedra that rotates. Black right-pointing
triangles correspond to environments before the rotation, while red left-pointing triangles correspond to an environment after
the rotation.

given a dataset. High values of LPR imply that a prediction is robust and thus, such environment is well described
by our training dataset, in principle because it is similar to many other environments therein. Fig. S3 shows the
histograms of the logarithm of the LPR for the environments in the training set (blue) and for environments in a piece
of a trajectory of γ Li3PS4 computed with the ML-PBEsol at 700K (orange), where there are rotations of the PS4
tetrahedra. For any environment in the trajectory, the LPR is never particularly low and always lies within the range
of LPR for dataset’s environments. Moreover, we focus on the environments of a P (or S) atom included in a PS4
tethrahedra that rotates during the transition. Black right-pointing triangles represent environments in a snapshot
before the rotation, while red left-pointing triangles represent environments after the flip. Both kinds of environments
have a relatively large LPR and are, in particular, perfectly included in the distribution of those coming from the
training set, showing that they are well represented inside our dataset.

IV. MEAN SQUARE DISPLACEMENT: COMPARISON WITH AN AB INITIO CALCULATION

To show that our ML models can correctly describe dynamical properties of Li3PS4, we perform a 40-ps long
Born-Oppenheimer ab initio NVT simulation at the PBEsol level for a system of 64 atoms in the α phase and 750 K.
Then, we compute the mean square displacement (MSD) of Li atoms, and we compare the results with those from an
equivalent NVT simulation run for 900 ps with the ML-GAP potential on the same simulation cell. Figure S4 shows
that both the MSD and the diffusivity obtained from our ML model are in agreement with those obtained from the
ab initio simulations.

V. DFT COMPUTATIONAL DETAILS

The three datasets are computed at different levels of theory. The PBEsol dataset is computed with the Quantum
ESPRESSO suite of codes [10–13] with PBEsol functional [14], with a energy cutoff equal to 120 Ry. The SCAN and
PBE0 calculations are computed with VASP (Vienna Ab initio Simulation Package) [15–17], taking advantage of the
Projector-Augmented Wave (PAW) pseudopotentials [18, 19] provided by VASP in combination with dense k-point
meshes to ensure systematic convergence of all self-consistent field (SCF) steps. Specifically, we cautiously set the
kinetic-energy cutoff to 36.74 Ry (500 eV) for all functionals. Moreover, the PBE0 calculations were computed, in
VASP, in two steps in order to speed up convergence: 1. First we run a SCF calculation at PBE level, with the same
energy cutoff; 2. Secondly, we run the SCF calculation at the PBE0 level using the wavefunction from the previous
calculation as starting point. This initialization significantly reduces the computational cost. All the DFT calculations
of this work are converged within a SCF energy tolerance of 10−6 eV and well below the ML energy errors shown in
the main text.
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FIG. S4. Mean square displacement of the Li atoms obtained from simulations for a system of 64 atoms of Li3PS4 in the α
phase at 750 K. The blue line is the result of a Born-Oppenheimer ab initio simulation at the PBEsol level; the orange line,
instead, is obtained via the PBEsol-GAP potential. The shaded areas represent the uncertainty from standard block analysis.

Car–Parrinello (CP) Molecular dynamics in the NVT ensemble [20] were performed to generate a preliminary
dataset of Li3PS4 structures in the β and γ polymorphs by using the CP module of Quantum ESPRESSO. The
simulations were carried out at 250, 500 and 1000K for the two phases and with three different reference volumes:
4100, 4450 and 4800 a.u.3 for the β structure with 32 atoms and 2000, 2100 and 2230 a.u.3 for the γ structure with
16 atoms. A fictitious electronic mass of 200 a.u. and a time step of 4 a.u. (ca. 0.09 fs) were applied. The electronic
and ionic motions were propagated by a standard Verlet algorithm. The ionic and cell temperatures were controlled
by a Nosé thermostat [21]. Periodic boundary conditions were applied. The CPMD simulations were performed at Γ
using the PBEsol [14] with RRKJ ultrasoft pseudopotentials [22]. The energy cutoff of the plane wave basis set was
set to 40 Ry, while the energy cutoff for the charge density was set to 320 Ry.

VI. BAND STRUCTURE OF THE γ-PHASE

Figure S5 shows the band structure and the electronic density of states of the γ phase. As for the β phase, the
PBE0 predicts the largest band gap.

VII. HEAT-QUENCH TRAJECTORY

The simulation protocol works as follows: the simulation starts from a γ structure at 500 K and the temperature
is linearly increased to 800 K in 250 ps. We then let the system equilibrate at 800 K for a 250 ps time lapse, after
which the temperature is decreased back to 500 K in 250 ps. The system is finally equilibrated again at 500 K.
Figure S6 shows the dynamics of the two collective variables defined in Sec. IIB of the main text during the heat-
quench simulation, showing an hysteresis behaviour, where the mixed β and α phase persists after cooling. Figure S7
show the temperature profile of the heat-quench protocol.

It is important to note that the onset of this transition is due to thermal activation of the rotational degrees of
freedom of the tetrahedra, and for temperatures T < Tc no phase transition ever occurs in any of the MD simulations.
This is a result of the simulations not being ergodic, as evidenced by the fact that at low temperatures only small
PS4 angular fluctuations occur and there is no signature of any global reorientation of the tetrahedra. This is a
limitation, as the lack of ergodicity of the MD does not allow us to provide an estimate of the relative thermodynamic
stability of the different polymorphs. For this reason, we cannot provide a direct comparison with experiment of our
estimated transition temperature from the γ to the disordered β/α structure. In order to ensure however that the
phase transitions observed in the main paper are a physical feature of this material, we run a heat-quench simulation
with fully-flexible cell up to 800K (see Supplementary Information) and qualitatively observe the onset of the same
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FIG. S5. Electronic bands and density of states of Li3PS4 for the γ phase.

phase transition, with a strong hysteresis of the CVs upon cooling the system back to 200K. Consequently, the use
of the NpT ensemble is justified, as we ensure that the system can sample configurations within the range of stability
of each phase, while it is still free to undergo phase transitions when the rotations of the PS4 groups are thermally
activated.

VIII. COLLECTIVE PLANE FLIPPING IN LI3PS4

In Section IIIB of the main text, we show how we can study the collective variables dynamics during a simulation to
mark the phase transition. In the main text, by analysing the microscopic mechanism of this transition, we saw how
it is characterized by a collective flip of PS4 the tetrahedra of a specific plane. Figure S8 shows, for a simulation at the
PBE0 level and initialized in γ, the evolution of each sC, the order parameter that measures the average alignment
of PS4 tetrahedra for each (010) plane, C = 1, . . . , 6. This analysis highlights the presence of discrete jumps that
correspond to the collective flip of entire [100] rows of PS4 tetrahedra across each plane, similar to what happens in
Fig. 5 in the main text.

IX. MELTING

The effects of melting on the Li3PS4structure can be seen from the P-P and P-S radial distribution functions,
gPP(r) and gPS(r). Fig. S9 shows that, while increasing the temperature, the sharp peaks in gPP, typical of solid
behaviour, become broader and broader, and at 900K the behavior is more typical of a liquid. On the other hand,
the first two peaks of gPS remain present and sharp at any temperature, showing that while the solid matrix melts
into a “liquid-like” phase, the PS4 tetrahedral units are preserved.

X. ELECTRICAL CONDUCTIVITY

The negative slope of the profiles of σ with respect to the inverse temperature (Fig. 8 in the main paper) is typical
of the Arrhenius plots. In fact, since lithium-ion diffusion occurs via thermal activation, we can mathematically relate
the Nernst-Einstein conductivity σNE with the activation energy of the Li-hopping process:

σNET = σ0
NET

0 exp

(
− EA

kBT

)
(S5)
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FIG. S6. Evolution of the collective variables (CVs) along a heat-quench trajectory starting from the γ structure. A sample
of values of the CVs for γ structures generated from NpT simulations with T < 750K and β and α structures are provided as
reference. The evolution of the CV clearly shows substantial hysteresis and the structure that emerges from the quench is the
same structure with mixed β and α alignments discussed in Sec. IIIC of the main paper. The purple symbols correspond to
the values of the CVs for the ideal α, β and γ structures.

In Fig. S10 we show σNE as predicted by the ML models for simulations initialized in the three phases. We also
plot the fits to the Arrhenius equation of Eq. (S5) (black solid lines) that yield the activation energies listed in Tables
III and IV in the main paper. For the simulations initialized in the γ structure, we fit the curve both below and above
the transition point discussed in Sec. IIIC. In Fig. S11, we compare the GK and NE conductivities for simulations in
the α phase and the extrapolation of σGK to room temperature (see Table IV in the main paper). Finally, in Fig. S12
we show the mean square displacement of lithium ions as a function of time in a simulation run at 750K with the
ML-PBE0 model and initialized in the γ structure. This simulation corresponds to the PS4 flips observed in Fig. 6 in
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FIG. S7. Temperature profiles of a heat-quench trajectory starting from the γ structure.
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FIG. S8. Time evolution of the collective variable sC defined in Sec. IIB of the main paper for each (010) plane of a NpT
simulation at 750K and run with the PBE0 functional. The dynamics of the sC shows the presence of discrete jumps that
correspond to the collective flip of entire [100] rows of PS4 tetrahedra across each plane. The flips occur between the positive
and negative directions of the x-axis as defined in Fig. 1 of the main paper. The plane numbers are the same of Fig. 1 of the
main text. The vertical dashed lines indicate the time range of the transition shown in Fig. 5 in the main paper.

the main paper. Fig. S12 shows that the typical timescale of Li diffusion is of the order of a few ps. This time laps is
much larger than the time laps between subsequent PS4 flips along [100] rows, confirming that no paddle-wheel effect
occurs. The Li diffusion coefficient that is determined through a linear fit of the line shown in Fig. S12 is equal to

(0.286± 0.006)Å
2
ps−1. This value corresponds to σNE = (1.23± 0.01) S cm−1 at 750K (see Fig. S10).

XI. BARYCENTER AND SOLID-MATRIX REFERENCE FRAMES

A. Equivalence of formulations for total electrical conductivity

Let us consider a system characterized by one (or more) high-mobility atomic species D diffusing into a fixed matrix
M. In the context of Li3PS4, lithium ions represent D while the matrix of PS4 tetrahedra is M.
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FIG. S10. Nernst-Einstein conductivities as a function of inverse temperature for simulations initialized in the α, β and γ
structures, as predicted by the ML models of the main paper. The black solid lines represent the fits to the Arrhenius equation
(see legend), where the fitting parameters are σ0 and the activation energy EA. For the γ profiles, we fit the conductivities both
above and below the transition temperature of Sec. IIIC, to highlight the effect of the transition from γ to the β-α structure.
The activation energies obtained from these fits are reported in Tables III and IV in the main paper.

In the matrix reference frame, only the diffusing species participate in electrical conduction. Instead, in the
barycentric reference frame—usually adopted in equilibrium MD simulations—also the fixed matrix moves in order
to compensate the net displacement of the diffusive species. This effect must be taken into account to avoid mistakes
in the calculation of the electrical conductivity from EMD simulations [23]. Thanks to gauge invariance [24], we have
some equivalent choices. One may, in fact, perform a change between the barycentric and the solid-matrix reference
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FIG. S12. Mean square displacement of lithium ions as a function of time in a simulation run at 750 K with the ML-PBE0
model and initialized in the γ structure. This simulation corresponds to the PS4 flips observed in Fig. 6 of the main paper.
The shaded area represents the uncertainty from standard block analysis.

frames, so that the atomic velocities are

vmat
i = vbar

i −wbar, (S6)

wbar being the velocity of the center of mass of the matrix M in the barycentric reference frame, and mj the mass
of atom j

wbar =

∑
j∈M mjv

bar
j∑

j∈M mj
. (S7)
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We can then employ

J̃ =
1

Ω

∑
i∈D

qS(i)v
mat
i (S8)

in the GK formula for the electrical conductivity, where the sum is restricted to D alone, and S(i) is the species of
atom i. Alternatively, one may calculate directly the total flux

J =
1

Ω

∑
i∈all

qS(i)v
bar
i =

1

Ω

[∑
i∈all

qS(i)v
mat
i +wbar

∑
i∈all

qS(i)

]
=

1

Ω

∑
i∈all

qS(i)v
mat
i , (S9)

where the sum is here extended to all the atoms, and where the last step follows from charge neutrality. From the gauge-
invariance principle, the two choices Eqs. (S8) and (S9) are equivalent. In fact, the term

∑
i∈M qS(i)(v

bar
i − wbar),

where the sum is on atoms belonging to M only, is the time derivative of a bounded quantity, due to the non-diffusive
behaviour of the atoms ∈ M: the time-dependent relative displacement of any two atoms that compose the matrix
(here P and S) are, in fact, bounded quantities (whenever P and S atoms do not diffuse) which do not contribute to
the electrical conductivity. Instead, the use in the GK formula of the charge flux of the diffusive species

J =
1

Ω

∑
i∈D

qS(i)v
bar
i (S10)

computed in the barycenter reference frame leads in general to a wrong result.

B. Frame dependence of the breakdown of the electrical conductivity into species-dependent terms

In this subsection we show that, while the total electrical conductivity is reference-frame invariant (when properly
computed) as shown in the previous subsection, its breakdown into species-dependent terms:

σ = σDD + 2σDM + σMM, (S11)

where the RHS is defined thanks to GK-like equations

σAB =
Ω

3kBT

∫ ∞

0

⟨JA(t) · JB(0)⟩ dt, A,B = D or M (S12)

does depend on the reference frame. This is trivially verified for the fixed solid-matrix reference frame, where σmat
MM = 0

since Jmat
M = 0, and where σmat

DM also vanishes, thanks to a generalization of the Cauchy-Schwarz inequality to transport
coefficient [24, 25]:

|σDM| ≤
√
σDD σMM (S13)

These theoretical considerations are in fact observed in our MD simulations, as shown in Fig. S13, which displays the
GK integrals as a function of the upper extremum of integration.

Finally, we show that, for a given reference frame, two different total charge fluxes leading to the same total electrical
conductivity must have also the same breakdown. For simplicity, we work in the barycenter reference frame, where,

VD =
∑
i∈D

vi, VM =
∑
i∈M

vi, VM = − mD

mM
VD (S14)

(here mD,M indicate molecular masses). Hence the total charge flux is

J =
1

Ω

(
qD − qM

mD

mM

)
VD (S15)

Let us assume that we have two different fluxes J and J′, yet leading to the same conductivity, i.e.

σ =
1

3kBTΩ

(
qD − qM

mD

mM

)2 ∫ ∞

0

⟨VD(t) ·VD(0)⟩ dt
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FIG. S13. Dependence of the breakdown of the electrical conductivity upon reference frame. The figure shows that the total
conductivity is independent of the choice of the system of reference, while its species dependent component σLiS does. In
particular σmat

LiS = 0

σ′ =
1

3kBTΩ

(
qD − qM

mD

mM

)2 ∫ ∞

0

⟨V′
D(t) ·V′

D(0)⟩ dt

but

σ = σ′

Then, VD and V′
D differ at most by a non diffusive term Q:

V′
D = VD +Q (S16)

Therefore, V′
M = − mD

mM
(VD +Q), and hence:

σ′
MM =

1

3kTΩ

(
− mD

mM

)2

q2M

∫ ∞

0

⟨[VD(t) +Q(t)] · [VD(0) +Q(0)]⟩ dt (S17)

Since Q is non diffusive, σQQ ∝
∫∞
0

⟨Q(t) · Q(0)⟩ dt = 0. By Cauchy-Schwarz inequality, σDQ also vanishes, hence
σ′
MM = σMM and σDM = σ′

DM. This concludes the proof.
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