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Evaluation of limitations of phasing approach 

 We sought to address several limitations of our current phasing analysis. First, 4.7% of 

variant pairs in the 4,775 trios (that we used for Ptrans evaluation) were not present in gnomAD 

and thus not amenable to phasing even using cosmopolitan Ptrans estimates. To understand how 

the proportion of variants amenable to phasing changes as a function of gnomAD reference 

sample size, we performed a subsampling analysis of gnomAD from 121,912 (all of gnomAD v2 

after removing overlapping trio samples) down to 1,000, 10,000, or 100,000 samples 

(Supplementary Fig. 6a). We found that subsampling greatly reduces the proportion of variants 

amenable to phasing, but that accuracy is generally preserved. For example, when subsampling 

down to 10,000 samples, just 76.4% of variant pairs observed in the trios were amenable to 

phasing, but phasing accuracy remained high (91.9%) when using cosmopolitan Ptrans estimates 

(compared to 93.6% accuracy when using the full gnomAD cohort).  

We also assessed variant pairs with intermediate EM scores (0.02 < Ptrans < 0.55) where 

our approach gives an indeterminate phase estimate. We found that nearly all (99.8%) of the 

variant pairs with intermediate Ptrans scores included more common variants (AF ≥ 0.001) 

(Supplementary Fig. 6b). For variant pairs where the more common variant had AF ≥ 0.001, 

9.5% of variant pairs had an intermediate Ptrans score. In contrast, variant pairs where the more 

common variant with AF < 0.001, just 0.19% of variant pairs had an intermediate Ptrans score. 

Intermediate Ptrans scores can only occur when all four haplotypes are observed. For rare 

variants, it is less likely that all four haplotype combinations are observed in a population. This 

can be due to lower likelihood of sampling rare haplotypes and/or because rare variants are 

younger and have less opportunity for recombination/recurrent mutation to generate all 

haplotype combinations. 

Finally, we investigated the seemingly counterintuitive observation that phasing accuracy 

was lowest for NFE, where we had the highest number of gnomAD reference samples. We 

postulated that this apparent lower phasing accuracy in NFEs might be due to the larger number 

of trios we tested (for example, we tested 2815 NFE trio samples compared to 73 AFR 

samples), rather than an issue with phasing of NFE samples in the gnomAD reference dataset 

itself. To test this, we randomly subsampled the NFE trio samples from 2815 trios down to 282 

(10%), 563 (20%) or 1408 (50%) trios. Upon subsampling, we found that a smaller proportion of 

unique variant pairs were in lower AF bins (< 1x10-4) where phasing is most challenging 

(Supplementary Fig. 6c), with a corresponding improvement in accuracy upon subsampling of 

the trio samples (Supplementary Fig. 6d). These results suggest that the observation of a 

lower phasing accuracy in NFE is an artifact of ascertaining and testing a larger number of NFE 
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trio samples. Intuitively, this artifact results from our approach of measuring accuracy using 

unique variant pairs within a population. With increasing numbers of trios tested in our trio 

validation set, more common variant pairs where phasing accuracy is higher are observed 

multiple times yet counted only once. In contrast, with larger numbers of trios tested, we 

observe a larger number of unique rare variant pairs where accuracy is lower. 

Discussion on singleton variant pairs 

Pairs of singleton variants pose a unique challenge. When a pair of singleton variants is 

observed in different individuals in a population, this provides evidence that the variants are on 

different haplotypes. However, if a pair of singleton variants is observed in the same individual 

in the population, we cannot readily distinguish whether the variants are on the same haplotype 

or different haplotypes as we lack information from other individuals in the population for 

singleton variants. For this reason, we have chosen to not report phasing estimates for 

singleton/singleton variant pairs that are observed in the same individual in gnomAD. 

Nonetheless, using our trio data, 93% of these singleton/singleton variant pairs observed in the 

same individual in gnomAD were in cis based on our trio validation data. 

Multinucleotide variant analysis 

To further examine the effect of recombination, we also analyzed a set of 20,319 

multinucleotide variants (MNVs), which are pairs of genetic variants in cis that are very close 

together in physical distance (≤ 2 bp) and thus have minimal opportunity for recombination 

between them. These variants have previously been accurately phased using physical read 

data1,38. When examining this set of MNVs, we found that the phasing accuracy using our 

approach was 96.0%, with only 3.5% of MNVs phased incorrectly (the remaining 0.46% had 

indeterminate phasing estimates). 

Discussion on accuracy for rare variant pairs in cis 

We found that our approach was less accurate for rare variant pairs in cis. This lower 

accuracy for variants in cis is intuitive, as for rare variants, a recombination event or germline 

mutation event is much more likely to disrupt a haplotype comprised of two variants than to 

bring two rare variants onto the same haplotype. Consistent with this intuition, we found that for 

variants in cis, phasing accuracy diminished linearly with genetic distance as a measure of 

recombination rates, but that phasing accuracy was maintained across genetic and physical 

distances between pairs of variants in trans. Similarly, the phasing accuracy for variant pairs in 

https://paperpile.com/c/ksRPJl/82ZAC+fXyD
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cis was lower at more mutable sites such as CpG sites that are frequently methylated. Thus, 

users should exercise caution for rare variants at highly mutable sites where our approach 

predicts the variants to be trans. 

Discussion on use of cosmopolitan versus population-specific phasing estimates 

In our work, we compared population-specific estimates with phasing estimates derived 

from samples across all genetic ancestry groups in gnomAD v2 (“cosmopolitan”). While 

population-specific phasing estimates are more likely to match the haplotypes seen in a given 

individual, they utilize information from fewer samples in gnomAD. We found that, in general, 

population-specific estimates were similar in accuracy to using cosmopolitan estimates. For 

AFR individuals, however, we found that use of cosmopolitan estimates resulted in slightly lower 

phasing accuracy than the use of AFR-specific estimates for variants in trans (Fig. 3a). This is 

consistent with the observation that there are more unique haplotypes seen in individuals of 

AFR genetic ancestry and/or older haplotypes in individuals of AFR genetic ancestry for which 

recombination is more likely to have occurred39. Moreover, there are other genetic ancestry 

groups not currently represented in gnomAD for which we expect this phasing approach to have 

lower accuracy than in the well-represented genetic ancestry groups. Additionally, we recognize 

that many individuals are not well represented by a discrete genetic ancestry group, but instead 

represent admixtures of two or more populations. Future work on phasing will likely benefit from 

considering ancestry as a continuous variable40. For analysis of patients with rare diseases 
carrying candidate compound heterozygous variants, our data suggests that population-
specific estimates, when available, should be used first-line followed by cosmopolitan 
estimates. 

Discussion on tabulation of co-occurring variant pairs in gnomAD 

To aid the medical genetics community in interpreting the clinical significance of rare co- 

occurring variants in the context of recessive disease, we have released gene-wise counts of 

co-occurring variants across a spectrum of variant consequences (pLoF, missense, and 

synonymous) and allele frequencies. These counts of co-occurring variants provide a 

background frequency of compound heterozygous rare damaging variants and can be used to 

assess the probability that a given variant pair identified in a patient may have occurred by 

chance. These values are released in the gnomAD browser. 

Our ability to identify rare variant pairs in trans in gnomAD v2 individuals is limited by the 

fact the same dataset was used for training. Indeed, in these individuals, our ability to detect 

https://paperpile.com/c/ksRPJl/7jX4b
https://paperpile.com/c/ksRPJl/1Pkj
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variant pairs in trans extends largely to variant pairs with AF > 0.5%, as nearly all rarer variant 

combinations were dominated by indeterminate phase and very few predictions for variant pairs 

in trans. The per-gene variant co-occurrence resource developed and released here is therefore 

to be considered a first step in this space. We plan to use the predictions from this dataset on 

newer versions of gnomAD with additional samples, where we can more confidently predict rare 

variant pairs that are in trans. 
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Supplementary Figures 
 

 

Supplementary Figure 1 
Principal component analysis (PCA) plot for the full gnomAD v2 cohort (left) and specifically for 
the trios (right, trios in black) included in this paper. The top row shows PC1 vs PC2, the middle 
row shows PC3 vs PC4, and the bottom row shows PC5 vs PC6. Genetic ancestry group labels 
for the global gnomAD populations were done as described in Karczewski et al. 202014.  

https://paperpile.com/c/ksRPJl/V52Ie


 8 

 

 

Supplementary Figure 2 
Number of variant pairs observed per trio sample as a function of ancestry and AF. All variant 
pairs are shown in a. Variant pairs in which both variants are moderate effect or predicted loss-
of-function (pLoF) are shown in b. Variant pairs in which both variants are pLoF are shown in c. 
Variant AF is the AF of the less common variant in a given variant pair and is population-specific 
frequency. AFR = African/African American; AMR = Admixed American/Latino; ASJ = 
Ashkenazi Jewish; EAS = East Asian; FIN = Finnish; NFE = non-Finnish European; SAS = 
South Asian.  
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Supplementary Figure 3 
a, Pie chart of variant effect annotations in the trio samples. Effect predictions are stratified 
among pLoF, moderate effect, and low effect variants. Percentages are shown in parentheses. 
b, Proportion of variant pairs falling within 2 bp, within 10 bp, within 150 bp, within the same 
exon, and proportion that can be phased using the EM algorithm applied to the gnomAD 
resource. 
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Supplementary Figure 4 
a-g, Histogram of Ptrans scores for variant pairs in cis (top, blue) and in trans (bottom, red) for 
each population. Ptrans scores are population-specific. AFR = African/African American; AMR = 
Admixed American/Latino; ASJ = Ashkenazi Jewish; EAS = East Asian; FIN = Finnish; NFE = 
non-Finnish European; SAS = South Asian. 
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Supplementary Figure 5 
Receiver-operator (a) and Precision-recall (b) curves for use of Ptrans for distinguishing between 
variant pairs on same versus opposite haplotypes. Separate lines are shown for each genetic 
ancestry group. Ptrans scores are population-specific. AFR = African/African American; AMR = 
Admixed American/Latino; ASJ = Ashkenazi Jewish; EAS = East Asian; FIN = Finnish; NFE = 
non-Finnish European; SAS = South Asian. 
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Supplementary Figure 6 
a, Phasing performance when subsampling gnomAD to 1000, 10,000, 100,000 or using all 
samples. Phasing performance is based on cosmopolitan Ptrans estimates and is calculated 
across trio samples from all populations. b, Phasing performance as a function of variant AF for 
the more common variant in a variant pair. Phasing performance is based on population-specific 
Ptrans estimates and is calculated across trio samples from all populations. c, Proportion of 
variants falling into different AF bins when subsampling NFE gnomAD trios from 2815 trios 
down to 282, 563, or 1408 trios. Allele frequencies reflect the rarer variant in a variant pair. d, 
Phasing performance when subsampling NFE gnomAD samples as described in c. 
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Supplementary Figure 7 
Phasing performance for population-specific versus cosmopolitan Ptrans scores for each 
population. AFR = African/African American; AMR = Admixed American/Latino; ASJ = 
Ashkenazi Jewish; EAS = East Asian; FIN = Finnish; NFE = non-Finnish European; SAS = 
South Asian. 
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Supplementary Figure 8 
Phasing accuracy for transversions, non-CpG transitions, and CpG transitions. CpG transitions 
are further stratified by degree of DNA methylation (low, medium, or high) as in Karczewski et 
al14. Shading of squares and numbers in each square represents phasing accuracy. Phasing 
accuracies are based on variant pairs seen in all populations and utilize population-specific Ptrans 
estimates. Accuracy is shown for all variants (a), variants in trans (b), and variants in cis (c). 
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Supplementary Figure 9 
a, Proportion of genes with one or more individuals in gnomAD carrying two rare variants at ≤ 
1% and ≤ 5% AF stratified by predicted functional effect and phase. For compound 
heterozygous (comp het, in trans), unphased, and in cis, both variants in the variant pair must 
be annotated with a consequence at least as severe as the consequence displayed. b, Number 
of individuals in gnomAD (total sample size = 125,748 exomes) carrying two rare variants within 
gene at ≤ 1% and ≤ 5% AF, stratified by predicted functional effect and phase. For compound 
heterozygous (in trans) both variants in the variant pair must be annotated with a consequence 
at least as severe as the consequence displayed. In the box plots, the center line is the median, 
the box limits are the upper and lower quartiles, and the whiskers extend to the 1.5x the 
interquartile range. Any points shown are outliers.  
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Supplementary Tables 
 
Supplementary Table 1. CMG diagnostic variants. In this table, we provide details about the 

presumed bi-allelic causal variants from 293 individuals from the Broad Institute Center for 

Mendelian Genetics. For each variant pair, we provide the gene symbol (“gene_name”), 

information about the position and alleles of both variants, whether both of the variants were 

singletons in gnomAD (“singleton_singleton”) and seen in the same individual or not, the 

estimated cosmopolitan Ptrans value, the predicted phase based on the cosmopolitan Ptrans value 

(“cosmopolitan_phase_prediction”), the imputed population ancestry of the CMG individual 

(“imputed_population_ancestry”), the predicted phased based on the population-specific Ptrans 

value (“population_specific_phase_prediction”), the known phase from phase by transmission 

when trio data were available (“phase_by_transmission”), and an explanation for incorrect 

predictions where applicable (“incorrect_prediction_explanation”). 

 
Supplementary Table 2. Manual curation results for compound heterozygous loss-of-function 

variants. Here, we provide the variant curation information for the 28 genes that have predicted 

compound heterozygous loss-of-function variants with AF ≤ 1%. For every predicted compound 

heterozygous variant pair, we provide the gene symbol, maximum AF in the gnomAD exomes 

from the two variants (“variant_pair_max_af”), the number of individuals who carry the variant 

pair (“n_individuals”), information about the position and alleles of both variants, any manual 

curation flags e.g., mapping error for the variants, and the final loss-of-function curation for both 

variants as well as the variant pair (“high_confidence_human_knock_out”). 
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