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Figure S1 FMRP is phosphorylated at S499 upon neuronal depolarization. Related to Figure

1.

(A) Representative western blots of global post-translational modifications upon neuronal

depolarization (n = 3 each condition). Western blots are quantified by ImagedJ. Relative

intensities of different proteins are quantified by normalizing to GAPDH.

(B) Phos-tag gels assaying YTHDF1 phosphorylation in the mouse brain after fear

conditioning (FC) or electroconvulsive treatment (ECT).

(C) Phos-tag gel analyzing YTHDF1 in cultured mouse neurons after KCI depolarization.

(D) Scatter plot characterizing the reproducibility between the two replicates for identifying

YTHDF1 protein partners using mass spectrometry.

(E) Scatter plot showing the intensity of individual protein identified in fractions co-

immunoprecipitated with YTHDF1.



15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

(F) Schematics showing the experimental setup for the reporter assay to study YTHDF1-
mediated translation in HEK293T cells transfected with siControl siRNA. The N terminus
of YTHDF1 was tethered to the reporter firefly luciferase RNA by MCP-MS2 interactions.
Bar plot showing that YTHDF1 tethering in WT HEK293T cells does not alter target RNA
translation.

(G)gPCR results validating individual knockdown of candidate proteins that negatively
regulates m®A-mediated translation. Individual RNA level was normalized to HPRT1.

(H) Bar plot showing that FMR1 knockdown did not alter the translation efficiency of
untethered reporter firefly luciferase or renilla luciferase coding sequences.

() Western blots showing response of FMRP phosphorylation to different small molecules in
cultured neurons. DMSO was used as a control and cellular extracts were prepared at 5
minutes after application of drugs. FMRP phosphorylation levels were obtained by
normalizing band intensity of p-FMRP to band intensity of t-FMRP. The final
concentrations of individual small molecules were determined based on their reported ICsg
values against their physiological targets (NPS 2390: 82 nM, DHPG, 7 uM, and TTX, 2
nM).

(J) Western blotting of mouse hippocampal neurons validating knockout of Fmr1 gene.

Data are mean = s.e.m. (A), (F), (G), (H) and (l), statistical analysis was performed using unpaired
two-tailed t-test with Welch’s correction. Exact P values are indicated, and NS denotes P values >

0.05.
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Figure S2 FMRP and its phosphorylation regulates YTHDF1 condensing. Related to Figure

2.

(A) Left: illustration of phosphorylation inhibitor treatment. Right: western blot of FMRP S499
phosphorylation in HelLa cells treated by CX-4945.

(B) gPCR results showing knockdown efficiency of FMR1 RNA in Hela cells.

(C) Western blots of insoluble fractions isolated from HelLa lysates. YTHDF1 and RPS6 were
both enriched after FMR1 knockdown.

(D) Western blots characterizing phosphorylated recombinant FMRP with CK2 in vitro.
Unphosphorylated FMRP was recombinantly purified from BL21(DE3). Phosphorylation
reaction was performed with recombinant casein kinase 2 enzyme.

(E) Western blots showing YTHDF1-FMRP associations. Immunoprecipitations were
performed with FMRP antibody in HelLa cells overexpressing WT or phosphor-null mutant
(S499A) of FMRP.

(F) Proximity ligation assay quantifying interactions between YTHDF1/FMRP or

YTHDF1/RPS6.



51 Data are mean + s.e.m. (B), statistical analysis was performed using unpaired two-tailed t-test
52  with Welch’s correction. (F), statistical analysis was performed with Wilcoxon rank sum test. Exact

53 P values are indicated, and NS denotes P values > 0.05.
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55 Figure S3 RNase treatment precipitates condensates containing YTHDF1 and ribosomal

56  proteins. Related to Figure 3.
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(A) Top: representative images of the turbidity of HEK293T lysates treated by RNase and high
salt (NaCl) or 1,6-hexanediol (1,6-HD). Bottom: turbidity measured by OD 600 nm from
nanodrop.

(B) Analysis of proteins precipitated by RNase treatment. Top left: illustration of experimental
design. Bottom left: representative images of the RNase-induced granulation formation.
Right: silver stain of proteins present in the condensed phase in response to RNase
treatment.

(C) Distribution of YTHDF1, FMRP and RPS6 in the condensed phase in response to RNase
treatment. Quantifications of western blots were performed by normalizing intensities of
each band to that of “Input RNase —” lane of each protein assayed.

(D) Gene ontology terms enriched by condensation-dependent YTHDF1 protein partners. GO
enrichment was done with ClusterProfiler algorithm built in R.

(E) Western blots showing expression of different YTHDF1 mutants in HelLa cells and their
interactions with FMRP.

(F) Relative distribution of YTHDF1 in polysome fractions. YTHDF1 percentage in the
ribosomal fractions was quantified by normalizing intensity of YTHDF1 in 40S, 60S and

80S ribosome to total intensity. 1,6-hexanediol was added at 2% (w/v) concentration.

Data are mean + s.e.m. (C), statistical analysis was performed using unpaired two-tailed t-test

with Welch’s correction. Exact P values are indicated, and NS denotes P values > 0.05.



A 12071C,, = 0.71 pM B 3507 7= 0.a6 S icE c Tirme (min)

100 300 a O 10 20 30 40 50
5 a0 * 250 0.00
® 200 { et en tpngen, ooyt "eay g et
Z 60 & %e0 -0.104
2 40 E
5 o0 100 -0.201
Lol
= " . 50 £ 0,30
-201 : ; ; .5(0) $ 040]
10+ 102 100 102 0 10 20 30 40 50 0.50]
D A E F Q@ 0-60
1.0 SACconc. (M) o & & 9 g -
K,=5.3 uM = 0.0
z 2 ! 5§z ceFC[MESS S
£ 2a LRPAP1 [ v o 5 10]
g 08 i 80 GAPDH [ = | £ 15]
5 { g2 B 204
E B 2 SAC cone ] ] & T
B ol ’ . @ E T 45 0007 0006 £ #at
w00 w . g:- r] 25 /0 — 8 -3.0] ",
e a0 ;
‘ ‘ . g g'g * 3s5]
107 105 10° 100 10° g O Has
SAC (M) 220.0 A0 e T
GEF1G  LRPAP1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

Molar Ratio

76

77  Figure S4 SAC selectively inhibits YTHDF1 at low concentrations. Related to Figure 4.

78 (A) 1Cso of m°PA-containing mRNA (m°®A) to compete with YTHDF 1-target binding as measured
79 by AlphaScreen experiments. Different concentrations of unlabeled m®A-containing
80 MRNA were added to compete with fluorescence molecule for YTHDF1 as indicated.

81 (B) Z' scores to characterize the stability of small molecule inhibitor screening assay. The
82 experiment conditions (NCC and Gain) were repeated 40 times as indicated. Z' was
83 calculated based on the values of mP.

84 (C)ITC analysis between SAC and YTHDF1 at 25 °C. 1 mM SAC was titrated into 50 yM
85 YTHDFA1.

86 (D) The binding curve of SAC and YTHDF1 obtained via MST assay.

87 (E) RNA levels of YTHDF2 target (PRR5L) upon gradient SAC treatments by a concentration
88 gradient. PRR5L expressions were quantified by normalizing RNA levels to GAPDH.

89 (F) Top: western blots showing the protein levels of YTHDF1 targets (eEF1G and LRPAP1)
90 upon SAC treatments by a concentration gradient. Bottom: protein levels relative to

91 GAPDH quantified by Imaged (n = 3).



92 Data are mean * s.e.m. Statistical analysis was performed using unpaired two-tailed f-test with

93  Welch’s correction. Exact P values are indicated, and NS denotes P values > 0.05.
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Figure S5 YTHDF1 and YTHDF2 differ in their N-terminal intrinsically disordered domain

sequence and exhibit different fiber formation behaviors. Related to Figure 5.

(A) Prion-like score of YTHDF1 and YTHDF2 predicted by PLAAC.

(B) Thioflavin T (ThT) assay of YTHDF1 and YTHDF2 low-complexity domains. Freshly

purified proteins were incubated for 100 hours in native buffer.
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(C) Trinucleotide periodicity of P-sites identified with ribosome-protected fragments in
individual samples showing data quality of riboLace-seq.

(D) Scatter plots showing both ribosome-protected fragments (RPF) and input RNA level
(input) obtained by riboLace-seq. Data for WT and Fmr1 KO neurons were shown.

(E) Dot plots showing the gene ontology terms enriched for hyper-translated (left) or hypo-
translated (right) genes upon SAC treatment. Top biological process terms enriched were

shown.
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108 Figure S6 RiboLace measures translation events in organoid models. Related to Figure 6.

109 (A) Trinucleotide periodicity of P-sites identified with ribosome-protected fragments in
110 individual samples indicating the good data quality of RiboLace-seq.
111 (B) Scatter plots showing the changes in RNA translation in forebrain organoids upon SAC

112 treatment.



113 (C) Gene ontology terms enriched by hypo-translated genes in FXS organoids upon SAC

114 treatment.

115 (D) Representative images and quantification showing the synaptic density in FXS or control
116 (CTRL) organoids. Knockdown of YTHDF1 or SAC treatment was performed. The
117 synaptic density was calculated the number of SYNAPSIN | positive puncta per 100 um?
118 MAP2 (microtubule associated protein 2) positive area. Data are presented as mean +s.d
119 ( n =10 sections from at least from 2-3 organoids each condition). Statistical analysis was

120 performed using two-way ANOVA. Scale bars: 50 pm.



