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(A and B) Effect of lipid accumulation in PMφs and LPS stimulation on inflammatory gene mRNA expression. mRNA was analyzed 
by qPCR. (A) ±OxLDL accumulation (heat map z scores, n=3-4), (B) ±cholesterol (Chol) accumulation. In the -Chol group, PMφs 
were cultured for 24 h in media containing ethanol without cholesterol. For each gene, values were normalized to values without 
cholesterol and LPS (assigned a value of 100, dashed line, n=3). (C and D) Transcriptomic analysis of LPS-stimulated PMφs with 
and without oxLDL accumulation. Both groups were assessed 6 h after stimulation with LPS. (C) Principal component analysis of 
sample variance (n = 3) and (D) volcano plot illustrating enrichment of genes in the two groups. Genes with adjusted p values of 
<0.1 and a log2FC of <-0.5 or >0.5 are highlighted. (E) Effect of 2-deoxyglucose (2DG) pretreatment (1 h) on inflammatory gene 
expression in PMφs. Four groups were studied; with or without 2DG (+2DG or -2DG) and with or without 6 h LPS stimulation (+LPS 
6 h or -LPS). mRNA was quantified by qPCR. For each gene, data were normalized to the -2DG -LPS group (assigned a value of 1, 
dashed line, n=3-6). The mean ± SEM is plotted in all graphs. Statistical significance was determined by two-way ANOVA with 
Bonferroni correction (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).
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(A and B) Steady-state metabolomics from four groups of PMφs: ±oxLDL (24 h) and ±LPS stimulation (6 h). (A) Bar graphs showing 
metabolites with significant differences between groups. Values for each metabolite were normalized to the -oxLDL -LPS group (log2 
scale, n=18). Metabolites are organized by metabolic pathways: pentose phosphate pathway, Krebs cycle and anaplerotic (intermediary) 
reactions (glycolysis pathway metabolites are shown in Figure 2). The mean ± SEM is plotted. Statistical significance was determined by 
two-way ANOVA with Bonferroni correction (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). (B) Complete metabolomics data expressed as 
a heat-map with unbiased clustering analysis (n=18).
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(A) Effect of cholesterol (Chol) accumulation on HIF-1α stability in the nucleus of LPS-stimulated (6 h) PMφs. Representative immunoblots 
of nuclear extracts show a time course after cycloheximide (CHX) treatment. Values normalized to the corresponding Lamin A/C and the 
respective pre-CHX (0 min) time point are plotted (the 0 min time point was assigned a value of 1, n=3-4). The immunoblot below shows 
Gapdh and Lamin A/C abundance in whole cell, cytoplasmic and nuclear subcellular fractionated lysates. (B) Proteasomes, not 
lysosomes, are the primary organelles for HIF-1α degradation in cholesterol-loaded PMφs. PMφs were cultured in media with cholesterol 
or with ethanol (carrier) for 24 h, then stimulated with LPS (6 h). MG132 or Bafilomycin A1 (40 nM) were added 5 h after LPS stimulation to 
block protein degradation by the proteasome or lysosome, respectively. After 1 h (6 h post-LPS stimulation) cells were treated with CHX to 
block protein translation and nuclei were harvested at indicated intervals. Representative immunoblots and quantification are shown. 
Values normalized to the corresponding Lamin A/C and the respective pre-CHX (0 min) time point are plotted (the 0 min time point was 
assigned a value of 1, n=5). The graph on the far-right shows the normalized mean fluorescent intensity of lysotracker dye in 
LPS-stimulated PMφs treated with increasing concentrations of Bafilomycin A1 (timing was as described above). Based on this experi-
ment, the 40 nM concentration was selected for all experiments. (C, D) HIF-1α protein levels are dependent on cytoplasmic and mitochon-
drial reactive oxygen species (ROS). Representative immunoblots and quantification of a LPS time course show the effect of blocking 
NADPH oxidases with diphenyleneiodonium (DPI) (C) or scavenging of mitochondria-derived ROS by mitoTEMPO (D) on LPS-induced 
HIF-1α protein levels in PMφs. DPI or mitoTEMPO were added 1 h prior to LPS treatment. Values are normalized to the corresponding 
actin and the pre-LPS (0 min) time point of the control (-inhibitor) group (the 0 min time point was assigned a value of 1, n=3 for DPI and 
n=4 for MitoTEMPO). (E) Vhl mRNA expression in Vhlfl/fl and Lys2-Cre:Vhlfl/fl BMDMφs. qPCR analysis was performed and the data are 
normalized to mean values of the Vhlfl/fl group (assigned a value of 1, n=6-10, unpaired Student’s t-test). (F) OxLDL accumulation 
suppresses mRNA expression of NADPH-requiring apoenzymes in LPS-stimulated (6 h) WT, but not Nfe2l2-/-, BMDMφs. For each gene, 
qPCR data were normalized to WT cells without oxLDL (assigned a value of 1). Statistical comparisons using the Mann-Whitney U test 
were within each genotype (p values are blue for WT and green for Nfe2l2-/-, n=3-6). The mean ± SEM is plotted in all graphs. Unless 
indicated otherwise statistical significance was determined by a two-way ANOVA with Bonferroni correction (*P<0.05, **P<0.01).
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