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Primary Antibody Species Vendor/Cat# Dilution 

CDK2 Goat R&D Systems/AF4654 1:100 

CDK4 Rabbit Abcam/ ab108355 1:400 

CDK6 Rabbit Abcam/ab124821 1:250 

Cdt1 Rabbit Cell Signaling Technology (CST)/8064 1:200 

Cyclin A Mouse Santa Cruz/sc-271682 1:50 

Cyclin B1 Goat R&D Systems/AF6000 1:100 

Cyclin D1 Mouse Santa Cruz/sc-20044 1:100 

Cyclin E Mouse Santa Cruz/sc-247 1:50 

E2F1 Mouse Santa Cruz/sc-251 1:100 

Estrogen Receptor (ER) Rabbit Abcam/ab32063 1:200 

Ki67 Rabbit Abcam/ab15580 1:800 

p16 Rabbit Abcam/ab108349 1:400 

p19 (CDKN2D) Rabbit Invitrogen/PA5-83665 1:200 

p21  Goat R&D Systems/AF1047 1:200 

PanCK Mouse CST/4545 1:200 

Phospho-Retinoblastoma (pRB) Rabbit CST/8516 1:1000 

Progesterone Receptor (PR) Mouse Thermo Fisher/MA5-12658 1:400 

Retinoblastoma (RB) Mouse CST/9309 1:500 

 
Table S1. List of primary antibodies utilized in the 4i rounds of imaging along with host species, vendor 
information and dilution utilized in the experiment. 
  



 
  



 
  



 
  



 
  



  



 
  



 
  



 
  



 
  



  



 

  



 

  



DATA AND CODE AVAILABILITY 

Preprocessed single-cell 4i datasets are publicly available in the Zenodo repository (1). Source 

code for image preprocessing, including cell segmentation, transformation, alignment, and 

quantification are publicly available in the GitHub repository (2). Source code for computational 

analyses, including functions for preprocessing, sketching, integration, trajectory inference, and 

other computational analyses as described in this manuscript are publicly available in the 

GitHub repository: (3). 

 

SI MATERIALS AND METHODS 

Primary human breast tumor cells  
Under an Institutional Review Board (IRB) approved protocol, we obtained a tumor sample from 

a female patient with invasive lobular carcinoma that was positive for expression of the estrogen 

receptor (ER+) and negative for amplification of HER2 (HER2-). Written informed consent was 

obtained under a protocol approved by the Institutional Review Board at the University of North 

Carolina at Chapel Hill and included access to de-identified patient data which was obtained 

through an honest broker. The deidentified tumor specimen was obtained in the operating room 

suite within 15 minutes of resection. The sample was placed in DMEM/F12 (Gibco) media with 

1% Penicillin-Streptomycin and transferred immediately to the laboratory on ice. The tumor 

specimen was sharply minced into 2-4 mm fragments. Enzymatic dissociation was performed 

using Gentle Collagenase/Hyaluronidase (Stemcell Technologies Inc. 07919) in DMEM/F12 

supplemented with 5% BSA, Hydrocortisone (Stemcell Technologies Inc.), HEPES (Corning), 

and Glutamax (Gibco) for 16 hours at 37°C with cell agitation. The cells were gently centrifuged 

and washed twice with PBS supplemented with FBS and HEPES buffer. Cells were 

resuspended in ammonium chloride solution (Stemcell Technologies Inc. 07800) and incubated 

at 37°C with 5% CO2 to remove red blood cells. Cells were centrifuged and briefly trypsinized in 

warm 0.05% Trypsin-EDTA (Gibco) and DNase I. Cells were centrifuged and washed then 

resuspended in DMEM/F12 with 10% FBS. Cells were then strained using multiple rounds of 

sequential straining with 100 um and 40 um cell strainers to remove cell debris. folCells were 

counted using fresh trypan blue and the Countess cell counter (Life Technologies). Cells were 

plated on a glass 96-well plate coated with poly-L lysine at 100,000 cells per well. Cells were 

allowed to adhere for 48 hours at 37°C with 5% CO2 in DMEM/F12 media with 10% FBS. After 

24 hours, media and non-adherent cells were removed. DMEM/F12 media with 10% FBS was 



added containing vehicle, or palbociclib at 10 or 100 nM. Cells were incubated at 37°C with 5% 

CO2. After 24 hours of treatment, cells were fixed with PFA and 4i performed as described 

below. 

FFPE slides sectioned at 4 microns were obtained from clinical pathology for the primary 

ER+/HER2- tumor. Immunohistochemistry (IHC) for Ki-67 antigen was performed using the Ki-

67 Antibody (MIB-1, Dako) at 1:100 as we have previously described (4). A positive control was 

included. Ki-67 was scored according to the Ki-67 IHC MIB-1 pharmDx (Dako Omnis) 

Interpretation Manual for Breast Carcinoma. The Ki67 pharmDx score (%) was calculated as 

number of Ki-67 staining viable invasive (in situ disease was excluded) tumor cells divided by 

the total number of viable invasive tumor cells, multiplied by 100 for 2000 cells scored cells. The 

Ki67 staining for the primary tumor sample is shown in Figure 1B, which was scored as 14% 

Ki67+.  

Iterative immunofluorescence 

We followed the protocol of Gut et al. (5) with the following modifications. T47D (ATCC HTB-

133) or primary cells from human tumors were fixed by adding 8% PFA (Thermo Scientific 

cat#28908) directly to the samples (1:1 v/v with media) for a final concentration of 4% PFA and 

incubated for 30 minutes at room temperature (RT). Samples were rinsed 3 times with PBS 

(pH=7.4)(200 µL/well for 96 well format) and incubated with 0.1% Triton X-100 (50 

µL/well)(Fisher cat#BP151) for 15 minutes at RT to permeabilize the cells for 

immunofluorescence. Samples were then rinsed a single time with PBS and then incubated with 

Hoechst (Sigma cat#94403)(50 µL/well; 1:2500 dilution in PBS) for 15 minutes at RT to stain the 

DNA contained in the nucleus of the cells. Cells were rinsed once with PBS,100 µL/well of PBS 

was added to the wells, and cells were imaged. This ‘pre-stain’ is a key first step as it ensures 

that 1) the cells are well distributed in the well and 2) serves as a necessary quality control step 

to ensure that the cells are suitable for 4i. Samples deemed suitable for 4i were eluted, even 

though labeling with a primary antibody has not occurred. This is done as the elution process 

further opens the cells and permits optimal labeling. 

Elution of samples was carried out by first rinsing the samples three times with water. Elution 

buffer (EB) was prepared fresh from a pre-mix stock (L-Glycine [0.5M](Sigma cat#50046), Urea 

[3M](Sigma cat#U4883) and Guanidinum Chloride [3M](Invitrogen cat#15502-016)) combined 

with TCEP-HCl [70 mM](Sigma #646547) and HCl (Fisher cat#SA49) to obtain a pH to 2.5. 

Samples were washed three times with EB (50 µL/well) for 10 minutes at RT with gentle 



shaking. Of note, it is important not to exceed the number of washes or the duration of the 

washes as this may degrade the samples. Once elution was complete, the sample was rinsed 

one time with PBS prior to labeling with primary antibodies. 

Labeling with primary antibodies first requires incubation with sBS (4i blocking solution) for 1 

hour at room temperature (50 µL/well). The blocking solution was made up fresh and for every 

mL of solution one adds 14.6 mg Malemide [100 mM](Sigma cat#129585) and 5.35 mg NH4Cl 

[100 mM](Sigma cat#A9434) to conventional blocking solution (cBS)(1% BSA (Sigma 

cat#A7906) in PBS). Once incubation with blocking solution was complete, samples were rinsed 

one time with PBS and primary antibodies (50 µL/well) were applied for an overnight incubation 

at 4°C with gentle rocking/shaking. It is important to note that the antibody solution was made in 

a conventional blocking solution at a dilution that is empirically determined and may contain 

several different antibodies. This does not present an issue as long as the antibodies have 

different species of origins (see Table S1 for a list of primary antibodies used in this study). 

Alternatively, samples may be incubated with the primary antibody solution at room temperature 

for an hour or more, but labeling may not be as robust. Once the incubation with the primary 

antibody solution was complete, samples were rinsed one time with PBS, followed by three 

washes with PBS for 5 minutes each, followed by one final rinse in PBS. The final rinse with 

PBS was carefully aspirated off the sample to ensure all residual antibodies had been removed. 

Immediately following incubation with primary antibodies, fluorescent secondary antibodies 

specifically directed at the primary antibodies were applied. We used the Alexa series of 

secondary antibodies at a dilution of 1:500 in cBS along with Hoechst DNA stain at 1:2500. The 

secondary solutions (50 µL/well) were incubated for 1 hour at RT with gentle rocking and under 

conditions excluding light to prevent any photobleaching of the secondary fluorophores. Once 

this step was complete, cells were rinsed/washed in the same exact manner as the end of the 

primary antibody incubation step. During the wash step, fresh imaging buffer (IB) was prepared, 

which consists of N-acetylcysteine (NAC, Sigma cat#A7250) in water at a final concentration of 

700 mM and pH of 7.4. We added 100 µL/well of IB to the samples and immediately imaged the 

cells.  

Imaging was performed on a Nikon TiE inverted microscope utilizing a plan apo lambda 20X 

objective lens (NA = 0.75) with an Andor Zyla 4.2P sCMOS camera as a detector. NIS-

Elements HCA (high content analysis) JOBS software was utilized in the acquisition of images 

as it permits the imaging of entire wells in a fast and automated fashion. Upon completion of 

imaging, samples were eluted per the protocol described above and the next round of labeling 



and imaging was performed. It should be noted that every other round after elution, and before 

the next round of labeling, samples were imaged with the same exact experimental parameters 

with successful elution. This results in little to no fluorescent signal and ensures that the 

antibodies from the previous round have been successfully removed via the elution process and 

that no residual labeling is present to ‘contaminate’ the next round of imaging. This process of 

imaging and elution was repeated in an iterative manner to build a molecular profile for 

individual cells for each sample and treatment condition. 

Image processing and cell property quantification 

The image processing pipeline consisted of several steps to convert the raw images in the 

Elements nd2 format to a matrix of single cells with protein expression quantified in the nucleus, 

ring, and cytoplasm. The four primary steps were: 1) cell segmentation via the Cellpose 

algorithm (71) to define the nucleus for each round from the Hoechst staining, 2) cell segmented 

masks were aligned across all rounds of images, 3) punchmasks were manually drawn to 

exclude any debris (cellular or otherwise), and 4) cell properties were calculated from 

individual segmented nuclei for all the intensity channels. We followed the image preprocessing 

pipeline as described in the GitHub repository: (2). 

Data preprocessing 

To compare tumor cells from a cell culture model of ER+ breast cancer (T47D) and tumor cells 

from a primary tumor sample resected from a patient, we performed a series of preprocessing 

steps. Following image preprocessing and cell property quantification, we computationally 

filtered cells within the primary tumor samples to retain only the tumor epithelial cells by gating 

cells according to the median expression of ER and PR (see Figure S5). Feature selection was 

then performed by selecting the intersection of core cell cycle regulators profiled in both 

datasets (P = 13). Lastly, T47D and primary tumor datasets were standardized independently 

by mean centering and scaling to unit variance. The abbreviated experimental pipelines for the 

T47D and primary tumor samples are shown in Figure 1 and Figure S4, respectively. 

Cell cycle annotations 

Based on existing work annotating the cell cycle phases, the bimodal distribution of the ratio of 

phosphorylated to total RB levels (pRB/RB) was used to distinguish proliferative cells 

(G1/S/G2/M, high pRB/RB) from arrested cells (G0, low pRB/RB) (6–8). To agnostically set the 

pRB/RB threshold for both datasets without any underlying assumptions on the shape or spread 

of the distribution, we implemented a data normalization step outlined previously in Ref. (9), 



based on the idea that if a distribution is bimodal, there will be a region of higher density on one 

side of the median as compared to the other. More precisely, given a sorted list of expression 

values, xpRB/RB, we first computed the median of the distribution as m = median(xpRB/RB)). We 

then folded the left side of the distribution, xpRB/RB < m, over the right side of the median by 

zpRB/RB [xpRB/RB < m] = 2*m – xpRB/RB [xpRB/RB < m], where z is the new one-sided distribution. Next, 

we computed a specified percentile, p, of this one-sided distribution and subtracted the median, 

denoting this difference as a, z(pRB/RB, p) – m = a. The cutoff point of the second mode of the 

distribution (i.e., proliferative cells with high pRB/RB) was then defined according to the values 

of xpRB/RB that fell within the range (m – a, m + a). More specifically, we denote s = |(z ∈   (m – a, 

m + a))|, where | is the cardinality of the set within the specified range. We define the point 

separating the modes of the distribution, c, as c = s / n, where n is the total number of cells in 

the distribution. We selected a percentile value of (p = 0.2) for T47D datasets (Figures 1E, 
S1A), (p = 0.7) for an additional T47D replicate (Figure S2), (p = 0.25) for the T47D triplicate 

(Figure S3), (p = 0.7) for the primary tumor samples (Figures 3, S7), and (p = 0.7) for the 

primary tumor replicate (Figure S6) based on the distribution of pRB/RB expression values. 

For the proliferative cells, as indicated above by high expression of pRB/RB, cell cycle phase 

annotations (G1, S, and G2/M) were subsequently determined by fitting a three component 

Gaussian Mixture Model to the log-transformed measurements of DNA content, cyclin A, and 

cyclin B1. Unsupervised clusters were annotated as follows: G1 (DNA content = 2C, low cyclin 

A), S (DNA content = 2-4C, medium cyclin A), and G2/M (DNA content = 4C, high cyclin A). The 

Gaussian Mixture Model was implemented using the sklearn 0.24.1 package in Python.  

Sketching 

To identify a limited subset of representative cells for each dataset and facilitate a direct 

comparison cell cycle states across samples and treatment conditions, we selected an equal 

number of cells (n = 2,000) from each treatment condition (untreated, 10 nM, and 100 nM 

palbociclib) within a dataset (T47D, primary tumor) using kernel herding sketching (10). 2,000 

was chosen as it was near the maximum sample size in a respective treatment condition, with 

the primary tumor sample having 2,806 cells in the 100 nM condition. In the T47D triplicate 

sample (Figures S3), we sample 20,000 cells from each condition. Kernel herding sketching 

performs principled downsampling of the data and selects prototypical cells that are 

representative of the original distribution of cell type frequencies (e.g., cell cycle phases), while 

also ensuring rare cell types are sufficiently sampled. For each dataset, sketched cells from 

each condition were then vertically concatenated into a N × P matrix prior to downstream 



analysis, where N is the number of sketched cells across three treatment conditions (N = 6,000 

or 60,000) and P is the number of profiled proteomic imaging features (P = 14).  

Confidence intervals 

To identify shared and distinct mechanisms of resistance to palbociclib treatment, we examined 

the fractional arrest profiles of proliferating T47D and primary tumor cells as follows. For each 

dataset (T47D, primary tumor), we computed two sample t-tests assuming equal variance 

between each cell cycle effector in untreated proliferative cells and each treatment condition 

separately. More specifically, we computed 95% confidence intervals between proliferative 

untreated and 10 nM palbociclib cells, and 95% confidence intervals between proliferative 

untreated and 100 nM palbociclib cells.  

Logistic regression 

Logistic regression (11) is a supervised learning algorithm that can be used to predict the 

probability of a binary outcome (e.g., control, treated) based on a set of input features (e.g., 

proteomic imaging features). To ascertain changes in cell cycle regulators associated with 

palbociclib treatment, a logistic regression model was trained on the proteomic expression 

profiles of cells within each cell cycle phase (G0, G1, S, G2/M) for each dataset (T47D, primary 

tumor) to predict the treatment group of a tumor cell (control, treated). We join 10 nM and 100 

nM as one treatment condition to be predicted due to low counts of proliferating cells when 

creating separate models by cell cycle phase. In this case, the control group consisted of 

untreated cells, whereas the treated group consisted of cells treated with either concentration of 

palbociclib (10 nM, 100 nM). For each dataset and phase, nested ten-fold cross-validation was 

performed using stratified random sampling to assign cells within a particular phase to either a 

training or a test set. Using a grid search, hyperparameters were tuned within each fold prior to 

training the model, and cells were classified as control or treated from the test data. 

Classification performance was subsequently assessed by computing the area under the 

receiver operator characteristic curve (AUC ROC). Logistic regression was implemented using 

the sklearn v0.24.1 package in Python.  

Data integration with TRANSACT 

TRANSACT (Tumor Response Assessment by Nonlinear Subspace Alignment of Cell lines and 

Tumors) (12) is a nonlinear data integration method that can be used to identify a shared 

subspace of preclinical cell lines and patient-derived samples. Briefly, TRANSACT merges 

datasets by performing kernel principal components analysis (13) on each individual dataset, 



and then geometrically aligns these nonlinear principal components to extract principal vectors 

that represent similar nonlinear weighted combinations of expression profiles across data 

samples. A consensus data representation, corresponding to biological processes that are 

present within both preclinical cell lines and primary tumor samples, is then computed by 

optimizing the match between interpolated sets of principal vectors using geodesic flow (14). 

We performed data integration of T47D and primary tumor samples using TRANSACT to more 

robustly represent and compare cell cycle trajectories under palbociclib treatment. More 

specifically, we identified a shared latent space by first computing consensus features for T47D 

and primary tumor samples, and then projecting both datasets onto the consensus features. 

Here, the integrated dataset, FT47D,Tum, consisted of 12,000 cells and 14 shared consensus 

features. Of note, integration was performed on the sketched datasets to ensure that the joint 

latent space was not overwhelmed by one data modality when performing downstream 

analyses, such as dimensionality reduction and trajectory inference. TRANSACT was 

implemented using the transact-dr v1.0.1 package in Python, where cell similarity was defined 

using a radial basis function with a scaling factor, 𝛾  =  1/√500. 

PHATE dimensionality reduction 

To visualize high dimensional single-cell 4i profiles of the cell cycle, we performed nonlinear 

dimensionality reduction with PHATE (Potential of Heat-diffusion for Affinity-based Trajectory 

Embedding) on the integrated dataset of T47D and primary tumor samples. PHATE (15) is a 

nonlinear dimensionality reduction method that effectively represents the geometry of complex 

continuous data structures and has been shown previously (16–18) to successfully recapitulate 

proliferative and arrest cell cycle trajectories. PHATE was implemented using the phate v1.0.7 

package in Python by constructing a k-nearest neighbor graph (k = 150) according to pairwise 

Euclidean distances between all pairs of cells from the consensus feature space computed by 

TRANSACT, FT47D,Tum. 

Trajectory inference and alignment 
To characterize trajectories through the cell cycle under palbociclib treatment, we performed 

trajectory inference using Slingshot (19) on each dataset (T47D, primary tumor) and treatment 

condition (untreated, 10 nM, and 100 nM palbociclib). This trajectory inference method was 

chosen as it was shown previously (20) to outperform alternative methods on inferring simple 

continuous or branched cellular trajectories. Slingshot was implemented using the slingshot 

v2.7.0 package in R by 1) fitting a minimum spanning tree through cluster centroids defined by 

cell cycle phase annotations, and then 2) estimating pseudotime by projecting cells onto the 



principal curves fit through the PHATE embedding generated from the consensus feature space 

computed by TRANSACT. The root (starting) cluster was defined as the G0 phase. Across most 

inferred cellular trajectories, Slingshot identified the canonical ordering of cell cycle phases (G0 

to G1 to S to G2/M). However, we note that in two scenarios (untreated T47D and 100 nM 

palbociclib primary tumor), Slingshot identified a minimum spanning tree spanning from G0 to 

G1 to G2/M phases for the primary tumor and G0 to S to G2/M for the T47D, respectively. 

Given that trajectory inference was performed on cells from each treatment condition 

separately, we subsequently aligned the trajectories onto one common pseudotime axis using 

TrAGEDy to enable a direct comparison of continuous proteomic expression profiles across 

treatment conditions. TrAGEDy (Trajectory Alignment of Gene Expression Dynamics) (21) is a 

trajectory alignment method that can align cells from two independently generated trajectories 

and has been shown previously to enable robust comparisons of continuous expression trends 

across treatment conditions when aligning Slingshot trajectories from PHATE dimensionality 

reduced single-cell data. Methodologically, TrAGEDy first interpolates points at different regions 

of the trajectory to overcome any noise inherent to single-cell data. Next, the Spearman 

correlation is computed between the set of interpolated points along the two trajectories to 

define a trajectory similarity matrix. Lastly, TrAGEDy uses a dynamic time warping approach 

(22) with modifications to account differences in cell states in order to find the optimal alignment 

through the similarity matrix of interpolated points. This approach ensures that the original 

pseudotemporal ordering is preserved, while the distance between points across trajectories is 

minimized. For each dataset, we performed trajectory alignment with TrAGEDy by aligning the 

10 nM and 100 nM trajectories to one another, followed by alignment to the untreated trajectory. 

TrAGEDy was implemented with 50 interpolating points using the R code provided in the GitHub 

repository at: https://github.com/No2Ross/TrAGEDy.  

To visualize continuous feature expression trends, a generalized additive model (GAM) with a 

cubic spline basis function with shrinkage was fit for each feature as an outcome along the 

aligned pseudotime as sole covariate using the mgcv v1.8-42 package in R. Moreover, to 

identify an approximate transition point from arrest into proliferation, we computed the inflection 

point where approximately 50% of the cells were G0 and 50% of the cells were proliferative 

(non-G0) for each trajectory. To do so, we discretized the aligned pseudotime values into bins 

and then computed the ratio of G0/non-G0 cells for each bin. The transition point was defined 

as the aligned pseudotime value where this ratio was approximately one. For the untreated 

trajectories, we chose a smaller number of bins (n = 25) to find the inflection point due to the 

https://github.com/No2Ross/TrAGEDy


larger number of proliferative cells, whereas for the treated trajectories, we chose a larger 

number of bins (n = 50). Of note, this transition point was excluded for the 100 nM palbociclib 

primary tumor trajectory due to the small sample size of proliferative cells.  

CDK2 inhibitor co-treatment 
T47D ER+/HER2- breast cancer cells were obtained from the ATCC (catalog number HTB-133). 

Cells were seeded on a poly-D-lysine coated glass-bottom plate at 20,000 cells per well. Cells 

were treated with a range of CDK2 inhibitor CVT-313 (Selleckchem Cat# S6537) concentrations 

(0, 0.01, 0.5, 1, 2, 5, 7.5, 10, and 20 µM) for each of CDK4/6 inhibitor palbociclib (Selleckchem 

Cat# PD-0332991) treatment condition (0, 10, 50 nM) for 24 hours. Cells were fixed at room 

temperature with 4% PFA. Following image preprocessing and cell property quantification, 

T47D single-cell data were standardized by mean centering and scaling to unit variance. Across 

all treatment conditions, the bimodal distribution of the ratio of phosphorylated to total RB 

(pRB/RB) was used to determine pRB/RB positive cells. Here, the threshold was computed with 

percentile value (p = 0.4) as previously described (See cell cycle annotations). For each 

palbociclib treatment condition (i.e., control, 10 nM-, 50 nM- palbociclib), fold changes in the 

proportion of pRB/RB positive cells under treatment with CVT-313 were computed by 

normalizing the proportion of pRB/RB positive cells by the average proportion of the first three 

doses of CVT-313 (0, 0.01, 0.1 µM). To assess the statistical significance of the proportion of 

pRB/RB positive cells, a two-sided Wilcoxon rank sum test was performed between control and 

50 nM palbociclib treated cells using the ranksums function in scipy v1.10.1.    
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