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Supplementary Table 1. Detailed clinical features of the three pa2ents with LGI1 and 
CASPR2-an2body encephali2s. 
 

*FBDS = faciobrachial dystonic seizures  

 Patient #1 Patient #2 Patient #3 
Age, sex 84, F 53, M 71, M 

Days of symptoms prior 
to sample collection 

21 42 1041 

Seizure semiologies FBDS* FBDS*, sensory Rising epigastric 
sensations 

Cognitive features Amnesia, 
Personality change 

Amnesia, 
Personality change 

Amnesia, 
Personality change 

Other features Nil Nil Ataxia 
MRI features of 

encephalitis 
Nil Nil Nil 

CSF autoantibodies / 
oligoclonal bands 

(OCBs) 

LGI1-antibodies 
positive / OCBs  

Negative 

LGI1-antibodies 
positive / OCBs  

Negative 

CASPR2-antibodies 
positive / OCBs  

Negative 
CSF protein level  
(mg/mL; NR<0.6) 

0.25 0.29 0.24 

Leucocyte count  
(NR <5 / ml) 

2 0 0 

HLA-DRB1 allele 07:01 07:01 11:01 
Immunotherapy Corticosteroids (IV 

and PO), plasma 
exchange 

Corticosteroids (IV 
and PO), plasma 

exchange 

Corticosteroids (IV 
and PO), plasma 

exchange 
Duration of 

immunotherapy prior 
to sample collection 

Nil One dose of IV 
corticosteroids 

Nil 

Total duration of 
immunotherapies 

3 years 2 years 3 years 

Addenbrooke’s 
cognitive examination 

(/100) at onset and at 2 
years (/day) 

69 to 93 84 to 90 56 to 76 

Seizure frequency at 
onset and at 2 years 

(/day) 

28 to 0 75 to 0 20 to 0 

Modified Rankin Score 
at onset and 2 years 

3 to 1 3 to 1 4 to 2 
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Supplementary Figure 1. Ga&ng strategy, BCR quality control and cloning selec&on 

strategy. A. Sort strategy aimed to maximise capture of an2body-secre2ng cells, including 

those with low CD45 expression. First gate shows only CD45-CD138- cells were excluded and, 

thereacer, due to different autofluorescence and scafer characteris2cs, two separate ga2ng 

strategies were devised for cells with scaferlow (lymphocyte; lec column) and scaferhigh 

(other leukocyte; right column) characteris2cs incorpora2ng exclusion of 

CD4+IgD+CD14+dead cells (lec column) or CD14+dead cells (right column). Acer sor2ng 384 

cells, further sor2ng was restricted to scaferhigh cells and scaferlow CD19+ cells. Acer doublet 

exclusion, cells from both columns were sorted together using a Boolean OR gate. Rare 

events have been obscured from images to remove annota2ons. B. Acquired BCRs went 

through quality control to ascertain complete, paired BCR sequences. Cells were excluded if 

they contained: i) iden2cal but fewer light chain reads in neighbouring wells (contamina2on, 

n=15); ii) BCRs which were either incomplete (n=67) or showed >1 func2onal BCR (n=1); iii) 

non-IgG isotypes (n=139). From these, at least 1 per clonal group and a random 20% of non-

clonal cells were selected for cloning and monoclonal an2body (mAb) expression. Cells were 

selected using a random number generator. Data are shown per pa2ent (#1, #2 and #3) and 

combined. C. Expressed monoclonal an2bodies represen2ng members of nine tested clonal 

groups showed consistent intraclonal binding to either LGI1 (orange) or on 

immunohistochemistry (yellow, ‘Tissue+'). D. Representa2ve posi2ve (clonal group 84) and 

nega2ve (clonal group 354) LGI1-binding shown. All three tested members of clonal group 

354 were blindly iden2fied to bind rodent brain sec2ons with strikingly similar paferns. In 

cell-based assays, LGI1-tagged with EGFP colocalises with red AF594 goat an2-human Fc IgG 

specific staining on live cell-based assays (DAPI in blue). Results were only deemed LGI1- or 

CASPR2-reac2ve if mAbs did not bind to live cell-based assays expressing aquaporin-4 



(AQP4; AQP4-tagged with EGFP in green). These results show why a single member of each 

clone could be tested and reliably assumed to show an an2genic-specificity representa2ve 

of its clonal group. 

  



 

 

 

Supplementary Figure 2. LGI1 and CASPR2 and broader an&genic reac&vi&es of pa&ent-

derived mAbs. A. Data from Fig.2A showing all clusters of clonally related immunoglobulin 

heavy chain variable regions in the three pa2ents. Each dot represents one heavy chain, and 



its size represents the number of 2mes that heavy chain sequence was observed; two dots 

connected by a line are clonally related; dot colour represents specificity where gold is LGI1-, 

orange is CASPR2-reac2ve, yellow represents immunohistochemistry (IHC) and/or live 

neuron binding and black is no reac2vity to LGI1, CASPR2, IHC or neuron binding. Grey dots 

show those which were not expressed as mAbs. Specificity is assumed to be consistent 

within clonal groups. B. LGI1 and CASPR2-specificity (from Fig.2B) extended to include IHC 

and/or live neuron binding based on clonal sizes (1, 2-3 and ³4). C. UMAP from Fig.2C to 

incorporate data from individual pa2ents. D. Data from Fig.2C divided by individual donors 

(Fisher’s exact test p=0.043, p=0.012 and p=0.001 for the three pa2ents). 

  



 

 

Supplementary Figure 3. Expression of canonical ASC markers in LGI1 and CASPR2-reac&ve 

B cells. A. 4/4 LGI1 or CASPR2-reac2ve B cells express CD20 protein and HLADRA mRNA, 1/4 

express increased IRF4 RNA, none express BLIMP1 RNA and 3/4 express high levels of CD27 

RNA. Colour represents specificity, shape represents B-lineage subset and LGI1/CASPR2-

reac2ve B cells are represented in a larger size for visualisa2on. B. RNA velocity data divided 

for cells from LGI1- (gold) and CASPR2- (orange) an2body pa2ents. 

 



 

 

Supplementary Figure 4. BCR characteris&cs and intrathecal clonal trees. A. Pooled analysis 

of LGI1 and CASPR2-reac2ve (n=132) versus unreac2ve (n=34) BCR comparisons across 

parameters from Fig.4B shows more IgG4s (Fisher’s exact test, IgG4 vs non-IgG4, p=0.004) 

with have more posi2vely charged (Mann-Whitney U test, p=0.017) and longer heavy chain 

CDR3 regions (Mann-Whitney U test, p = 0.006) in the autoan2gen-reac2ve popula2on, 

without significant differences in light chain usage (Fisher’s exact test, p = 0.06), VH family 

and VL usage (ANOVA, p = 0.12 and 0.098, respec2vely)  or heavy plus light chain muta2on 

frequencies (Mann-Whitney U test, p = 0.06). B. Cloned and expressed monoclonal 



an2bodies (mAbs) from unmutated common ancestors (UCAs) were tested on live cell-based 

assays to determine LGI1 or CASPR2 specificity (representa2ve binding of UCAs and their 

paired mutated mAbs are shown; DAPI staining in blue, LGI1 or CASPR2-tagged with EGFP 

colocalises with red AF594 goat an2-human Fc-IgG). C. mAb endpoint concentra2ons show 

consistency within clonal groups but intraclonal varia2on. Dot colour represents endpoint 

dilu2on (blue through red; black = nega2ve), dot shape represents the cell type (as Fig.4E: 

memory B cells (MBC), preplasmablasts (prePB), plasmablasts (PBs), plasma cells (PCs) and 

unmutated common ancestors (UCA)), line length represents IgPhyML distance and black 

outline highlights the observed BCR which is the designated founder of the clonal group. All 

clonal groups which were tested for endpoint concentra2on are shown. IgG subclasses 

shown in light blue (IgG1), red (IgG2) and green (IgG4). 

  



Methods 

Smart-seq2  

Smart-seq2 (1) modifica2ons included removal of the bead cleanup step acer the RT-PCR 

steps, as well as tagmenta2on of the raw PCR product, changes that were introduced acer 

personal communica2on with Dr Simone Picelli, first author of the original protocol. All 

reac2ons were performed in 384 microwell PCR plates. Dispensing was performed with a 

Formulatrix Man2s and nano-pipeqng was performed with an SPT Labtech Mosquito LV. 

Sequencing of paired 74 base length fragments was performed on an Illumina NextSeq 

instrument with NextSeq v2.5 150 cycle high output kits. ERCC spike-ins (Thermo-Fisher) 

were used for normalisa2on.  

 

mAb binding to LGI1, CASPR2 and other neuronal substrates 

For cell-based assays, mAbs were incubated from 20 µg/ml with the extracellular domains of 

LGI1, CASPR2 and AQP4 transiently surface expressed on live HEK293T cells, all C-terminally 

fused to enhanced green fluorescent protein (EGFP), as described previously.(2) Next, 

transfected HEK293T cells were fixed with 4% formaldehyde, and visualised with Alexafluor 

594 conjugated an2-human IgG Fc an2bodies (709-585-098; Jackson Labs). Endpoint 

dilu2ons were defined as the final dilu2on at which binding was visible. Live cultured 

hippocampal neurons at day in vitro 25 and 4% formaldehyde fixed adult rat brain sec2ons 

were also incubated with LGI1/CASPR2-unreac2ve mAbs and visualised, as previously 

described.(3)  

 

Bioinforma&cs workflow 

Raw data handling, genera2on of BCR/TCR sequences, genera2on of RNA velocity data up to 

and including the velocyto analyses were done in Unix shell script. These analyses were 

conducted u2lizing high-capacity cloud compu2ng services, connected to the MRC WIMM 

Centre for Computa2onal Biology, the Na2onal Academic Infrastructure for Supercompu2ng 

in Sweden (NAISS) and the Swedish Na2onal Infrastructure for Compu2ng (SNIC) at Uppsala 

Mul2disciplinary Center for Advanced Computa2onal Science (UPPMAX). Below, all 

programming was conducted in R (4), unless otherwise specified. 

 

Flow cytometry analyses 



The indexed flow cytometry data were compensated using a FlowJo (Becton Dickinson, 

Franklin Lakes, New Jersey). A frozen standard PBMC control was used in each experiment 

for batch normaliza2on, which was performed using flowSpecs (5) and flowCore (6). IgD and 

CD4 were acquired in the same channel on the Sony MA900 sorter, and were 

bioinforma2cally separated, based on the assump2on that all CD19+ cells are CD4– and all 

IgD+ cells are CD19+. In protein-based visualiza2on UMAPs for figure 2, CD138 was given a 

rela2ve weight of 2, due to its significance in the separa2on of ASC from B cells.  

 

Cell type defini&ons 

Cell types were defined by index sort surface phenotype (SI Appendix Fig 1A). Acer exclusion 

of doublets, debris, dead cells and myeloid cells during the sort, CD3+CD138- cells were 

defined as T-cells, CD3-CD138+ cells were defined as ASCs and CD3+CD138+ cells were 

defined as doublets. CD3-CD138-CD19+ cells were defined as B-lineage cells: within this 

popula2on, those which were CD20-CD38+ were defined as ASCs, whereas all others were 

defined as B cells. This ga2ng strategy was verified using the SingleR package (7) and the 

Monaco dataset (8), with no B cells being SingleR-classified as ASCs and only 16 ASCs being 

classified as exhausted B-cells, all of which expressed CD138.  

 

Raw data handling 

BCL to fastq conversion was done with bcl2fastq (Illumina, San Diego, CA, USA). Trimming 

was performed with TrimGalore (9). For transcript defini2on and quan2fica2on, salmon was 

used (10) with Ensembl human coding- and non-coding RNA transcriptomes as well as ERCC 

standard transcripts included. Specific flags included in the analysis were “seqBias”, 

“validateMappings” and 4 rangeFactoriza2onBins. Conversion of Salmon results to a gene 

abundance matrix was performed with the R package tximport (11). For quality control of 

raw, trimmed and quasi-mapped files, fastqc (12) and mul2qc (13) were u2lized.  

 

Genera&on of BCR and TCR sequences 

To generate the BCR and TCR sequences, BraCeR (14) and TraCeR (15) were u2lized on the 

trimmed fastq files, respec2vely. Standard seqngs for human samples were used for these 

analyses.  

 



Genera&on of RNA velocity and cell cycle informa&on 

To generate the RNA velocity and cell cycle informa2on, the trimmed fastq files were first 

analysed with STAR (16) to generate SAM files. Here, the intronMo2f op2on was used for the 

outSAMstrandfield flag, as the data is unstranded. These were then analysed with velocyto 

(17) to create input data for scVelo (18). Velocyto was used with standard seqngs. Finally, 

the cell cycle algorithm in scVelo was used to define the cell cycle phase for each cell 

individually. scVelo was used in a python environment. For the scVelo filtering and 

normaliza2on, 12000 genes was used, as the goal was to catch genes involved in the cell 

cycle and the sequencing run was very deep, allowing for this high number. A minimal 

shared count of 20 was also used as a cutoff. The “moments” func2on was used with 30 

principal components and 30 neighbors. scVelo was run in a dynamical mode.  

 

Transcriptomic analyses 

Transcriptomic analyses, post tximport, were conducted primarily within the R OSCA 

framework (19). Specifically, packages ensembldb (20), SingleCellExperiment (19), Scran (21) 

and Scater (22) were used for metadata import, quality controls and visualisa2ons. Cell 

filtering was performed with manual seqngs, due to the considerable difference in 

transcriptome size between B cells and ASCs, as well as a donor/batch difference in ERCC 

spike in frac2on. 9% were filtered out due to low transcript count, few unique transcripts, 

and/or high percentages of mitochondrial transcripts and/or ERCC spike ins.  

 

Transcriptomic comparison between AE B-lineage cells and in vitro-differen&ated B-

lineage cells 

To further define the differen2a2on status of B-lineage cells, the in vitro plasma cell 

differen2a2on bulk RNA datasets from Kassambara et al (23) were used. Here, memory B-

cells, pre-plasmablasts, plasmablasts and plasma cells were used as input to a SingleR (7) 

model which was then used to classify each single cell in the AE dataset into the one of 

these four categories which it most closely resembled. 

 

BCR analyses 

The Immcanta2on framework was primarily used for analysis, with the package Alakazam 

(24) providing core R func2onality and together with Change-O used for clonality analyses 



(24). For clonal defini2ons, the standard Hamming-based Changeo distance metric was used, 

in combina2on with a density-based threshold and a binwidth of 0.02. Change-O was called 

through a Unix shell script. Shazam (24) was used for muta2on analyses and the full-length 

receptors, including the CDR3 and the FWR4 were used for these calcula2ons. Dowser (25), 

in combina2on with the IgPhyML (26) package were used to create and visualize clonal 

trees. IgPhyML was used through a Unix shell script-called Docker image (27) to get correct R 

package dependency setup. 

 

Public versus private BCR repertoire analysis 

Each of the LGI1/CASPR2-reac2ve an2bodies were probed against c. two billion human 

repertoire an2bodies from the Observed An2body Space database using KA-search (28, 29), 

returning the closest heavy CDR (IMGT defini2on (30)) sequence iden2ty to the query. When 

profiling the reference set of nine ASC-derived public SARS-CoV-2 an2bodies (31), OAS 

sequences from the repertoires of COVID-19 pa2ents were omifed from the search to 

generate an internal reference repertoire, as there were no available sequences in OAS from 

AE pa2ents. 

 

Clonal tree distance calcula&ons 

To create a common sta2s2c for the germline to the founder clone BCR distance and the 

intraclonal distances, the IgPhyML (26) algorithm were used. Here, the tree distance from 

the germline sequence to the least mutated observed CSF BCR sequence (founder), was 

calculated, as well as the longest intraclonal distance from this designated founder. 

 

Public TCR data analyses 

For the public data, 54,267 quality-controlled cells from 45 healthy individuals were studied 

(32). The corrected and filtered GEX matrix was merged and integrated using SCTransform 

with Seurat v4.1.2. Based on the same set of markers used by the authors, it was possible to 

resolve the cell clusters into their respec2ve cell types. TCR clonality analysis was performed 

on the CD4+ cluster for the 41 healthy controls with TCR data (excluding 4 healthy controls 

without matching TCR data). Frequencies for TCR clones > 1 cell for each of the healthy 

control was calculated with respect to the total CD4+ cells for that individual. 

 



Visualisa&ons 

The R Tidyverse package ggplot2 (33) was central to visualiza2on. The ggplot2-associated 

packages ggforce (34) and ggnetwork (35) were also used, as well as DepecheR (36). 

Heatmaps have been generated with the package pheatmap (37). 

 

Sta&s&cs and data presenta&on 

For calcula2ons of ANOVA, Wilcoxon signed ranks test and Wilcoxon rank sum tests (also 

known as Mann-Whitney U test), Fisher´s exact test, as well as correla2on analyses, the R 

stats package (4) was used. For calcula2on of odds ra2os, the epitools package (38) was 

used. Adobe Illustrator and BioRender were used for sta2s2cal analysis and data 

presenta2on. 
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