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Editorial Note: This manuscript has been previously reviewed at another journal that is not operating a 

transparent peer review scheme. This document only contains reviewer comments and rebuttal letters 

for versions considered at Nature Communications. 

 

REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

The authors present in their well written manuscript a comprehensive study of the serum proteome and 

transcriptome in patients with Covid-19 in Uganda. A subgroup of these patients were coinfected with 

HIV-1. They correlate their results to the severity of disease, infection with different SARS-CoV-2 variants 

and they compare the findings to Covid-19 patients with concomitant HIV-1 infections and to patients 

infected with influenza oder other respiratory infections. The findings have important implications for 

the understanding of the pathophysiology of Covid-19 and for the rationale of immunomodulatory 

infections. 

The manuscript is well written. Although the limit of references has been reached it would have been 

appropriate to discuss the results in comparison to the results of other omics analyses by other groups. 

There were only a few points to address: 

Line 253: The abbreviation (PCa should be explained at first appearance (not at second appearance in 

line 711) 

Heat maps 1b and 5c: What is the order of the patients (horizontal values)? Overall density of the Z 

scores? 

Error in Figure 4d: indicated legend d presumably is c as c is lacking. 

Error in Figure 7: the indicated figure 7e heatmap is missing. 

Table S5: It is unclear to which abundance is referring: to asymptomatic Covid 19 patients or to healthy 

controls (which are not indicated). This should be explained. 

 

Reviewer #2 (Remarks to the Author) 

Using circulating protein profiling (of 48 select markers) and blood transcriptomics (of a subset of 

patients N=100), Cummings and colleagues assess the immune profiles of a COVID-19 adult cohort from 

Uganda (N=306). Patients span the disease severity spectrum from asymptomatic to severe disease with 

fatal outcomes. Three aspects of this study are of potential interest. First, the analysis of HIV+ vs. HIV- 

patients, although the numbers are on the low side and HIV status itself is not a strong correlate of 

disease severity, thus the signal that emerges are weak at best. Second, this study covers a patient 

cohort from sub-Saharan Africa, which is relatively understudied using immune profiling approaches. 

However, without comparative analysis with other populations, it is not clear whether any population 

specific immune response characteristics were uncovered here. For example, the disease severity 



correlates emerged are largely consistent with those reported previously in other populations. Third, the 

authors also conducted a comparative analysis of COVID-19 with other contemporaneous respiratory 

infection patients in the same region. The study design is a strength, however, the presence of many 

potential confounding variables including medications and timing (see also below) and the relatively 

small sample sizes limit the immunological insights that can be obtained. For example, ref. 2 should be 

an informative dataset to help assess some of the differences further in conjunction with the rich COVID-

19 data sets available. 

Thus, while I applaud the authors’ efforts, a major limitation of this manuscript is the lack of conceptual 

and biological advances and insights, particularly given the extensive immune profiling data and 

observations already available on COVID-19 with 3+ years of intensive studies by many groups. The 

authors also did not cite many of the pioneering immune profiling papers, particularly those using and 

integrating circulating protein, multimodal single cell, transcriptomic, and metabolomic analyses that 

reported similar findings (e.g., see select references below – the authors should do a more thorough 

survey to ensure the key papers are cited). Another concern is the cross-sectional nature of the analysis 

without longitudinal information. The systemic immune response to COVID-19 is highly dynamic across 

many variables. At the minimum, time since symptom onset should be included as a co-variate (e.g., the 

authors have also shown in fig 3a that some of the circulating proteins they examine are associated with 

time across patients.) Without longitudinal data it is not clear whether any of the group-based 

comparisons are confounded by response kinetics. For example, type I IFNs and downstream responses 

diminish quickly after peaking in blood early (line 178, see refs. 1 and 4 below). Similarly, while IL-15 

levels can persist in the severe patients, IL-15 and associated transcriptional responses such as those in 

NK cells can be highly dynamic and dependent on disease severity (ref. 4 below). The same concerns 

apply to the comparison among COVID-19, influenza, and other respiratory infections (see ref. 2 below). 

Other points: 

“Escalating severity” – this term was used in a few places in the manuscript. It implies temporal changes, 

but I think the authors meant to suggest associative changes between severe and less severe groups. 

Please clarify and be more specific. 

A recurrent question I have throughout the manuscript is the extent by which the reported circulating 

protein marker or transcriptomic correlates are consistent with those reported by others. It is important 

to put findings into context, particularly in comparing to other populations/regions/countries including 

those from other regions of Africa. 

How was the subset of 100 patients chosen for transcriptomic profiling? 

In some of the analyses, a comparison was made between severe patients and the rest. Why not use the 

entire disease severity spectrum? 

Line 215: “cell lines” – those are not cell lines. 

Line 218: not clear what “reducing thymic selection” meant here, particularly given that blood, not 

thymic tissues, was used. In general, the manuscript tends to list many GSEA based gene set labels that 

may or may not reflect the underlying complex biology being captured by cell states or circulating 

protein levels in blood. The authors should go over and interpret these carefully, e.g., by using single cell 

data available in the public domain to delineate where the bulk signals might be coming from. 



 

Line 240 and on: the broad downregulation of translational, ribosomal, and other biosynthetic processes 

has been reported in responses to viral infections including COVID-19. Anything specific to this 

population? Is this linked to the IFN related down-regulation of biosynthetic capacity to counter viral 

replication? 

Overall, the cohort is quite male bias. It would be good to include a discussion on the caveats and 

implications of this bias. 

 

Reference: 
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Bristow, L., Tsang, O.T.-Y., et al. (2020). Systems biological assessment of immunity to mild versus severe 

COVID-19 infection in humans. Science. 

2. Dunning, J., Blankley, S., Hoang, L.T., Cox, M., Graham, C.M., James, P.L., Bloom, C.I., Chaussabel, D., 

Banchereau, J., Brett, S.J., et al. (2018). Progression of whole-blood transcriptional signatures from 

interferon-induced to neutrophil-associated patterns in severe influenza. Nat. Immunol. 19, 625–635. 

3. Kuri-Cervantes, L., Pampena, M.B., Meng, W., Rosenfeld, A.M., Ittner, C.A.G., Weisman, A.R., Agyekum, 
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5. Mathew, D., Giles, J.R., Baxter, A.E., Oldridge, D.A., Greenplate, A.R., Wu, J.E., Alanio, C., Kuri-

Cervantes, L., Pampena, M.B., D’Andrea, K., et al. (2020). Deep immune profiling of COVID-19 patients 

reveals distinct immunotypes with therapeutic implications. Science. 

6. Schulte-Schrepping, J., Reusch, N., Paclik, D., Baßler, K., Schlickeiser, S., Zhang, B., Krämer, B., Krammer, 

T., Brumhard, S., Bonaguro, L., et al. (2020). Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell 

Compartment. Cell. 

 

Reviewer #3 (Remarks to the Author): 

In this paper, the team provides a comprehensive plasma and whole blood transcriptomic analysis of a 

cohort of individuals with SARS-CoV-2 infection in Uganda. The report is well written and significantly 

adds to the literature with the clear characterization of the immunophenotype in this population which 

includes ~11% prevalence of concurrent HIV infection. The authors further add a comparison to 

individuals with influenza and other severe acute respiratory infections which adds specificity to their 

findings about COVID-19 pathogenesis. Overall, the paper adds key data on the pathogenesis of this 

infection outside of the high income country setting which is largely consistent with prior findings, but 

raises some questions for further exploration. 



 

1. A few additional details about the cohort would help interpretation of the findings: 

-Methods description of how asymptomatic patients were identified – routine screening, testing at 

hospital presentation for other reasons etc 

-Timing from onset of symptoms to sample collection – these are explored in Table S2 and Figure 3, but 

should be included in the demographics table. 

-Timing from use of corticosteroids to sampling (pre or post sampling) 

-Separate table defining the characteristics of the subset of individuals included in the RNAseq 

experiments, currently text description suggests similar structure of distribution, but this should be 

presented in a table. 

2. From a top level, it is not clear that the paper significantly addresses metabolism. The findings related 

to metabolic pathways are primarily around phagocytic respiratory burst and reactive oxygen species 

generation, which are likely related to neutrophil granule composition/degranulation. These are not per 

se related to the global regulation of immune cell metabolism as typically referenced to describe 

respiratory capacity in immune cell subsets. Would consider modifying that reference in the title. 

3. The analysis of the subgroup of participants with HIV is somewhat limited by the very low number of 

PLWH in the severe group (n=4) and some of these data seem to be overinterpreted. As the authors 

correctly identify, the small group and large proportion with fully suppressed viremia makes it difficult to 

conclude that this sample definitively answers questions about the role of HIV in SARS-CoV-2 responses 

and would suggest that the authors consider a few points to modify their data presentation or 

interpretation: 

Figure 1 - the models of proportional probabilities seem are limited by the very low numbers of 

individuals in the HIV positive group (severe with only 4) as suggested by the wide confidence intervals. 

The data presented in supplemental figure s2 are more clear, and would suggest either moving the 

subgroup severity analyses to supplemental or amending the text to indicate that these analyses have 

very limited power. 

Figure 3b – It appears that the reported p values here are the nominal p values and not the BH-adjusted 

ones in Supplemental Table s6. This should be clearly indicated as the other plots have presented 

adjusted p values. While this does mean that some of the reported comparisons are not significant in the 

fully adjusted model, I agree with the authors that the results are consistent with the overall cohort and 

the time course models in Figure 3a support this conclusion. But the lack of adjustment should be 

indicated. 

In the paragraph discussing the comparison of PLWH to the overall cohort, the text should be clarified to 

indicate that the majority of pathways in Figure 6b have FDR q values >0.1 and any associations are 

exploratory (currently written as “Beyond FDR q value” which is ambiguous). 

Overall, the data on PLWH is very valuable, but with very limited numbers and the presentation and 

discussion should reflect this. 

 



4. The section on disruption of protein synthesis suggests that impaired transcription and cytosolic 

mitochondrial translation in patients with severe COVID-19 may be related directly to SARS-CoV-2 

subversion of protein synthesis. The data cited to support this are from human lung alveolar cell lines 

that are directly infected. It is unclear how this would relate to a global immune response profile in 

which the vast minority of cells are likely directly exposed to or infected by SARS-CoV-2. To suggest that 

the peripheral immune profile is in support of viral entry, the authors would need to demonstrate that 

this signature is linked to some measure of virus activity in the plasma or in these cells.page 10 lines 237-

247. Would consider modifying this in the results and discussion or considering an alternate explanation 

of how infection and global inflammation may lead to a disruption in these pathways that is not directly 

dependent on infection of the cells with SARS-CoV-2. 

 

Minor comments 

References 15-18 which provide the data supporting high mortality rates in sub Saharan Africa are not 

cited in the text where they should be (line 111 which currently only has ref 13,14 listed). It is also of 

note that differences in mortality may reflect not a unique pattern of inflammation but rather resource 

constraints and this point is not clearly discussed. 

The COVID-19 cohort is 75% male, which should be noted as a limitation, given the association of male 

sex and/or gender with risk of mortality. Although the models are adjusted, minimal representation of 

females may limit the ability to identify relevant differences. 

In the section on the NLRP3 inflammasome, a discussion of the specific leading edge genes in the 

inflammasome pathway that lead to this pathway enrichment would be of interest (Lines 320-333). 

In Figure 5, panels g,i,k,l are somewhat redundant (i.e. oxygen use is part of the definition of severity) as 

they are all ways of demonstrating the enrichment of severe phenotypes in the CRS-2 group. Would 

consider choosing one way of presenting these data. 



Reviewer #1 

The authors present in their well written manuscript a comprehensive study of the serum 
proteome and transcriptome in patients with Covid-19 in Uganda. A subgroup of these 
patients were coinfected with HIV-1. They correlate their results to the severity of 
disease, infection with different SARS-CoV-2 variants and they compare the findings to 
Covid-19 patients with concomitant HIV-1 infections and to patients infected with 
influenza and other respiratory infections. The findings have important implications for 
the understanding of the pathophysiology of Covid-19 and for the rationale of 
immunomodulatory infections.  

We thank the reviewer for this comment.  

 
The manuscript is well written. Although the limit of references has been reached it 
would have been appropriate to discuss the results in comparison to the results of other 
omics analyses by other groups.  

We thank the reviewer for this comment. We have added a new paragraph to the discussion 
section comparing our main results with those of single-cell and genomic analyses of the 
COVID-19 host response with the relevant references added (Lines 458-476; see below). We 
have also emphasized these comparisons throughout multiple other sections of the discussion.  

“Over the course of the pandemic, systems biology-based investigations have dissected the 
host response to SARS-CoV-2 with high resolution, revealing immunopathological signatures 
associated with COVID-19 severity and potential treatment targets. Consistent with our findings, 
multiple single-cell and genomic analyses of peripheral blood have identified dysregulated 
myeloid cell immunity as a key feature of severe COVID-19 [8,32,33]. In addition to increased 
circulation of activated, IFN-stimulated monocytes, emergency granulopoiesis and neutrophil-
driven innate immune activation, often accompanied by expansion of aberrant, mature 
neutrophil subsets, has emerged as a common immunopathological finding in severe COVID-19 
[8,32,33]. Our multimodal analyses reinforce a distinct role for neutrophil immunity in COVID-19 
pathobiology, with neutrophil-driven pathways and neutrophil abundance highly enriched in 
severe COVID-19 and distinguishing this host response to that of influenza and other respiratory 
infections. Comprehensive single-cell analyses across the COVID-19 severity spectrum have 
also revealed increased quantities of circulating plasma cells/plasmablasts and IL-15-related 
exhaustion of circulating NK-cells in severe COVID-19, findings consistent with those observed 
in our cohort [33-35]. Reported T-cell signatures in severe COVID-19 have varied, with both 
extreme T-cell activation and T-cell lymphopenia, particularly of CD8+ cells, associated with 
severe illness and poor outcomes [10,36]. Our findings support this profile, with concurrent Th1-
pathway upregulation and T-cell activation, along with CD8+ T-cell depletion, observed in 
patients with severe COVID-19.” 

Line 253: The abbreviation PCA should be explained at first appearance (not at second 
appearance in line 711).  

We have made the suggested edit (Line 251).   

Heat maps 1b and 5c: What is the order of the patients (horizontal values)? Overall 
density of the Z scores? 



We thank the reviewer for the opportunity to clarify this point. Individual patients were first 
stratified by WHO clinical severity (Figure 1b) and COVID-19 Response Signature (Figure 5c). 
Within each of these strata, as per the ComplexHeatmap R package, individual patient columns 
were ordered based on differences in mean z-scores. We have added text to the legends for 
Figures 1b (Lines 1090-1091) and 5c (Lines 1177-1178) to clarify this.  

Error in Figure 4d: indicated legend d presumably is c as c is lacking.  

We thank the reviewer for this observation. We have corrected the Figure 4 legend (Line 1145).  

Error in Figure 7: the indicated figure 7e heatmap is missing.  

We thank the reviewer for this observation. The Figure 7e heatmap was removed at a prior 
stage of manuscript preparation but the legend remained. We have now removed the Figure 7e 
legend.  

Table S5: It is unclear to which abundance is referring: to asymptomatic Covid 19 
patients or to healthy controls (which are not indicated). This should be explained. 

Table S6 presents the abundance of immune cell populations as inferred from CIBERTSORTx 
digital cytometry deconvolution, stratified by COVID-19 severity (severe vs. non-severe). We 
have made this clearer in the table title.  

Reviewer #2 

Using circulating protein profiling (of 48 select markers) and blood transcriptomics (of a 
subset of patients N=100), Cummings and colleagues assess the immune profiles of a 
COVID-19 adult cohort from Uganda (N=306). Patients span the disease severity 
spectrum from asymptomatic to severe disease with fatal outcomes. Three aspects of 
this study are of potential interest. First, the analysis of HIV+ vs. HIV- patients, although 
the numbers are on the low side and HIV status itself is not a strong correlate of disease 
severity, thus the signal that emerges are weak at best. Second, this study covers a 
patient cohort from sub-Saharan Africa, which is relatively understudied using immune 
profiling approaches. However, without comparative analysis with other populations, it is 
not clear whether any population specific immune response characteristics were 
uncovered here. For example, the disease severity correlates emerged are largely 
consistent with those reported previously in other populations. Third, the authors also 
conducted a comparative analysis of COVID-19 with other contemporaneous respiratory 
infection patients in the same region. The study design is a strength, however, the 
presence of many potential confounding variables including medications and timing (see 
also below) and the relatively small sample sizes limit the immunological insights that 
can be obtained. For example, ref. 2 should be an informative dataset to help assess 
some of the differences further in conjunction with the rich COVID-19 data sets available. 

We thank the reviewer for their comments. With regards to our HIV comparisons, we 
acknowledge in the manuscript that the smaller sample sizes are a limitation. However, results 
generated using both soluble mediator and RNAseq data were generally consistent and provide 
key translational insights that warrant consideration in prior studies. We now frame this in the 
manuscript as follows (Lines 541-553):  



“Three years into the COVID-19 pandemic, the immunological and clinical effects of HIV co-
infection in COVID-19 remain incompletely understood. strengthening the interpretation of our 
findings. While key immunological features of severe COVID-19 (e.g., exaggerated innate 
immune activation, altered type 1 interferon responses, T-cell lymphopenia), may be 
exacerbated by HIV-related immune dysfunction, studies have shown comparable, and in some 
cases dampened, immune-inflammatory profiles in SARS-CoV-2/HIV co-infection [53-56]. In 
PLWH in our cohort, most of whom were virologically suppressed and had similar risk of severe 
illness, prognostic host responses were largely consistent when compared to those without HIV. 
Interestingly, however, in directly comparative analyses, PLWH showed a relatively diminished 
innate immune profile, including lower concentrations of IFN-α2 and multiple pro-inflammatory 
mediators, with upregulation of cytotoxic T-cell activation. Despite these differences, higher 
concentrations of IFN-α2, IL-6, and IL-1, all of which are associated with HIV-related immune 
activation, differentially scaled with more severe COVID-19 in PLWH.” 

Unfortunately, we did not have access to biological samples from high-income countries to 
perform comparative analyses with this population. However, given profound differences in a 
multitude of demographic, host, viral, environmental, health system, and treatment variables 
between these settings, we feel that any biological comparisons would be imprecise.  

For comparisons between patients with COVID-19 and influenza/non-influenza SARI, we 
adjusted our analyses by key demographic and clinical variables including age, sex, HIV status, 
and clinical severity. As corticosteroids were not used in the treatment of influenza/non-
influenza SARI patients we did not include this exposure as a co-variable in our models. As we 
discuss in the manuscript, our results were consistent with those reported in high-income 
countries, with concentrations of IL-6 and other pro-inflammatory mediators significantly lower in 
COVID-19 compared to other severe respiratory infections (see Ref. 31). Moreover, our findings 
of unique associations between COVID-19 and high concentrations of pro-fibrotic growth factors 
reinforce laboratory studies suggesting that severe SARS-CoV-2 infection, as opposed to 
influenza, may reprogram macrophages towards profibrotic phenotypes (see Ref. 60). We 
believe that these observations reinforce the validity of our findings.   

Regarding the helpful recommendation to increase discussion of similar, previously published 
reports, we address this comment in detail below.  
 
Thus, while I applaud the authors’ efforts, a major limitation of this manuscript is the lack 
of conceptual and biological advances and insights, particularly given the extensive 
immune profiling data and observations already available on COVID-19 with 3+ years of 
intensive studies by many groups. The authors also did not cite many of the pioneering 
immune profiling papers, particularly those using and integrating circulating protein, 
multimodal single cell, transcriptomic, and metabolomic analyses that reported similar 
findings (e.g., see select references below – the authors should do a more thorough 
survey to ensure the key papers are cited).  

We thank the reviewer for these comments. We have added a new paragraph to the discussion 
section comparing our main results with those of single-cell and genomic analyses of the 
COVID-19 host response with the relevant references added (Lines 458-476; see below). We 
have also emphasized these comparisons throughout multiple other sections of the discussion.  



“Over the course of the pandemic, systems biology-based investigations have dissected the 
host response to SARS-CoV-2 with high resolution, revealing immunopathological signatures 
associated with COVID-19 severity and potential treatment targets. Consistent with our findings, 
multiple single-cell and genomic analyses of peripheral blood have identified dysregulated 
myeloid cell immunity as a key feature of severe COVID-19 [8,32,33]. In addition to increased 
circulation of activated, IFN-stimulated monocytes, emergency granulopoiesis and neutrophil-
driven innate immune activation, often accompanied by expansion of aberrant, mature 
neutrophil subsets, has emerged as a common immunopathological finding in severe COVID-19 
[8,32,33]. Our multimodal analyses reinforce a distinct role for neutrophil immunity in COVID-19 
pathobiology, with neutrophil-driven pathways and neutrophil abundance highly enriched in 
severe COVID-19 and distinguishing this host response to that of influenza and other respiratory 
infections. Comprehensive single-cell analyses across the COVID-19 severity spectrum have 
also revealed increased quantities of circulating plasma cells/plasmablasts and IL-15-related 
exhaustion of circulating NK-cells in severe COVID-19, findings consistent with those observed 
in our cohort [33-35]. Reported T-cell signatures in severe COVID-19 have varied, with both 
extreme T-cell activation and T-cell lymphopenia, particularly of CD8+ cells, associated with 
severe illness and poor outcomes [10,36]. Our findings support this profile, with concurrent Th1-
pathway upregulation and T-cell activation, along with CD8+ T-cell depletion, observed in 
patients with severe COVID-19.” 

In addition, we believe that our multi-modal analyses across a long study period, spanning three 
SARS-CoV-2-variant driven phases of the pandemic, presents a major conceptual advance in 
understanding COVID-19 pathobiology. Although in vitro and computational experiments 
suggest that SARS-CoV-2 variants may differentially induce innate immune signaling and pro-
inflammatory cytokine production, little remains known about these relationships in vivo, a 
knowledge gap which our study directly addressed.  

Another concern is the cross-sectional nature of the analysis without longitudinal 
information. The systemic immune response to COVID-19 is highly dynamic across many 
variables. At the minimum, time since symptom onset should be included as a co-variate 
(e.g., the authors have also shown in fig 3a that some of the circulating proteins they 
examine are associated with time across patients.) Without longitudinal data it is not 
clear whether any of the group-based comparisons are confounded by response kinetics. 
For example, type I IFNs and downstream responses diminish quickly after peaking in 
blood early (line 178, see refs. 1 and 4 below). Similarly, while IL-15 levels can persist in 
the severe patients, IL-15 and associated transcriptional responses such as those in NK 
cells can be highly dynamic and dependent on disease severity (ref. 4 below). The same 
concerns apply to the comparison among COVID-19, influenza, and other respiratory 
infections (see ref. 2 below). 

We agree that the cross-sectional nature of our analyses is a limitation of our study. We have 
made this clear in the limitations paragraph of the discussion (Lines 591-593). As suggested by 
the reviewer, we included symptom duration prior to enrollment as a covariable in key 
multivariable models and incorporated this variable into other unsupervised analyses. This 
includes our proportional odds models examining the association between immune mediator 
concentrations and COVID-19 clinical severity (Table S3, Lines 180-183) and logistic models 
examining the association between cluster-derived COVID-19 Response Signature assignment 
and Delta phase COVID-19 (Lines 394-397). Moreover, median duration of illness prior to 



enrollment was identical among patients assigned to CRS-1 vs. CRS-2, suggesting that this 
variable is unlikely to drive differences between these subgroups (Table S13). Beyond these 
key analyses, we do not feel that adjusting all models for illness duration is optimal, as such an 
approach would require excluding asymptomatic patients (a clinically and biologically important 
group), thereby lowering sample sizes and power.   

“Escalating severity” – this term was used in a few places in the manuscript. It implies 
temporal changes, but I think the authors meant to suggest associative changes between 
severe and less severe groups. Please clarify and be more specific. 

We thank the reviewer for the opportunity to refine this terminology. We have removed the two 
uses of “escalating severity”, replacing this term with “increased severity,” and “more severe 
illness” (Lines 166, 171, 176-177).   

A recurrent question I have throughout the manuscript is the extent by which the 
reported circulating protein marker or transcriptomic correlates are consistent with those 
reported by others. It is important to put findings into context, particularly in comparing 
to other populations/regions/countries including those from other regions of Africa. 

We thank the reviewer for this comment. As above, we have added a new paragraph to the 
discussion section comparing our main results with those of single-cell and genomic analyses of 
the COVID-19 host response with the relevant references added (Lines 458-476). We have also 
emphasized these comparisons throughout multiple other sections of the discussion, including 
in the context of the only two other studies of similar nature from sub-Saharan Africa (Lines 541- 
546, Ref. 53-54). 

How was the subset of 100 patients chosen for transcriptomic profiling? 

As the pandemic evolved in real-time and Uganda experienced recurrent waves of COVID-19 
(differentiated by varying levels of community transmission and epidemic peaks), we sought to 
collect whole-blood RNA, simultaneously with serum, from consecutively enrolled patients 
during each wave. As we ultimately stratified our study period based on SARS-CoV-2 variant-
driven pandemic phases (using methodology consistent with that of U.S. CDC), we feel that the 
most appropriate description of the patients selected for transcriptomic profiling is a “subset of 
100 who had whole-blood RNA samples collected simultaneously with serum during each phase 
of the pandemic.” We have now clarified this in the revised manuscript and have added a new 
table (Table S5) to the supplement presenting the characteristics of patients who underwent 
transcriptomic profiling. As per this table and as stated in the manuscript (Lines 209-211, 
demographics, HIV and Delta phase prevalence, and clinical severity in this group were 
comparable to the larger study population. 

In some of the analyses, a comparison was made between severe patients and the rest. 
Why not use the entire disease severity spectrum? 

We thank the reviewer for this comment and the opportunity to respond. Nearly all of our soluble 
immune mediator analyses are presented and analyzed using the entire severity spectrum (i.e., 
Kruskal Wallis-H testing and multivariable proportional odds models with clinical severity 
[asymptomatic, mild, moderate, severe] as the ordinal dependent variable. For our gradient-
boosted machine models, we analyzed patients with severe vs. non-severe COVID-19 as these 
models, like other machine learning algorithms, have been optimized for binary classification. 



Similarly, for our differential gene expression analyses, the most widely utilized platforms (i.e., 
DESeq2, used in our study) have been optimized for binary outcomes. Thus, given these 
methodological considerations, as well as the importance of gaining insights into biological 
features of patients with severe COVID-19 (the highest risk clinical state), we used binary 
comparisons of severe vs. non-severe where indicated. For analyses of immune mediators over 
the reported course of symptoms (Figure 3), patients with asymptomatic infection were 
excluded. Given the relatively low numbers of moderately ill patients and similarities in mediator 
profiles between moderate and mildly ill patients, we combined these groups to optimize 
comparisons with severely ill patients.  

Line 215: “cell lines” – those are not cell lines. 

We thank the reviewer for the opportunity to refine terminology. We have edited the text and 
now refer to these as “cell populations” (Line 217).   
 
Line 218: not clear what “reducing thymic selection” meant here, particularly given that 
blood, not thymic tissues, was used. In general, the manuscript tends to list many GSEA 
based gene set labels that may or may not reflect the underlying complex biology being 
captured by cell states or circulating protein levels in blood. The authors should go over 
and interpret these carefully… 

We thank the reviewer for this important comment. We agree that given concerns of the 
imprecise nature of the GSEA “Thymic T-cell selection” pathway, we have removed this 
pathway from Figure 2a and have edited the relevant text (Lines 218-221). However, we 
emphasize that we carefully reviewed all GSEA outputs and those presented in Figures 2a-2c, 
4f, and 6b were included to highlight enrichment of pathologically important and diverse 
pathways, in accordance with similar high-quality manuscripts that have reported on pathway 
enrichment in COVID-19.  
 
Line 240 and on: the broad downregulation of translational, ribosomal, and other 
biosynthetic processes has been reported in responses to viral infections including 
COVID-19. Anything specific to this population? Is this linked to the IFN related down-
regulation of biosynthetic capacity to counter viral replication? 

We thank the reviewer for this comment. We highlight in the manuscript (Lines 524-537) that in 
vitro experiments suggest that SARS-CoV-2 modulates host protein synthesis both to enhance 
viral mRNA translation and inhibit production of antiviral mediators. SARS-CoV-2 nonstructural 
proteins (e.g., Nsp1) are central to this process, accelerating degradation of host mRNAs and 
impairing nuclear mRNA export to attain a virally dominated mRNA pool. In parallel, Nsp1 
preferentially inhibits host translation, including of type I interferons and other antiviral 
mediators, though blockade of mRNA entry channels and inhibitory binding to ribosomal 
subunits. 
 
Overall, the cohort is quite male bias. It would be good to include a discussion on the 
caveats and implications of this bias. 

We have added text to the discussion section of the manuscript (Lines 606-609) with a new 
reference, stating that “…most patients enrolled in our study were male. As differences in 
prognostically-relevant immune responses may be present between males and females with 



COVID-19, further studies are needed to better define the role of sex in SARS-CoV-2 
immunopathology [62].” 

Reviewer #3 

In this paper, the team provides a comprehensive plasma and whole blood 
transcriptomic analysis of a cohort of individuals with SARS-CoV-2 infection in Uganda. 
The report is well written and significantly adds to the literature with the clear 
characterization of the immunophenotype in this population which includes ~11% 
prevalence of concurrent HIV infection. The authors further add a comparison to 
individuals with influenza and other severe acute respiratory infections which adds 
specificity to their findings about COVID-19 pathogenesis. Overall, the paper adds key 
data on the pathogenesis of this infection outside of the high income country setting 
which is largely consistent with prior findings, but raises some questions for further 
exploration. 

We thank the reviewer for these comments.  

A few additional details about the cohort would help interpretation of the findings: 
-Methods description of how asymptomatic patients were identified – routine screening, 
testing at hospital presentation for other reasons etc. 

We have added additional details to the methods section of the manuscript (Lines 627-630) to 
clarify this point. Patients with SARS-CoV-2 infection nationwide were referred to our study site 
for management and monitored isolation, the latter for those with asymptomatic infection 
identified through routine screening at designated surveillance points (e.g., airports, border 
crossings).  

 
-Timing from onset of symptoms to sample collection – these are explored in Table S2 
and Figure 3, but should be included in the demographics table.  

As suggested, we have added illness duration prior to enrollment to the main manuscript table 
(Table 1).   

 
-Timing from use of corticosteroids to sampling (pre or post sampling) 

Unfortunately, due to inconsistent documentation of medication administration timing, we do not 
have access to the precise timing of corticosteroid exposure. We have added this as a limitation 
to the limitations section of the manuscript discussion (Lines 607-609), stating that “…while we 
determined corticosteroid exposure for all patients, we were unable to precisely define the 
timing of administration relative to enrollment, which could have affected immune responses.”  

 
-Separate table defining the characteristics of the subset of individuals included in the 
RNAseq experiments, currently text description suggests similar structure of 
distribution, but this should be presented in a table. 

We have added a new table to the supplement (Table S5) presenting the characteristics of the 
subset of patients included in RNAseq analyses. As per this table and as stated in the 
manuscript (Lines 207-211), demographics, HIV and Delta phase prevalence, and clinical 



severity in this group were comparable to the larger study population. 
 
From a top level, it is not clear that the paper significantly addresses metabolism. The 
findings related to metabolic pathways are primarily around phagocytic respiratory burst 
and reactive oxygen species generation, which are likely related to neutrophil granule 
composition/degranulation. These are not per se related to the global regulation of 
immune cell metabolism as typically referenced to describe respiratory capacity in 
immune cell subsets. Would consider modifying that reference in the title. 

We thank the author for this comment. We have replaced the term “immunometabolic” with 
“immune” in the title, which now reads: “Multimodal host profiling across the COVID-19 severity 
spectrum in Uganda reveals prognostic immune signatures that persist in HIV co-infection and 
diverge by variant-driven pandemic phase.” We have also replaced “immunometabolic” with 
“immune” throughout the manuscript.  

Figure 1 - the models of proportional probabilities seem are limited by the very low 
numbers of individuals in the HIV positive group (severe with only 4) as suggested by the 
wide confidence intervals. The data presented in supplemental figure s2 are more clear, 
and would suggest either moving the subgroup severity analyses to supplemental or 
amending the text to indicate that these analyses have very limited power. 

We thank the reviewer for this important comment. We have edited the text to emphasize the 
limited power in our proportional odds models analyzing the interaction between HIV status and 
immune mediators and risk of more severe COVID-19 (Lines 200-201).  
 
Figure 3b – It appears that the reported p values here are the nominal p values and not 
the BH-adjusted ones in Supplemental Table s6. This should be clearly indicated as the 
other plots have presented adjusted p values. While this does mean that some of the 
reported comparisons are not significant in the fully adjusted model, I agree with the 
authors that the results are consistent with the overall cohort and the time course 
models in Figure 3a support this conclusion. But the lack of adjustment should be 
indicated.  

We have made clear in the Figure 3b legend (Lines 1134-1135) that P-values in the figure 
reflect Wilcoxon rank-sum tests unadjusted for multiple comparisons with BH-adjusted P-values 
included in Table S7. 
 
In the paragraph discussing the comparison of PLWH to the overall cohort, the text 
should be clarified to indicate that the majority of pathways in Figure 6b have FDR q 
values >0.1 and any associations are exploratory (currently written as “Beyond FDR q 
value” which is ambiguous). 

We have edited the text to make clear that the majority of the pathways in Figure 6b have FDR 
q-values >0.10 (Line 415). We have also added text to the Figure 6 legend clarifying this (Lines 
1217-1218).    
 
The section on disruption of protein synthesis suggests that impaired transcription and 
cytosolic mitochondrial translation in patients with severe COVID-19 may be related 
directly to SARS-CoV-2 subversion of protein synthesis. The data cited to support this 



are from human lung alveolar cell lines that are directly infected. It is unclear how this 
would relate to a global immune response profile in which the vast minority of cells are 
likely directly exposed to or infected by SARS-CoV-2. To suggest that the peripheral 
immune profile is in support of viral entry, the authors would need to demonstrate that 
this signature is linked to some measure of virus activity in the plasma or in these 
cells.page 10 lines 237-247. Would consider modifying this in the results and discussion 
or considering an alternate explanation of how infection and global inflammation may 
lead to a disruption in these pathways that is not directly dependent on infection of the 
cells with SARS-CoV-2. 
 
We thank the reviewer for this important point. We have edited the corresponding section of the 
discussion substantially (Lines 524-537). The relevant text now states: “In vitro experiments in 
human alveolar epithelial cells suggest that SARS-CoV-2 modulates host protein synthesis, 
both to enhance viral mRNA translation and inhibit production of antiviral mediators [23]. SARS-
CoV-2 nonstructural proteins (e.g., Nsp1) are central to this process, accelerating degradation 
of host mRNAs and impairing nuclear mRNA export to attain a virally dominated mRNA pool 
[23,50]. In parallel, Nsp1 preferentially inhibits host translation, including of type I interferons 
and other antiviral mediators, through blockade of mRNA entry channels and inhibitory binding 
to ribosomal subunits [51]. Consistent with these findings, we observed evidence of multifaceted 
impairment of cytoplasmic and mitochondrial protein synthesis in severe COVID-19. While 
nonstructural proteins of SARS-CoV-2 likely play a key role in infected alveolar epithelial cells, 
mechanisms underlying this observation in peripheral blood cells are unclear. Although SARS-
CoV-2 can infect blood monocytes, we were unable to evaluate this in our samples. As has 
been reported in other severe viral infections, processes independent of viral cell entry, such as 
those activated in response to inflammatory or oxidative stress, may have blunted host 
translation [52].” 

We have also edited text in the corresponding results section (Lines 237, 239) clarifying that the 
studies we refer to were in SARS-CoV-2-infected alveolar epithelial cells whereas our results 
were generated from peripheral blood samples.  
 
Minor comments 
References 15-18 which provide the data supporting high mortality rates in sub Saharan 
Africa are not cited in the text where they should be (line 111 which currently only has ref 
13,14 listed). It is also of note that differences in mortality may reflect not a unique 
pattern of inflammation but rather resource constraints and this point is not clearly 
discussed. 

We thank the reviewer for highlighting this. We have moved up these references (now 11-15) to 
this part of the manuscript (Lines 110-112). We have also added text to this sentence to 
acknowledge limited critical care capacity in the region. This sentence now states: “In sub-
Saharan Africa, a low-income region where SARS-CoV-2 vaccine coverage remains poor and 
critical care capacity is limited, fatality rates for severe COVID-19 are among the highest in the 
world [11-15].” 
 
The COVID-19 cohort is 75% male, which should be noted as a limitation, given the 
association of male sex and/or gender with risk of mortality. Although the models are 



adjusted, minimal representation of females may limit the ability to identify relevant 
differences. 

We have added text to the discussion section of the manuscript (Lines 606-609) with a new 
reference, stating that “…most patients enrolled in our study were male. As differences in 
prognostically-relevant immune responses may be present between males and females with 
COVID-19, further studies are needed to better define the role of sex in SARS-CoV-2 
immunopathology [62].” 
 
In the section on the NLRP3 inflammasome, a discussion of the specific leading edge 
genes in the inflammasome pathway that lead to this pathway enrichment would be of 
interest (Lines 320-333).  

We have added the following text to the results section of the manuscript (Lines 325-330) to 
specify the 10 leading edge genes: “While activation of many of these processes was observed 
in patients with severe COVID-19, inflammasome assembly was highly enriched in patients with 
Delta phase COVID-19, with genes encoding multiple pattern recognition receptors (NLRP6, 
NLRP1, TLR6, TLR4, AIM2, TREM2), Pyrin (MEFV), caspase recruitment domain proteins 
(CARD8), cytoplasmic stress granules (DDX3X), and phospholipase C (PLCG2) comprising the 
core pathway enrichment set.”  

 In Figure 5, panels g,i,k,l are somewhat redundant (i.e. oxygen use is part of the 
definition of severity) as they are all ways of demonstrating the enrichment of severe 
phenotypes in the CRS-2 group. Would consider choosing one way of presenting these 
data. 

We thank the reviewer for this comment. Respectfully, we feel that each of these panels 
presents different indicators of clinical severity and outcomes and warrant inclusion in the figure. 
Panel 5g presents the proportional distribution of mild, moderate, and severe COVID-19 by 
CRS. Panel 5i presents the aggregate frequencies of not only severe COVID-19 or oxygen use 
but inability to ambulate (a widely utilized marker of severe illness and established predictor of 
inpatient mortality in resource-limited settings) and severely impaired functional status (as per 
Karnofsky Performance Status). Among patients who required oxygen therapy, Panel 5k 
presents the distribution of oxygen flow rates, showing that patients in CRS-2 required 
significantly higher levels of oxygen support, suggestive of more severe respiratory failure. 
Finally, panel 5l presents the cumulative incidence of poor in-hospital outcome among all 
patients with symptomatic COVID-19 and those only with severe illness.  

 



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

The authors have well adapted their manuscript by correcting errors and addressing the concerns by 

extending the discussion. 

 

Reviewer #3 (Remarks to the Author): 

In this revision, the authors have sought to answer multiple of the issues raised in review. Although they 

have not been able to fully address all of the concerns, in part due to the limitations of available samples 

and data, they have substantively responded to the majority of the questions that were raised. 

Specifically they have 

-Included the time to symptom onset in Table 1 which shows the differences across severity 

-Addressed the limitations of the lack of data on timing of corticosteroid administration in their 

discussion 

-Added a table with the full characteristics of the subgroup with transcriptomics, which do appear 

comparable to the primary analytic group 

-Amended the title to better represent the content of the paper (eliminating metabolic). 

I do feel that the authors could still be more explicit in acknowledging the limitations of the numbers in 

the HIV analysis in both the reporting and the interpretation of those findings. However, they have 

added the appropriate statistical information to indicate where the results fall below corrected 

thresholds so that a careful reader can appreciate the statistical uncertainty. 

Overall, while there are some parts of the paper that are overlapping with prior analyses (as raised by 

reviewer 2), there are unique aspects of the study, in particular related to the participants studied and 

the additional data from outside of resource rich settings. 

 

Reviewer #4 (Remarks to the Author): 

The study by Cummings et al. performed a system-level proteome and transcriptomics analysis of COVID-

19 patients from Uganda. The research methodology employed in this study is commendable, 

representing one of its key strengths. Nevertheless, several factors could potentially muddle the results 

and restrict the conclusion of the study. I agree with reviewer#2 that factors encompassing a wide range 

of variables, such as medication usage and the timing of data collection, can potentially weaken the 

study. Furthermore, the study is hampered by its reliance on a relatively small sample size, specifically 

the PLWH. These limitations collectively impede how much we can draw meaningful insights, specifically 

towards the HIV interpretation. I have a few major points. 



1. The transcriptomics were done on whole blood. As presented in the new Table S6, there were 

differences between the cell types Plasma, CD8, Monocytes, and Neutrophils between the severe and 

non-severe patients. For all the DeSeq analyses, these cell types should be adjusted. 

2. There are many confounders in the small data set, and authors were adjusted for some. I suggest 

authors use the RUVseq 

(https://bioconductor.org/packages/release/bioc/vignettes/RUVSeq/inst/doc/RUVSeq.html) rather than 

conventional DeSeq2. 

3. The immune mediator part, Table S4, shows that there are only four severe patients and six moderate, 

I don’t think the statistics with those numbers give any insight. Moreover, HD48 has an Inter-assay 

variability ranging between 5-20% depending on the analyte and quality of samples. 



Reviewer #1 

The authors have well adapted their manuscript by correcting errors and addressing the 

concerns by extending the discussion. 

Thank you. 

Reviewer #3 

In this revision, the authors have sought to answer multiple of the issues raised in 

review. Although they have not been able to fully address all of the concerns, in part due 

to the limitations of available samples and data, they have substantively responded to 

the majority of the questions that were raised. 

 

Specifically they have  

-Included the time to symptom onset in Table 1 which shows the differences across 

severity 

-Addressed the limitations of the lack of data on timing of corticosteroid administration 

in their discussion 

-Added a table with the full characteristics of the subgroup with transcriptomics, which 

do appear comparable to the primary analytic group 

-Amended the title to better represent the content of the paper (eliminating metabolic). 

 

I do feel that the authors could still be more explicit in acknowledging the limitations of 

the numbers in the HIV analysis in both the reporting and the interpretation of those 

findings. However, they have added the appropriate statistical information to indicate 

where the results fall below corrected thresholds so that a careful reader can appreciate 

the statistical uncertainty.  

We thank the reviewer for their comments. We have added new text to the Results and 

Discussion sections of the manuscript emphasizing limitations in reporting and interpretation of 

the HIV analyses given the small number of persons living with HIV.  

For the Results section (Lines 198-204), this text now states: “Although limited by the relatively 

small proportion of PLWH enrolled in our study, analyses using both methods were consistent 

with those in the larger cohort, suggesting that prognostic host responses in COVID-19 were 

generally conserved in PLWH (Table S4 and Figure S2 in supplement). While further limited by 

the small number of PLWH with severe illness, interaction models also suggested that higher 

concentrations of IFN-α2, IL-6, CCL3, IL-1a, and IL-1Ra were associated with more severe 

COVID-19 in PLWH (Figures 1f and S3 in supplement).” 

For the Discussion section (Lines 556-557), we have added a new sentence that states: “Given 

the relatively small proportion of PLWH in our cohort, these hypothesis-generating findings 

should be interpreted with caution.” 

 

Overall, while there are some parts of the paper that are overlapping with prior analyses 

(as raised by reviewer 2), there are unique aspects of the study, in particular related to 

the participants studied and the additional data from outside of resource rich settings. 

Noted. We agree. Thank you.  



Reviewer #4 

The study by Cummings et al. performed a system-level proteome and transcriptomics 

analysis of COVID-19 patients from Uganda. The research methodology employed in this 

study is commendable, representing one of its key strengths. Nevertheless, several 

factors could potentially muddle the results and restrict the conclusion of the study. I 

agree with reviewer#2 that factors encompassing a wide range of variables, such as 

medication usage and the timing of data collection, can potentially weaken the study. 

Furthermore, the study is hampered by its reliance on a relatively small sample size, 

specifically the PLWH. These limitations collectively impede how much we can draw 

meaningful insights, specifically towards the HIV interpretation. I have a few major 

points. 

We thank the reviewer for these comments. First, regarding the timing of sample collection, we 

included symptom duration prior to enrollment (i.e., sample collection) as a covariable in key 

multivariable models and incorporated this variable into other unsupervised analyses. This 

includes our proportional odds models examining the association between immune mediator 

concentrations and COVID-19 clinical severity (Table S3) and logistic models examining the 

association between cluster-derived COVID-19 Response Signature assignment and Delta 

phase COVID-19 (Lines 397-400). Moreover, median duration of illness prior to enrollment was 

identical among patients assigned to CRS-1 vs. CRS-2, suggesting that this variable is unlikely 

to drive differences between these subgroups (Table S13).  

Second, while we determined corticosteroid exposure for all patients, we do not have access to 

the precise timing of corticosteroid exposure due to inconsistent documentation of medication 

administration timing. This limitation is included in the corresponding section of the manuscript 

discussion (Lines 613-615), stating that “…while we determined corticosteroid exposure for all 

patients, we were unable to precisely define the timing of administration relative to enrollment, 

which could have affected immune responses.”  

In response to comments from Reviewer #3, we have added new text to the Results and 

Discussion sections of the manuscript emphasizing limitations in reporting and interpretation of 

the HIV analyses given the small number of persons living with HIV.  

For the Results section (Lines 198-204), this text now states: “Although limited by the relatively 

small proportion of PLWH enrolled in our study, analyses using both methods were consistent 

with those in the larger cohort, suggesting that prognostic host responses in COVID-19 were 

generally conserved in PLWH (Table S4 and Figure S2 in supplement). While further limited by 

the small number of PLWH with severe illness, interaction models also suggested that higher 

concentrations of IFN-α2, IL-6, CCL3, IL-1a, and IL-1Ra were associated with more severe 

COVID-19 in PLWH (Figures 1f and S3 in supplement).” 

For the Discussion section (Lines 556-557), we have added a new sentence that states: “Given 

the relatively small proportion of PLWH in our cohort, these hypothesis-generating findings 

should be interpreted with caution.” 

 

As discussed below, we have also further adjusted our primary immune mediator and gene 

expression analysis (severe vs. non-severe COVID-19) by SARS-CoV-2 phase (updated 

Figures 2A-2C and Tables S2-S3). These analyses are now adjusted for age, sex, HIV status, 



SARS-CoV-2 phase, and pre-enrollment illness duration (the latter in Table S3). The results are 

consistent with our prior findings.  

 

1. The transcriptomics were done on whole blood. As presented in the new Table S6, 

there were differences between the cell types Plasma, CD8, Monocytes, and Neutrophils 

between the severe and non-severe patients. For all the DeSeq analyses, these cell types 

should be adjusted. 

We thank the reviewer for this comment. Unfortunately, our study was not powered for cell-type 

specific differential gene expression analyses. Simulation studies show that the two most 

commonly used algorithms designed for cell type-specific gene expression analysis of RNAseq 

data (CARseq, TOAST) are under-powered at our sample size (Jin et al., Nat Comput Sci. 

2021, PMID: 34957416). TOAST does not provide fold changes, which would also prevent us 

from applying pathway enrichment analysis. Even for CARseq, the more powerful algorithm, 

there would be considerable uncertainty in the estimates for cell-type specific gene expression 

in our study population. In contrast to CARseq and TOAST, DESeq2 was not developed to 

incorporate cell type proportion data inferred from digital cytometry deconvolution. Further, 

recent evidence suggests that use of DESeq2 for cell type-specific differential gene expression 

results in poorly accurate between-group estimates (Jaakkola et al., Brief Bioinform. 2022, 

PMID: 34651640). Thus, we feel it is most appropriate to present our bulk DESeq2 and pathway 

analyses alongside CIBERSORTx-inferred immune cell populations. This widely accepted 

approach has been used to dissect the host response in a variety of infectious and respiratory 

diseases, including COVID-19 (e.g., Wang et al., Nat Commun, 2022, PMID: 35995775; Kariotis 

et al., Nat Commun. 2021, PMID: 34876579; Hanley et al., Nat Commun, 2021, PMID: 

34031380). Nonetheless, we have emphasized this as a limitation of our analyses in the 

discussion section of the updated manuscript (Lines 602-604).  

2. There are many confounders in the small data set, and authors were adjusted for 

some. I suggest authors use the RUVseq 

(https://bioconductor.org/packages/release/bioc/vignettes/RUVSeq/inst/doc/RUVSeq.html

) rather than conventional DeSeq2. 

We thank the reviewer for this comment. Regarding use of DESeq2 vs. RUVseq, we respectfully 

feel that use of the former is most appropriate. While RUVseq can be useful if the covariables 

for adjustment are unknown (e.g., hidden batch effects), use of DESeq2 is appropriate if 

relevant covariables are understood based on subject matter knowledge. Further, if RUVseq 

were to be applied to our RNAseq data, “in-silico empirical” negative controls (e.g., genes least 

significantly differentially expressed between conditions) would have to be used. As these 

genes are not truly negative controls (since there is, by definition, differential expression across 

conditions), such an approach is likely to remove actual biological signals from the analyses.   

Thus, following recommendations for multivariable modeling and to optimize the interpretability 

of our findings, we included co-variables (i.e., “unwanted variation factors”) in adjusted DESeq2 

models based on relevance to host responses and outcomes in COVID-19 (e.g., age, sex, HIV 

status, illness duration prior to enrollment/sample collection, etc.). This is a widely accepted 

approach. In the updated manuscript, we have further adjusted our primary DESeq2 

comparison (severe vs. non-severe COVID-19) by SARS-CoV-2 phase (updated Figures 2A-

2C) to ensure that our primary results are consistent across study periods. This model is now 

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fbioconductor.org%2Fpackages%2Frelease%2Fbioc%2Fvignettes%2FRUVSeq%2Finst%2Fdoc%2FRUVSeq.html&data=05%7C01%7Cmjc2244%40cumc.columbia.edu%7C33033522d2d74ca5c6c008dbbaa89e61%7Cb0002a9b0017404d97dc3d3bab09be81%7C0%7C0%7C638309006506936782%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Hx8w7QTSIuY5qo53HssE%2F7xofv7GO7v%2Bd9LO8oCjaiA%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fbioconductor.org%2Fpackages%2Frelease%2Fbioc%2Fvignettes%2FRUVSeq%2Finst%2Fdoc%2FRUVSeq.html&data=05%7C01%7Cmjc2244%40cumc.columbia.edu%7C33033522d2d74ca5c6c008dbbaa89e61%7Cb0002a9b0017404d97dc3d3bab09be81%7C0%7C0%7C638309006506936782%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Hx8w7QTSIuY5qo53HssE%2F7xofv7GO7v%2Bd9LO8oCjaiA%3D&reserved=0


adjusted for age, sex, HIV status, and SARS-CoV-2 phase. The results are consistent with our 

prior findings.  

3. The immune mediator part, Table S4, shows that there are only four severe patients 

and six moderate, I don’t think the statistics with those numbers give any insight. 

Moreover, HD48 has an Inter-assay variability ranging between 5-20% depending on the 

analyte and quality of samples. 

We have added new text to the Results and Discussion sections of the manuscript emphasizing 

limitations in reporting and interpretation of the HIV analyses given the small number of persons 

living with HIV.  

For the Results section (Lines 198-204), this text now states: “Although limited by the relatively 

small proportion of PLWH enrolled in our study, analyses using both methods were consistent 

with those in the larger cohort, suggesting that prognostic host responses in COVID-19 were 

generally conserved in PLWH (Table S4 and Figure S2 in supplement). While further limited by 

the small number of PLWH with severe illness, interaction models also suggested that higher 

concentrations of IFN-α2, IL-6, CCL3, IL-1a, and IL-1Ra were associated with more severe 

COVID-19 in PLWH (Figures 1f and S3 in supplement).” 

For the Discussion section (Lines 556-557), we have added a new sentence that states: “Given 

the relatively small proportion of PLWH in our cohort, these hypothesis-generating findings 

should be interpreted with caution.” 

We note the reviewer’s comment about the inter-assay variability of the Human Cytokine/ 

Chemokine Panel A 48-Plex Discovery Assay Array (HD48). This and related assays have been 

employed in thousands of translational studies investigating human immune responses. 

Moreover, as discussed in the Methods section of the manuscript (Line 704), mediator 

concentrations were quantified in duplicate with the mean used for analysis.   

 

 



REVIEWER COMMENTS 

 

Reviewer #3 (Remarks to the Author): 

In this second resubmission, the authors have more completely addressed the concerns around the 

limitations of the sample of individuals with HIV in their study set. They have also updated their analyses 

to adjust for multiple confounders in Figure 2. Review of that figure indicates minor changes in the 

ordering of pathway enrichment from the prior version, but largely consistent findings as they indicate in 

the text. 

They have substantially addressed this remaining critique of their work which remains of significant 

value. 

 

Reviewer #4 (Remarks to the Author): 

Cummings et al. submitted the response, but I find it somewhat lacking in addressing my concerns 

adequately, similar to how it failed to fully tackle the issues raised in the previous review by Rev#2. It 

seems that the response could benefit from a more comprehensive approach that directly engages with 

the core points of contention, addressing them in a more thorough and conclusive manner. By delving 

deeper into the specific concerns highlighted, can effectively clarifies any ambiguities or uncertainties 

surrounding the findings. 

1. Despite the utilization of CIBERSORT, it appears that the authors are hinting that there is no power, 

then why to perform the analysis. 

2. It's worth noting that RUVseq incorporates the functionality of DESeq2, streamlining the initial 

preprocessing phase by normalizing hidden factors. At the end RUVseq will use DeSeq2 only for 

differential gene expression. 

3. I maintain reservations about the validity of the statistical conclusions drawn from the relatively small 

(4 and 6 in each group) sample size (though authors claims it's hypothesis generation). Even to generate 

hypothesis there should be some numbers, not just 4 and 6 samples in each experimental groups. 



Reviewer #3 

In this second resubmission, the authors have more completely addressed the concerns 

around the limitations of the sample of individuals with HIV in their study set. They have 

also updated their analyses to adjust for multiple confounders in Figure 2. Review of that 

figure indicates minor changes in the ordering of pathway enrichment from the prior 

version, but largely consistent findings as they indicate in the text. 

Noted, thank you.  

 

They have substantially addressed this remaining critique of their work which remains of 

significant value. 

Noted, thank you.  

 

Reviewer #4 

Cummings et al. submitted the response, but I find it somewhat lacking in addressing my 

concerns adequately, similar to how it failed to fully tackle the issues raised in the 

previous review by Rev#2. It seems that the response could benefit from a more 

comprehensive approach that directly engages with the core points of contention, 

addressing them in a more thorough and conclusive manner. By delving deeper into the 

specific concerns highlighted, can effectively clarifies any ambiguities or uncertainties 

surrounding the findings.  

We thank the reviewer for their comments. We have sought to address the questions regarding 

bioinformatics methods more fully below.  

1. Despite the utilization of CIBERSORT, it appears that the authors are hinting that there 

is no power, then why to perform the analysis. 

We appreciate the opportunity to clarify this point, specifically the distinction between cell type- 

specific differential gene expression (DGE) analysis and between-group comparisons of 

immune cell abundances as inferred from digital cytometry deconvolution.  

To recap our approach, we performed DGE and pathway enrichment analysis on our bulk 

RNAseq data (e.g., between patients with severe vs. non-severe COVID-19). Separately, we 

inferred the abundance of key immune cell types by applying the CIBERSORTx digital 

cytometry deconvolution algorithm to our bulk RNAseq data. We then compared the abundance 

of these cell types between different patient groups (e.g., those with severe vs. non-severe 

COVID-19). As highlighted in our prior Reviewer Responses, performing and reporting these 

analyses separately (DGE/pathway enrichment and inferred immune cell type comparisons), as 

we have done, is a widely accepted approach, including in recently published analyses of 

infectious and respiratory diseases such as COVID-19 (e.g., Wang et al., Nat Commun, 2022, 

PMID: 35995775; Kariotis et al., Nat Commun. 2021, PMID: 34876579; Hanley et al., Nat 

Commun, 2021, PMID: 34031380).  

In contrast, cell type-specific DGE analysis is a distinct method that directly incorporates 

immune cell type proportions (such as those inferred by CIBERSORTx or other digital cytometry 

pipelines) into DGE algorithms. As highlighted in the prior Reviewer Responses, simulation 

studies show that the two most common cell type-specific DGE algorithms (CARseq, TOAST) 



are under-powered at our sample size (Jin et al., Nat Comput Sci. 2021, PMID: 34957416, 

Jaakkola et al., Brief Bioinform. 2022, PMID: 34651640).  

Thus, we feel it is most appropriate to present our bulk DGE and pathway enrichment analyses 

separately from our CIBERSORTx-inferred immune cell population comparisons, in line with 

similar studies mentioned above. Further, throughout our analyses, significant differences in 

immune cell types between patient groups (e.g., severe vs. non-severe COVID-19, Delta vs. 

non-Delta COVID-19) mirror findings from our DGE/pathway and soluble immune mediator 

analyses, suggesting that they are adequately powered and biologically consistent. 

2. It's worth noting that RUVseq incorporates the functionality of DESeq2, streamlining 

the initial preprocessing phase by normalizing hidden factors. At the end RUVseq will 

use DeSeq2 only for differential gene expression. 

We appreciate the Reviewer’s comments regarding RUVseq and the compatibility of this 

algorithm with DESeq2. Respectfully, however, we do not feel that preprocessing with RUVseq 

is appropriate for our data. We maintain that our current 

DESeq2-based normalization and DGE methods allow us 

to both mitigate between-sample variation introduced by 

possible technical effects and identify important biological 

signals in our data. First, as we highlighted in our prior 

Reviewer Responses, RUVseq can be useful to adjust for 

technical batch effects that may not be obvious, 

particularly when data are pooled across different 

laboratories or sequencing platforms (a circumstance not 

applicable to our study). However, the attached relative 

log expression plot of our DESeq2-normalized data does not suggest the presence of 

considerable residual technical/batch effects (i.e., the boxplots are centered on zero and 

generally of comparable size). Second, use of RUVseq requires a set of negative control genes. 

If RUVseq were to be applied to our dataset, “in-silico empirical” negative controls (i.e., genes 

least significantly differentially expressed between conditions) would have to be used. As these 

genes are not truly negative controls (since there is, by definition, differential expression across 

conditions) and the significance threshold for their categorization is variable, such an approach 

may remove actual biological signals from the analyses. As we have encountered this in prior 

studies, we do not feel it is an optimal method for our current study and strongly favor our 

current approach.  

3. I maintain reservations about the validity of the statistical conclusions drawn from the 

relatively small (4 and 6 in each group) sample size (though authors claims it's 

hypothesis generation). Even to generate hypothesis there should be some numbers, not 

just 4 and 6 samples in each experimental groups. 

We acknowledge the small numbers of patients included in the HIV-stratified analysis. As part of 

Revision #2, we included additional text in the manuscript to emphasize this as a limitation and 

encouraged readers to view these findings, which we maintain are reasonably hypothesis-

generating, with caution.  

These statements can be found in the current manuscript as follows:  



For the Results section, the relevant text states: “Although limited by the relatively small 

proportion of PLWH enrolled in our study, analyses using both methods were consistent with 

those in the larger cohort, suggesting that prognostic host responses in COVID-19 were 

generally conserved in PLWH (Table S4 and Figure S2 in supplement). While further limited by 

the small number of PLWH with severe illness, interaction models also suggested that higher 

concentrations of IFN-α2, IL-6, CCL3, IL-1a, and IL-1Ra were associated with more severe 

COVID-19 in PLWH (Figures 1f and S3 in supplement).” 

For the Discussion section, the relevant text states: “Given the relatively small proportion of 

PLWH in our cohort, these hypothesis-generating findings should be interpreted with caution.” 
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