Cell Reports, Volume 43

Supplemental information

A comparative evaluation of the strengths and potential

caveats of the microglial inducible CreER mouse models

Alicia M. Bedolla, Gabriel L. McKinsey, Kierra Ware, Nicolas Santander, Thomas D. Arnold, and Yu Luo

Supplementary Figure 1. Border Associated macrophage (BAMs, visualized by LYVE1 or CD206 immunoreactivity, small panels) labeling in the four different *CreER* driver lines using either the *Ai9 (tdTomato)* or *R26-YFP* reporter mouse lines. Related to Figure 1. The experimental timeline is shown on top of the panel. Representative images from each *CreER* driver and *Ai 9* (I) or *R26-YFP* (II) reporter line in pia and blood vessel associated macrophages and choroid plexus associated macrophages (III *Ai9- tdTomato*) or (IV *R26-YFP*) reporter. Quantification shown on the right. mean±SEM, **p < 0.01 and **** p < 0.0001, for Two-way ANOVA analysis, Tukey post-hoc pair-wise analysis. *Ai9* vs *R26-YFP* is compared as a factor (**, p<0.01). Scale bar = 100µm.

Supplementary Figure 2. FACS analysis of reporter-positive cells in total brain single cell resuspension confirms the reporter recombination efficiency differences among the three investigated *CreER* lines. Related to Figure 1. tdTomato⁺ cell percentage from all three different lines show similar high-efficiency recombination and the YFP⁺ cells show higher recombination efficiency in the *Cx3cr1^{CreER(Jung)}-R26-YFP* mice but significantly lower recombination efficiency in the *P2ry12^{CreER}-R26-YFP* mice and *Tmem119^{CreER}-R26-YFP* line. Each data point represents data from one animal. mean±SEM *p < 0.05, ***p < 0.001, and ****p<0.0001 for Two-way ANOVA analysis, Tukey post-hoc pairwise analysis. Data were combined from 2-3 independent cohorts of mice for each line.

Supplementary Figure 3. Evaluation of the TAM-independent leakiness and the efficiency of TAM-dependent cre recombination in the four different CreER driver lines using either the Ai9 (tdTomato) or R26-YFP reporter mouse lines in the striatum. Related to Figure 1. The experimental timeline is shown in panel (A). Representative images from each cre driver and reporter line (B-V for VEH treatment and b-v for TAM treatment). Cre driver and the reporter line are indicated on the left side of the panels. Quantification of reporter⁺ cells in the IBA1⁺ populations in the brain is shown in panel W (for VEH treatment) and w (for TAM treatment). Representative images are taken from the striatal region which reflects the general and homogenous trend in the whole parenchyma. Each data point represents the average of 1 animal (the average for each animal is obtained by quantifying multiple brain sections at similar anatomical locations) and the average for each animal was used as a single data point for statistical analysis. mean \pm SEM **p < 0.01 and ***p < 0.001, for Two-way ANOVA analysis, Tukey post-hoc pairwise analysis. Ai9 vs R26-YFP is significantly different as a factor (p<0.001). Data were combined from 2 independent cohorts of mice. Scale bar: 100 µm. Compared to the two Cx3cr1^{CreER} lines (Littman and Jung), Tmem119^{CreER} and P2ry12^{CreER} show less leakiness in the absence of TAM but a decreased recombination efficiency and mosaic recombination in microglia.

Supplementary Figure 4. Evaluation of the TAM-independent leakiness and the efficiency of TAM-dependent cre recombination in the four different CreER driver lines using either the Ai9 (tdTomato) or R26-YFP reporter mouse lines in the hippocampus. Related to Figure 1. The experimental timeline is shown in panel (A). Representative images from each cre driver and reporter line (B-V for VEH treatment and b-v for TAM treatment). Cre driver and the reporter line are indicated on the left side of the panels. Quantification of reporter⁺ cells in the IBA1⁺ populations in the brain is shown in panel W (for VEH treatment) and w (for TAM treatment). Representative images are taken from the hippocampal region which reflects the general and homogenous trend in the whole parenchyma. Each data point represents the average of 1 animal (the average for each animal is obtained by quantifying multiple brain sections at similar anatomical locations) and the average for each animal was used as a single data point for statistical analysis. mean±SEM **p < 0.01 and ***p < 0.001, for Two-way ANOVA analysis, Tukey posthoc pairwise analysis. Ai9 vs R26-YFP is significantly different as a factor (p<0.001). Data were combined from 2 independent cohorts of mice. Scale bar: 100 µm. Compared to the two Cx3cr1^{CreER} lines (Littman and Jung), Tmem119^{CreER} and P2ry12^{CreER} show less leakiness in the absence of TAM but a decreased recombination efficiency and mosaic recombination in microglia.

Supplementary Fig 5. The addition of transcriptional and translational inhibitors during the cell isolation process does not affect the expression level of *tgfb1* or *Alk5* mRNA in sorted microglia. Related to Figure 3. Microglia were sorted either in the presence or absence of inhibitors and the mRNA levels for 2 housekeeping genes (*Hprt1* and *Hmbs1*), *Tgfb1* and *Alk5* were analyzed with qRT-PCR. mean±SEM. P>0.05, Student's t-test between two groups for all genes.

Supplemental Figure 6: qRT-PCR analysis of FACS sorted brain myeloid cells (CD11b⁺/CD45^{int}) from $Cx3cr1^{CreER(Jung)}$ driver line to examine tamoxifen-independent gene recombination of the floxed target genes. Related to Figure 3. Using a small (*Tgfb1*, 0.5kb) and a large (*Alk5*, 1.6kb) floxed region mouse lines, we did not observe any tamoxifen-independent reduction in mRNA levels in either the floxed *Tgfb1*^{fl/fl} or the *Alk5*^{fl/fl} in the total sorted microglia in the absence of TAM treatment in $Cx3cr1^{CreER(Jung)}$ *Tgfb1*^{fl/fl} or the $Cx3cr1^{CreER(Jung)}$ *Alk5*^{fl/fl} mice. mean±SEM. P>0.05, Student's t-test for all genes.

Table 1. Double reporter labeling of <i>P2ry12^{CreER}(mut/WT) Ai9-R26-YFP</i> mice after TAM				
Cell Condition	Mouse 1	Mouse 2	Mouse 3	Average
% of total tdTomato⁺	77.77778	88.09524	81.69014	82.52105
% of total YFP ⁺	45.29915	35.71429	43.66197	41.55847
% of YFP ⁺ :tdTomato ⁻	22.22222	11.90476	18.30986	17.47895
% of YFP ⁻ :tdTomato⁺	54.70085	64.28571	56.33803	58.44153
% of YFP ⁺ :tdTomato ⁺	23.07692	23.80952	25.35211	24.07952
*All percentages are calculated by dividing the number of each category of cells by the total reporter positive cells from each animal.				

Supplemental Table 1. Quantification of the FACS analysis of the reporter⁺ microglia in whole brain single cell suspension prepared from the $P2ry12^{CreER(mut/WT)}$ Ai9-R26-YFP mice after TAM treatment.