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Appendix

In Appendix A, we collect technical lemmas needed to prove the main results. Proofs

of the main results are given Appendix B. Details of the algorithm for solving the op-

timization problem (5) are given in Appendix C. Further details on simulations set-

tings, and additional simulation results are reported in Appendix D. In Appendix E,
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we propose a secondary analysis which sharpens the consistency rate for locating

the break points. An alternative procedure to our proposed third step on consistent

parameter estimation is discussed in Appendix F. Finally, a data-driven method to

select the tuning parameter ωn is presented in Appendix G.

Appendix A: Technical Lemmas

Lemma 1. There exist constants ci > 0 such that for n ≥ c0 (log(n) + 2 log(p) + log(q)),

with probability at least 1− c1 exp (−c2 (log(n) + 2 log(p) + log(q))), we have

∣∣∣∣∣∣∣∣Z′En
∣∣∣∣∣∣∣∣
∞
≤ c3

√
log(n) + 2 log(p) + log(q)

n
(1)

Proof. Note that 1
n
Z′E = 1

n
(Ip⊗X ′)E = vec(X ′E)/n. Let X (h, .) and X (h, l) be the

h-th block column and the l-th column of the h-th block column of X , respectively,

for 1 ≤ h ≤ n, 1 ≤ l ≤ d. More specifically,

X (h, .) =



0

...

0

y′q+h−2 . . . y′h−1

...

y′T−1 . . . y′T−q


n×pq

, X (h, l) =



0

...

0

y′q+h−l−1

...

y′T−l


n×p

. (2)
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Now, ∥∥∥∥Z′E

n

∥∥∥∥
∞

= max
1≤h≤n,1≤l≤d,1≤i,j≤p

∣∣∣∣e′i(X ′(h, l)En

)
ej

∣∣∣∣ , (3)

where ei ∈ Rp with the i-th element equals to 1 and zero on the rest. Note that,

X ′(h, l)E
n

=
1

n

T−q−l∑
t=h−l−1

yq+tε
′
q+t+l.

Now, since cov(yq+t, εq+t+l) = 0 for all t, l, h, an argument similar to Proposi-

tion 2.4(b) of Basu & Michailidis (2015) shows that for fixed i, j, h, l, there exist

k1, k2 > 0 such that for all η > 0:

P
(∣∣∣∣e′i(X ′(h, l)En

)
ej

∣∣∣∣ > k1η

)
≤ 6 exp

(
−k2nmin(η, η2)

)
.

The result follows by setting η = k3

√
log(n)+2 log(p)+log(q)

n
for a large enough k3 > 0,

and taking the union over the π = np2q possible choices of i, j, h, l.

Lemma 2. Let Θ̂ be defined as in (5). Then, under the assumptions of Theorem 1:

n∑
l=t̂j

Yl−1

(
y′l − Y ′l−1

l∑
i=1

θ̂′i

)
=
nλn

2
sign(θ̂′

t̂j
), for j = 1, 2, ..., m̂, (4)

where Y ′l =
(
y′l . . . y

′
l−q+1

)
1×pq, and

∣∣∣∣∣
∣∣∣∣∣
n∑
l=j

Yl−1

(
y′l − Y ′l−1

l∑
i=1

θ̂′i

)∣∣∣∣∣
∣∣∣∣∣
∞

≤ nλn
2
, for j = q − 1, 2, ..., n. (5)

Moreover,
∑t

i=1 θ̂i = Φ̂(.,j) for t̂j−1 ≤ t ≤ t̂j − 1, j = 1, 2, ..., |An|.
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Proof. The result follows directly from the KKT condition of the optimization prob-

lem (5).

Lemma 3. Under assumption A1, there exist constants ci > 0 such that with prob-

ability at least 1− c1 exp(−c2(log(q) + 2 log(p))),

sup
1≤j≤m0,s≥tj ,|tj−s|>nγn

∣∣∣∣∣
∣∣∣∣∣(tj − s)−1

(
tj−1∑
l=s

Yl−1Y
′
l−1 − Γqj(0)

)∣∣∣∣∣
∣∣∣∣∣
∞

≤ c3

√
log(q) + 2 log(p)

nγn
,

(6)

where Γqj(0) = E(Yl−1Y
′
l−1). Moreover,

sup
1≤j≤m0,s≥tj ,|tj−s|>nγn

∣∣∣∣∣
∣∣∣∣∣(tj − s)−1

tj−1∑
l=s

Yl−1ε
′
l

∣∣∣∣∣
∣∣∣∣∣
∞

≤ c3

√
log(q) + 2 log(p)

nγn
. (7)

Proof. The proof of this lemma is similar to that of Proposition 2.4 in Basu &

Michailidis (2015). Here we briefly outline the main steps of the proof, while omitting

the details. For (6), note that using an argument similar to Proposition 2.4(a) in

Basu & Michailidis (2015), there exist k1, k2 > 0 such that for each fixed k, l =

1, · · · , pq,

P

(∣∣∣∣∣e′k
∑tj−1

l=s Yl−1Y
′
l−1 − Γqj(0)

tj − s
el

∣∣∣∣∣ > k1η

)
≤ 6 exp(−k2nγn min(η, η2)). (8)

Setting η = k3

√
log(qp2)
nγn

, and taking union over all possible values of k, l, we obtain

(6).

The proof for (7), is similar to Lemma 1. Again, there exist k1, k2 > 0 such that
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for each fixed k = 1, ..., pq, l = 1, ..., p,

P

(∣∣∣∣∣e′k
∑tj−1

l=s Yl−1ε
′
l

tj − s
el

∣∣∣∣∣ > k1η

)
≤ 6 exp(−k2nγn min(η, η2)). (9)

Setting η = k3

√
log(qp2)
nγn

, and taking union over all possible values of k, l, we get:

∣∣∣∣∣
∣∣∣∣∣(tj − s)−1

(
tj−1∑
l=s

Yl−1Y
′
l−1 − Γqj(0)

)∣∣∣∣∣
∣∣∣∣∣
∞

≤ c3

√
log(q) + 2 log(p)

nγn
, (10)

and ∣∣∣∣∣
∣∣∣∣∣(tj − s)−1

tj−1∑
l=s

Yl−1ε
′
l

∣∣∣∣∣
∣∣∣∣∣
∞

≤ c3

√
log(q) + 2 log(p)

nγn
, (11)

with high probability converging to 1 for any j = 1, 2, · · · ,m0, as long as |tj −

s| > nγn and s ≥ tj−1. Note that the constants c1, c2 and c3 can be chosen large

enough such that the upper bounds above would be independent of the break point

ti. Therefore, we have the desired upper bounds verified with probability at least

1− c1 exp(−c2(log(q) + 2 log(p))).

Lemma 4. Under the assumptions of Theorem 3, for m < m0, there exist constants

c1, c2 > 0 such that:

P

(
min

(s1,...,sm)⊂{1,...,T}
Ln(s1, s2, ..., sm; ηn) >

T∑
t=q

||εt||22 + c1∆n − c2mnγnd
?
n

2

)
→ 1,

(12)

where ∆n = min1≤j≤m0+1 |tj − tj−1|.
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Proof. Since m < m0, there exists a point tj such that |si − tj| > ∆n/4. In order

to find a lower bound on the sum of the least squares, we consider three different

cases: (a) |si − si−1| ≤ nγn; (b) there exist two true break points tj, tj+1 such that

|si−1− tj| ≤ nγn and |si− tj+1| ≤ nγn; and (c) otherwise. The idea is to find a lower

bound for the sum of squared errors plus the penalty term for each case. Here, we

consider only one candidate for each case. The general case can be argued similarly,

but omitted here to avoid complex notations.

Denote the estimated parameter in each of the estimated segments below by θ̂.

For case (a), consider the case where the interval (si−1, si) is inside a true segment.

In other words, suppose there exists j such that tj < si−1 < si < tj+1. Now,

si−1∑
t=si−1

||yt − θ̂Yt−1||22 =

si−1∑
t=si−1

||εt||22 +

si−1∑
t=si−1

||(Φ(.,j+1) − θ̂)Yt−1||22

+ 2

si−1∑
t=si−1

Y ′t−1(Φ(.,j+1) − θ̂)′εt

≥
si−1∑
t=si−1

||εt||22 −

∣∣∣∣∣∣2
si−1∑
t=si−1

Y ′t−1(Φ(.,j+1) − θ̂)′εt

∣∣∣∣∣∣
≥

si−1∑
t=si−1

||εt||22 − c
√
nγn log p||Φ(.,j+1) − θ̂||1. (13)

Therefore, given the tuning parameter selected based on Assumption A4, we have:

si−1∑
t=si−1

||yt − θ̂Yt−1||22 + η(si−1,si)||θ̂||1 ≥
si−1∑
t=si−1

||εt||22 − c
√
nγn log p||Φ(.,j+1)||1. (14)

For case (b), consider the case where si−1 < tj and si < tj+1. Now, similar
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arguments as in Proposition 4.1 of Basu & Michailidis (2015) show that by the

tuning parameter selected based on A4(b), we have:

||Φ(.,j+1) − θ̂||1 ≤ 4
√
d?n||Φ(.,j+1) − θ̂||2, and ||Φ(.,j+1) − θ̂||2 ≤ c3

√
d?nη(si−1,si). (15)

To see this, observe that θ̂ in (9) minimizes the least squares plus the `1 norm loss

function. Therefore, the value of this objective function for θ̂ will be smaller than

any other choice of parameters, including Φ(.,j+1). Hence,

1

si − si−1

si−1∑
t=si−1

||yt − θ̂Yt−1||22 + η(si−1,si)||θ̂||1 ≤
1

si − si−1

si−1∑
t=si−1

||yt − Φ(.,j+1)Yt−1||22

+ η(si−1,si)||Φ(.,j+1)||1. (16)
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Some rearrangements lead to:

0 ≤ c′||Φ(.,j+1) − θ̂||22 ≤ 1

si − si−1

si−1∑
t=si−1

Y ′t−1

(
Φ(.,j+1) − θ̂

)′ (
Φ(.,j+1) − θ̂

)
Yt−1

≤ 2

si − si−1

si−1∑
t=si−1

Y ′t−1

(
Φ(.,j+1) − θ̂

)′ (
yt − Φ(.,j+1)Yt−1

)
+ η(si−1,si)

(
||Φ(.,j+1)||1 − ||θ̂||1

)
≤

(
c

√
log p

si − si−1

+MΦd
?
n

nγn
si − si−1

)
||Φ(.,j+1) − θ̂||1

+ η(si−1,si)

(
||Φ(.,j+1)||1 − ||θ̂||1

)
≤

η(si−1,si)

2
||Φ(.,j+1) − θ̂||1 + η(si−1,si)

(
||Φ(.,j+1)||1 − ||θ̂||1

)
≤

3η(si−1,si)

2
||Φ(.,j+1) − θ̂||1,I −

η(si−1,si)

2
||Φ(.,j+1) − θ̂||1,Ic

≤ 2η(si−1,si)||Φ(.,j+1) − θ̂||1. (17)

This ensures that ||Φ(.,j+1)− θ̂||1,Ic ≤ 3||Φ(.,j+1)− θ̂||1,I , and hence ||Φ(.,j+1)− θ̂||1 ≤

4||Φ(.,j+1) − θ̂||1,I ≤ 4
√
d?n||Φ(.,j+1) − θ̂||2. This comparison between L1 and L2

norms of the error term together with the bound in Equation 17 will get the desired

consistency rates in (15).
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Similar to case (a), using lemma (3), we have:

si−1∑
t=tj

||yt − θ̂Yt−1||22 ≥
si−1∑
t=tj

||εt||22 + c|si − tj| ||Φ(.,j+1) − θ̂||22 − c′
√
|si − tj| log p ||Φ(.,j+1) − θ̂||1

≥
si−1∑
t=tj

||εt||22 + c|si − tj| ||Φ(.,j+1) − θ̂||2

(
||Φ(.,j+1) − θ̂||2 −

c′

c

√
d?n log p

|si − tj|

)

≥
si−1∑
t=tj

||εt||22 − c′d?n log p. (18)

Also, for the interval (si−1, tj), we have:

tj−1∑
t=si−1

||yt − θ̂Yt−1||22 ≥
tj−1∑
t=si−1

||εt||22 − c′
√
nγn log p ||Φ(.,j) − θ̂||1

≥
tj−1∑
t=si−1

||εt||22 − c′
√
nγn log p

(
||Φ(.,j+1) − θ̂||1 + ||Φ(.,j+1) − Φ(.,j)||1

)

≥
tj−1∑
t=si−1

||εt||22 − c′
√
nγn log p

(
d?nη(si−1,si) + ||Φ(.,j+1) − Φ(.,j)||1

)
≥

tj−1∑
t=si−1

||εt||22 − c′d?n
√
nγn log p. (19)

Combining equations (18) and (19) gives:

si−1∑
t=si−1

||yt − θ̂Yt−1||22 ≥
si−1∑
t=si−1

||εt||22 − c′d?n
√
nγn log p. (20)

For case (c), consider the case where si−1 < tj < si with |si−1 − tj| > ∆n/4 and

|si − tj| > ∆n/4. Similar arguments as in Proposition 4.1 of Basu & Michailidis
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(2015) shows that :

||Φ(.,j+1)− θ̂||1 ≤ 4
√
d?n||Φ(.,j+1)− θ̂||2, and ||Φ(.,j)− θ̂||1 ≤ 4

√
d?n||Φ(.,j)− θ̂||2. (21)

Note that in this case, the restricted eigenvalue condition does not hold. There-

fore, the convergence of the θ̂ cannot be verified. The reason is that in this case,

the two parts of the true segments which intersect with the estimated segment have

large lengths. If the length of one of them was negligible as compared to the other

segment, one could still verify the restricted eigenvalue, but that’s not the case here.

However, the deterministic part of the deviation bound argument holds with the

suitable choice of the tuning parameter. Now, similar to case (b), on both intervals

(si−1, tj) and (tj, si):

tj−1∑
t=si−1

||yt − θ̂Yt−1||22 ≥
tj−1∑
t=si−1

||εt||22 + c|tj − si−1| ||Φ(.,j) − θ̂||22

− c′
√
|tj − si−1| log p ||Φ(.,j) − θ̂||1

≥
tj−1∑
t=si−1

||εt||22

+ c|tj − si−1| ||Φ(.,j) − θ̂||2

(
||Φ(.,j) − θ̂||2 −

c′

c

√
d?n log p

|tj − si−1|

)
,(22)
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and

si−1∑
t=tj

||yt − θ̂Yt−1||22 ≥
si−1∑
t=tj

||εt||22 + c|si − tj| ||Φ(.,j+1) − θ̂||22 − c′
√
|si − tj| log p ||Φ(.,j+1) − θ̂||1

≥
si−1∑
t=tj

||εt||22 + c|si − tj| ||Φ(.,j+1) − θ̂||2

(
||Φ(.,j+1) − θ̂||2 −

c′

c

√
d?n log p

|si − tj|

)
. (23)

Since ||Φ(.,j+1) − Φ(.,j)||2 ≥ v > 0, either ||Φ(.,j+1) − θ̂||2 ≥ v/4 or ||Φ(.,j) − θ̂||2 ≥

v/4. Assume that ||Φ(.,j)− θ̂||2 ≥ v/4. Then, based on Equation 22, for some c1 > 0,

tj−1∑
t=si−1

||yt − θ̂Yt−1||22 ≥
tj−1∑
t=si−1

||εt||22 + c1∆n. (24)

For the second interval we have:

si−1∑
t=tj

||yt − θ̂Yt−1||22 ≥
si−1∑
t=tj

||εt||22 − c′d?n log p. (25)

Combining (24) and (25), leads to:

si−1∑
t=si−1

||yt − θ̂Yt−1||22 ≥
si−1∑
t=si−1

||εt||22 + c1∆n − c′d?n log p. (26)

Note that another situation may arise in this case, where |si−1 − tj| > nγn and

|si − tj| > nγn. Using similar augments as above in this situation, we get the

following lower bound:

si−1∑
t=si−1

||yt − θ̂Yt−1||22 ≥
si−1∑
t=si−1

||εt||22 − c′d?n
2nγn. (27)
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Putting all of the cases together will yield the result.

Appendix B: Proof of Main Results

Proof of Theorem 1. By definition of Θ̂, we get

1

n
||Y− ZΘ̂||22 + λ1,n

n∑
i=1

||θ̂i||1 + λ2,n

n∑
k=1

∥∥∥∥∥
k∑
j=1

θ̂j

∥∥∥∥∥
1

≤ 1

n
||Y− ZΘ||22 + λ1,n

n∑
i=1

||θi||1 + λ2,n

n∑
k=1

∥∥∥∥∥
k∑
j=1

θj

∥∥∥∥∥
1

.(28)
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Denoting A = {t1, t1, · · · , tm0}, we have:

1

n

∣∣∣∣∣∣Z(Θ̂−Θ
)∣∣∣∣∣∣2

2
≤ 2

n

(
Θ̂−Θ

)′
Z′E + λ1,n

n∑
i=1

||θi||1 − λ1,n

n∑
i=1

||θ̂i||1

+ λ2,n

n∑
k=1

∥∥∥∥∥
k∑
j=1

θj

∥∥∥∥∥
1

− λ2,n

n∑
k=1

∥∥∥∥∥
k∑
j=1

θ̂j

∥∥∥∥∥
1

≤ 2

∣∣∣∣∣∣∣∣Z′En
∣∣∣∣∣∣∣∣
∞

n∑
i=1

||θi − θ̂i||1 + λ1,n

∑
i∈A

(
||θi||1 − ||θ̂i||1

)
− λ1,n

∑
i∈Ac

||θ̂i||1

+ λ2,n

m0+1∑
j=1

(tj − tj−1)‖Φ(.,j)‖1

≤ λ1,n

∑
i∈A

||θi − θ̂i||1 + λ1,n

∑
i∈A

(
||θi||1 − ||θ̂i||1

)
+ λ2,nn d

?
n

≤ 2λ1,n

∑
i∈A

||θi||1 + λ2,nn d
?
n

≤ 2λ1,nmn max
1≤j≤m0+1

∣∣∣∣Φ(.,j) − Φ(.,j−1)
∣∣∣∣

1
+ λ2,nn d

?
n

≤ 4Cmn max
1≤j≤m0+1

{
p∑

k=1

(
dkj + dk(j−1)

)}
MΦ

√
log(n) + 2 log(p) + log(q)

n

+ λ2,nn d
?
n, (29)

with high probability approaching to 1 due to Lemma 1.

Proof of Theorem 2. The proof is different from Theorem 2.2 in Chan et al. (2014)

and Proposition 5 in Harchaoui & Lévy-Leduc (2010) due to the additional penalty

added in equation (5). For a matrix A ∈ Rpq×p, let ||A||1,I =
∑

(j,k)∈I |ajk|.

First, we focus on the second part. Suppose for some j = 1, · · · ,m0, |t̂j − tj| >

nγn. Then, there exists a true break point tj0 which is isolated from all the estimated

points, i.e., min1≤j≤m0 |t̂j − tj0| > nγn. In other words, there exists an estimated
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break point t̂j such that, tj0 − tj0−1 ∨ t̂j ≥ nγn and tj0+1 ∧ t̂j+1 − tj0 ≥ nγn. The

idea of the proof is to show the estimated AR parameter estimated in the interval

[tj0−1 ∨ t̂j, tj0+1 ∧ t̂j+1] converges in L2 to both Φ(.,j0) and Φ(.,j0+1) which contradicts

with assumption A3. This is due to the fact that the length of the interval is large

enough to verify restricted eigenvalue and deviation bound inequalities needed to

show parameter estimation consistency.

Based on the definition of Θ̂ in (5), the value of the function defined in (5) is

minimized exactly at Θ̂. This means that any other choice of parameters yields to

higher value in (5). First, we focus on the interval [tj0−1 ∨ t̂j, tj0 ]. Define a new

parameter sequence ψk’s, k = 1, ..., n with ψk = θ̂k except for two time points k = t̂j

and k = tj0 . For these two points set ψt̂j = Φ(.,j0) − Φ̂j and ψtj0 = Φ̂j+1 − Φ(.,j0)

where Φ̂j =
∑tj0−1∨t̂j−1

k=1 θ̂k and Φ̂j+1 =
∑tj0∨t̂j

k=1 θ̂k, i.e. θ̂tj0∨t̂j
= Φ̂j+1 − Φ̂j. Denoting

Ψ = vector(ψ1, ..., ψn) ∈ Rπ×1, we have

1

n
‖Y− ZΘ̂‖2

2 + λ1,n‖Θ̂‖1 + λ2,n

n∑
k=1

∥∥∥∥∥
k∑
j=1

θ̂j

∥∥∥∥∥
1

≤ 1

n
‖Y− ZΨ‖2

2 + λ1,n‖Ψ‖1

+ λ2,n

n∑
k=1

∥∥∥∥∥
k∑
j=1

ψj

∥∥∥∥∥
1

. (30)

Some rearrangement of equation (30) leads to
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0 ≤ c ‖Φ(.,j0) − Φ̂j+1‖2
2

≤ 1

tj0 − tj0−1 ∨ t̂j

tj0−1∑
l=tj0−1∨t̂j

(
Φ(.,j0) − Φ̂j+1

)′
Yl−1Y

′
l−1

(
Φ(.,j0) − Φ̂j+1

)

≤ 1

tj0 − tj0−1 ∨ t̂j

tj0−1∑
l=tj0−1∨t̂j

Y ′l−1

(
Φ(.,j0) − Φ̂j+1

)
εl

+
nλ1,n

tj0 − tj0−1 ∨ t̂j

(
‖Φ(.,j0) − Φ̂j+1‖1 + ‖Φ(.,j0) − Φ̂j‖1 − ‖Φ̂j+1 − Φ̂j‖1

)
+ nλ2,n

(
‖Φ(.,j0)‖1 − ‖Φ̂j+1‖1

)
≤

(
2nλ1,n

tj0 − tj0−1 ∨ t̂j
+ C

√
log p

nγn

)
‖Φ(.,j0) − Φ̂j+1‖1 + nλ2,n

(
‖Φ(.,j0)‖1 − ‖Φ̂j+1‖1

)
≤ 1

2
nλ2,n‖Φ(.,j0) − Φ̂j+1‖1 + nλ2,n

(
‖Φ(.,j0)‖1 − ‖Φ̂j+1‖1

)
≤ 3

2
nλ2,n‖Φ(.,j0) − Φ̂j+1‖1,I −

1

2
nλ2,n‖Φ(.,j0) − Φ̂j+1‖1,Ic . (31)

In equation (31), the second inequality holds with high probability converging

to 1 due to first part of Lemma 3 and the fact that tj0 − tj0−1 ∨ t̂j ≥ nγn. The

fourth inequality holds with high probability converging to 1 due to second part of

Lemma 3 and triangular inequality. The fifth inequality is based on the assumption

A3 and the selection for λ2,n in the statement of the theorem. The last inequality

holds by sparsity assumption. This implies that

‖Φ(.,j0) − Φ̂j+1‖2 = op

(
d?n

√
log p

nγn

)
, (32)

which means that ‖Φ(.,j0)−Φ̂j+1‖2 converges to zero in probability based on assump-
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tion A3. Similarly, the same procedure can be applied to the interval [tj0 , tj0+1∧ t̂j+1]

which leads to ‖Φ(.,j0+1)−Φ̂j+1‖2 converges to zero in probability as well. This yields

to a contradiction to the assumption A3, and therefore, the proof is complete.

The proof of the first part is similar to the second part. Hence, a brief sketch

is provided. Assume |Ân| < m0. This means there exist an isolated true break

point, say tj0 . More specifically, there exists an estimated break point t̂j such that,

tj0 − tj0−1 ∨ t̂j ≥ nγn/3 and tj0+1 ∧ t̂j+1 − tj0 ≥ nγn/3. Now, similar arguments as

explained in details in the second part can be applied to both intervals [tj0−1∨ t̂j, tj0 ]

and [tj0 , tj0+1∧t̂j+1] which leads to ‖Φ(.,j0+1)−Φ(.,j0)‖2 converges to zero and therefore

contradicts with assumption A3. This completes the proof.

Proof of Theorem 3. For the first part we show that (a) P(m̃ < m0) → 0, and (b)

P(m̃ > m0)→ 0. For (a), we know, from Theorem 2, that there exists points t̂j ∈ An

such that max1≤j≤m0 |t̂j − tj| ≤ nγn. By similar arguments as in Lemma 4, we get

that there exists a constant K > 0 such that:

L(t̂1, ..., t̂m0 ; ηn) ≤
T∑
t=q

||εt||22 +Km0nγnd
?
n

2. (33)

To see this, we only show the calculations for one of the estimated segments. Suppose

si−1 < tj < si with |tj−si−1| ≤ nγn. Denote the estimated coefficient in the segment

16



(si−1, si) by θ̂. Similar to case (b) in the proof of Lemma 4, we have:

si−1∑
t=tj

||yt − θ̂Yt−1||22 ≤
si−1∑
t=tj

||εt||22 + c3|si − tj| ||Φ(.,j+1) − θ̂||22

+ c′
√
|si − tj| log p ||Φ(.,j+1) − θ̂||1

≡
si−1∑
t=tj

||εt||22 + I + II. (34)

Now, by the convergence rate of the error (see, e.g., case (b) in the proof of

Lemma 4),

I ≤ 4c3|si − tj|d?n

(
c

√
log p

|si − tj|
+MΦd

?
n

nγn
|si − tj|

)2

= Op

(
nγnd

?
n

2
)
, (35)

and

II ≤ c′
√
|si − tj| log p d?n

(
c

√
log p

|si − tj|
+MΦd

?
n

nγn
|si − tj|

)
= Op

(
nγnd

?
n

2
)
. (36)
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Applying a similar argument to the smaller sub-segment (si−1, tj), we get:

tj−1∑
t=si−1

||yt − θ̂Yt−1||22 ≤
tj−1∑
t=si−1

||εt||22 + c3|tj − si−1| ||Φ(.,j) − θ̂||22

+ c′
√
|tj − si−1| log p ||Φ(.,j) − θ̂||1

≤
tj−1∑
t=si−1

||εt||22 + 2c3|tj − si−1|
(
||Φ(.,j+1) − θ̂||22 + ||Φ(.,j+1) − Φ(.,j)||22

)
+ c′

√
|tj − si−1| log p

(
||Φ(.,j+1) − θ̂||1 + ||Φ(.,j+1) − Φ(.,j)||1

)
=

tj−1∑
t=si−1

||εt||22 +Op

(
nγnd

?
n

2
)
. (37)

Finally,

η(si−1,si)||θ̂||1 ≤ η(si−1,si)

(
||Φ(.,j+1) − θ̂||1 + ||Φ(.,j+1)||1

)
= Op(d

?
n). (38)

Combining (34)–(38) leads to:

si−1∑
t=si−1

||yt − θ̂Yt−1||22 + η(si−1,si)||θ̂||1 =

si−1∑
t=si−1

||εt||22 +Op

(
nγnd

?
n

2
)
. (39)

Adding these equations over all m0 + 1 segments leads to equation 33.

18



Now, applying Lemma 4, we get:

IC(t̃1, ..., t̃m̃) = Ln(t̃1, ..., t̃m̃; ηn) + m̃ωn

>

T∑
t=q

||εt||22 + c1∆n − c2m̃nγnd
?
n

2 + m̃ ωn

≥ L(t̂1, ..., t̂m0 ; ηn) +m0ωn + c1∆n − c2m0nγnd
?
n − (m0 − m̃)ωn

≥ L(t̂1, ..., t̂m0 ; ηn) +m0ωn, (40)

since limn→∞ nγnd
?
n

2/ωn ≤ 1, and limn→∞m0ωn/∆n = 0. This proves part (a). To

prove part (b), note that a similar argument as in Lemma 4 shows that

Ln(t̃1, ..., t̃m̃; ηn) ≥
T∑
t=q

||εt||22 − c2m̃nγnd
?
n

2. (41)

A comparison between IC(t̃1, ..., t̃m̃) and IC(t̂1, ..., t̂m0) leads to:

T∑
t=q

||εt||22 − c2m̃nγnd
?
n

2 +mωn ≤ IC(t̃1, ..., t̃m̃)

≤ IC(t̂1, ..., t̂m0)

≤
T∑
t=q

||εt||22 +Km0nγnd
?
n

2 +m0ωn, (42)

which means

(m̃−m0)ωn ≤ c2m̃nγnd
?
n

2 +Km0nγnd
?
n

2. (43)

However, (43) contradicts with the fact that m0nγnd
?
n

2/ωn → 0. This completes the

first part of the theorem.
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For the second part, let B = 2K/c, and suppose there exists a point ti such that

min1≤j≤m0 |t̃j − tj| ≥ Bm0nγnd
?
n

2. Then, by similar argument as in Lemma 4, we

can show that:

T∑
t=d

||εt||22 + cBm0nγnd
?
n

2 < Ln(t̃1, ..., t̃m0)

≤ Ln(t̂1, ..., t̂m0)

≤
T∑
t=q

||εt||22 +Km0nγnd
?
n

2, (44)

which contradicts with the way B was selected. This completes the proof of the

theorem.

Proof of Theorem 4. The proof of this theorem is similar to that of Proposition 4.1

in Basu & Michailidis (2015). The two main components of the proof is (i) verifying

the restricted eigenvalue (RE) for Γ̂ = Ip⊗(X ′rXr/N), and (ii) verifying the deviation

bound for
∣∣∣∣∣∣γ̂ − Γ̂Φ

∣∣∣∣∣∣
∞

where γ̂ = (Ip ⊗ X ′r)Yr/N . Once these two are verified, the

rest of the proof is applying deterministic arguments used in Proposition 4.1 in Basu

& Michailidis (2015). Therefore, here we proof (i) and (ii) only.

Condition (i) means that there exist α, τ > 0 such that for any θ ∈ Rπ̃, we have

θ′Γ̂θ ≥ α||θ||22 − τ ||θ||21,

with probability at least 1 − c1 exp(−c2N) for large enough constants c1, c2 > 0.

Based on Lemma B.1 in Basu & Michailidis (2015), it is enough to show the RE for

S = X ′iXi/N , where Xi is the ith block component of Xr. Applying Proposition 2.4
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in Basu & Michailidis (2015), we have for any v ∈ Rpq with ||v||2 ≤ 1, and any

η > 0:

P
(∣∣∣∣v′(S − Ni

N
Γi(0)

)
v

∣∣∣∣ > cη

)
≤ 2 exp(−c3N min(η2, η)).

Now, to make the above probability hold uniformly on all the vectors v, we apply

the discretization Lemma F2 in Basu & Michailidis (2015) and also Lemma 12 in

the supplementary materials of Loh & Wainwright (2012) to get:

∣∣∣∣v′(S − Ni

N
Γi(0)

)
v

∣∣∣∣ ≤ α||v||22 + α/k||v||21,

with high probability at least 1− c1 exp(−c2N), for all v ∈ Rpq, some α > 0 and

with an integer k = dc4N/ log(pq)e with some c4 > 0. This implies that

v′Sv ≥ v′
Ni

N
Γi(0)v − α||v||22 − α/k||v||21 ≥ α||v||22 − α/k||v||21,

since Ni ≥ ∆n − 4Rn, N = n+ q − 1− 2m0Rn, and assuming ∆n ≥ εn implies that

Ni/N ≥ ε ≥ 2α.

The deviation condition (DC) here means that there exist a large enough constant

C ′ > 0 such that ∣∣∣∣∣∣γ̂ − Γ̂Φ
∣∣∣∣∣∣
∞
≤ C ′

√
π̃

N
,

with probability at least 1− c1 exp(−c2 log q̃). To verify this condition here, observe

that γ̂ − Γ̂Φ = vec (X ′rEr) /N . Therefore, denoting the h–th column block of Xr by

Xr,(h), for h = 1, ..., (m0 + 1)q, we have:
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∣∣∣∣∣∣γ̂ − Γ̂Φ
∣∣∣∣∣∣
∞

= max
1≤k,l≤p;1≤h≤(m0+1)d

∣∣e′kX ′r,(h)Erel
∣∣ .

Now, for a fixed k, l, h, applying Proposition 2.4(b) in Basu & Michailidis (2015)

gives:

P
(∣∣e′kX ′r,(h)Erel

∣∣ > k1η
)
≤ 6 exp(−k2N min(η2, η)),

for large enough k1, k2 > 0, and any η > 0. Now, setting η = C ′
√

π̃
N

, and taking

the union over all the π̃ cases for k, l, h yield the desired result. This completes the

proof of this theorem.

Proof of Theorem 1 in Appendix F. The proof is similar to the proof of Theorem 4,

and therefore, most of the details are omitted here. The main difference is on finding

a new deviation bound for the misspecified model in intervals of type [t̃j, tj] or [tj, t̃j],

j = 1, 2, . . . ,m0, and that would potentially affect the optimal selection of tuning

parameter from theoretical perspective. In other words, we need a higher value for

the tuning parameter to account for the model misspecification. More specifically,

the additional term will be of the form
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1

n

t̃j−1∑
t=tj

Y ′t−1

(
Φ(.,j) − B̂f,j

)′ (
yt − Φ(.,j)Yt−1

)
=

1

n

t̃j−1∑
t=tj

Y ′t−1

(
Φ(.,j) − B̂f,j

)′ (
εt +

(
Φ(.,j+1) − Φ(.,j)

)
Yt−1

)
= Op

(√
log π̃

n
+ d?nMΦ

Rn

n

)∥∥∥Φ(.,j) − B̂f,j

∥∥∥
1
. (45)

Therefore, the tuning parameter ρn,f must be of the same order as in (45) so that

the deterministic arguments used in Proposition 4.1 of Basu & Michailidis (2015)

can go through here as well. Once the tuning parameter selection is adjusted, the

rest of the proof is the same as the proof of Theorem 4.

Appendix C: Details of Estimation Algorithms

In this section, we provide details of the algorithm for solving the optimization

problem (5), as well as the proposed backward elimination algorithm (BEA) for the

second-stage screening.

To describe the algorithm for solving the optimization problem (5), let S(.;λ) be

the element-wise soft-thresholding operator which maps its input x to x − λ when

x > λ, x+ λ when x < −λ, and 0 when |x| ≤ λ. Recall that throughout the paper,

for a m× n matrix A, ‖A‖∞ = max1≤i≤m,1≤j≤n |aij|. The algorithm is as follows:

(i) Set the initial values for all parameters to be zero; i.e. θ
(0)
i = 0, for i = 1, . . . , n.
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(ii) For each i = 1, . . . , n, calculate the (h + 1)–th iteration of the parameters

θ
(h+1)
i using the KKT conditions of problem (5), presented in Lemma 2 of

Appendix A. More specifically,

θ′i
(h+1)

=

(
n∑
l=i

Yl−1Y
′
l−1

)−1

S

 n∑
l=i

Yl−1y
′
l −
∑
j 6=i

 n∑
l=max(i,j)

Yl−1Y
′
l−1

 θ′j
(h)

;λ1,n

 ,

(46)

where Y ′l =
(
y′l . . . y

′
l−q+1

)
1×pq.

(iii) (a) If max1≤i≤n ‖θi(h+1) − θi(h)‖∞ < δ, where δ is the tolerance set to 10−3 in

our implementation, stop the iteration and denote the final estimate by

Θ(intermediate).

(b) If max1≤i≤n ‖θi(h+1) − θi(h)‖∞ ≥ δ, set h = h+ 1. Go to step (ii).

(iv) Apply soft-thresholding to the partial sums of Θ(intermediate), i.e.
∑k

i=1 θ
(intermediate)
i

to find the optimizer in equation (5). In other words, θ̂1 = S
(
θ

(intermediate)
1 ;λ2,n

)
and θ̂k = S

(∑k
i=1 θ

(intermediate)
i ;λ2,n

)
− S

(∑k−1
i=1 θ

(intermediate)
i ;λ2,n

)
for

k = 2, 3, . . . , n. Finally Θ̂ =
(
θ̂1, . . . , θ̂n

)
.

Note that in this algorithm, the whole block of θi with p2q elements is updated

at once, which reduces the computation time dramatically.

Our backward elimination algorithm (BEA) for the second-stage screening is as

follows:

(i) Set m = |Ân|. Let s = {s1, . . . , sm} be the selected points and define W ?
m =

IC(s1, . . . , sm; ηn).
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(ii) For each i = 1, . . . ,m, calculate Wm,i = IC(s\{si}; ηn). Define W ?
m−1 =

miniWm,i.

(iii) (a) If W ?
m−1 > W ?

m, then no further reduction is needed. Return Ân as the

estimated change points.

(b) If W ?
m−1 ≤ W ?

m, and m > 1, set j = argminiWm,i, set s = s\{sj} and

m = m− 1. Go to step (ii).

(c) If W ?
m−1 ≤ W ?

m and m = 1, all selected points are removed. Return the

empty set.

Appendix D: Additional Simulation Results

In this section, two additional simulation scenarios are described and the empirical

results are reported.

Simulation Scenario 4 (Randomly structured Φ and break points close to the

center). As in Scenario 1, in this case we set t1 = 100 and t2 = 200. However,

the coefficients matrices are chosen to be randomly structured. The autoregressive

coefficients for simulation scenarios 1 and 2 are displayed in Figure 1. The 1-off

diagonal values for the three segments are -0.6, 0.75, and -0.8, respectively.However,

the autoregressive coefficients for this scenario are chosen to be randomly structured

as displayed in Figure 2.

The selected break points in this scenario are shown in the middle part of Fig-

ure 3. The mean and standard deviation of locations of the selected break points,

relative to the sample size T , as well as the percentage of simulation runs where
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break points are correctly identified are shown in Table 1. The results suggest that,

among all simulation scenarios, this setting, with randomly structured Φ’s, is the

most challenging for our method in terms of detecting the number of break points.

In this setting, the detection rate drops to 99% compared to 100% in the previous

scenarios, and the standard deviation of the selected break point locations are higher

than the first scenario. The percentage of runs where true break points are within

Rn-radius of the estimated points also drops to 96% compared to 100% in Scenarios

1, 2 and 3.

Φ(1) Φ(2) Φ(3)

Figure 1: True autoregressive coefficients for the three segments in Simulation Sce-
narios 1 and 2.

The inferior performance of the proposed method in the fourth simulation sce-

nario could be due to the fact that the L2-distance between the consecutive au-

toregressive coefficients are less than the previous two cases. The L2 norm of the

consecutive differences of the VAR parameters in simulation 1 and 2 are 5.88 and

6.76 whereas in simulation 4, they are 4.44 and 4.49. This 35% reduction in the L2-

distance between the consecutive autoregressive coefficients would make it harder

to identify the exact location of the break points. In contrast, the sparse changes in

coefficient matrices makes this setting more favorable for SBS-MVTS. Nonetheless,

estimates from our method are as good or better than those from SBS-MVTS.
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Φ(1) Φ(2) Φ(3)

Figure 2: True autoregressive coefficients for the three segments in Simulation Sce-
nario 4.

Table 1: Results for Simulation Scenario 4. The table shows mean and standard
deviation of estimated break point locations, the percentage of simulation runs where
break points are correctly detected (selection rate), and the percentage of simulation
runs where true break points are within the Rn-radius of the estimated break points
(Rn-selection rate).
method break points truth mean std selection rate Rn-selection rate

SBS-MVTS 1 0.3333 0.3238 0.0206 0.98 –
2 0.6667 0.6569 0.0324 0.92 –

Our method 1 0.3333 0.3323 0.0124 0.99 0.98
2 0.6667 0.6620 0.0200 0.99 0.96

Table 2 summarizes the results for autoregressive parameter estimation in this

simulation scenarios. The table shows mean and standard deviation of relative

estimation error (REE), as well as true positive (TPR) and false positive rates

(FPR) of the estimates. The results suggest that the proposed method performs

well in terms of parameter estimation. In simulation scenario 4, the performance of

SBS–MVTS is better in estimation and in true positive rate. One reason for this

good performance is that in this scenario, the selected break points of SBS–MVTS

method are close enough to the true break points which makes it unnecessary to

remove the Rn–radius of them in order to ensure stationarity. However, in real data

applications, since the ground truth is unknown, this removal becomes necessary.
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Table 2: Results of parameter estimation for simulation scenario 4. The table shows
mean and standard deviation of relative estimation error (REE), true positive rate
(TPR), and false positive rate (FPR) for estimated coefficients.

Method REE SD(REE) TPR FPR

Our Method 0.5263 0.0558 0.94 0.03
SBS-MVTS 0.2757 0.1099 1.00 0.04
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Figure 3: Estimated break points using our method for all 100 runs from Simulation
Scenarios 2 (left), 3 (middle) and 4 (right).

Simulation Scenario 5 (Simple Φ and correlated error term). As in Scenario 1,

in this case we set t1 = 100 and t2 = 200 with T = 300. The coefficients matrices

are chosen to be the same as in simulation scenario 1 as displayed in Figure 1.

However, the covariance matrix of the error terms is dense. More specifically, Σε =

0.01 ((σij))T×T with σij = 0.5|i−j|. The reason to add this simulation scenario is to

see the effect of additional correlation structure of the noise term on the performance

of our method both in terms of detection and estimation.

Table 3 reports the performance of our method and the SBS-MVTS developed

in (Cho & Fryzlewicz 2015) in the simulation scenario 5 in terms of detection of

break points. More specifically, the mean and standard deviation of locations of

the selected break points, relative to the sample size T , as well as the percentage of

simulation runs where break points are correctly identified are shown in Table 3. As
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Table 3: Results for Simulation Scenario 5. The table shows mean and standard
deviation of estimated break point locations, the percentage of simulation runs where
break points are correctly detected (selection rate), and the percentage of simulation
runs where true break points are within the Rn-radius of the estimated break points
(Rn-selection rate).
method break points truth mean std selection rate Rn-selection rate

SBS-MVTS 1 0.3333 0.3688 0.0413 0.68 –
2 0.6667 0.6119 0.0945 0.80 –

Our method 1 0.3333 0.3251 0.0139 1 1
2 0.6667 0.6507 0.0213 1 1

Table 4: Results of parameter estimation for simulation scenario 5. The table shows
mean and standard deviation of relative estimation error (REE), true positive rate
(TPR), and false positive rate (FPR) for estimated coefficients.

Method REE SD(REE) TPR FPR

Our Method 0.6012 0.0699 0.93 0.04
SBS-MVTS 0.8005 0.1693 0.70 0.01

seen from this table, our method performs very well in this scenario which confirms

the applicability of our method in the case of correlated error terms.

Table 4 summarizes the results for autoregressive parameter estimation in the

simulation scenario 5. The table shows mean and standard deviation of relative

estimation error (REE), as well as true positive (TPR) and false positive rates

(FPR) of the estimates. The results suggest that the proposed method performs

well in terms of parameter estimation and is superior to the naive approach using

the detected points of SBS-MVTS method and applying regularization method for

parameter estimation.
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Appendix E: Sharpening the Consistency Rate

A potential area of improvement in the asymptotic analysis presented in the main

paper is that the consistency rate for locating the break points stated in Theorem 3

depends on the the total sparsity of the model, d?n, given by the sum of nonzero

parameters in each segment. This number depends on the number of changed coef-

ficients in consecutive segments, and can grow with the number of segments m0. In

this section, we propose an alternative analysis that reduces this rate by replacing

the total sparsity with the sparsity of two consecutive segments, thus breaking the

dependence on m0.

To improve the rate of consistency, we take advantage of the fact that our method

also gives some form of confidence intervals for the location of the break points. As

discussed in Section 5, the interval [t̃j − ωn, t̃j + ωn] includes the true break point

tj with high probability. We use this fact to repeat the proposed algorithm locally

in order to achieve a better rate of consistency. More specifically, consider the

intervals Fj = [t̃j−1 + ωn, t̃j+1 − ωn], j = 1, 2, . . . ,m0 with t̃0 = 1 and t̃m0+1 = T .

These intervals not only include the true break points tj but also tj’s are far from

the boundaries. Thus, it is possible to apply our method on these intervals to locate

the break points. In fact, we can just run the first step of our method to locate tj

since we know there is only one true break point in the interval Fj, and the tuning

parameter can be selected in such a way that the method gives only one break point.

Now, based on our results in Theorem 3, the consistency rate for locating tj would

be of order O
(
d2
jnjγnj

)
where nj = length(Fj) and dj is the sum of number of non-

zero elements in the two consecutive segments j and j + 1, j = 1, 2, . . . ,m0. The
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new sparsity parameter dj can be much smaller than d?n depending on the number

of true break points m0, and the number of changed coefficients in each break point.

This result is summarized in the corollary below.

Corollary 1. Suppose A1–A5 hold. Denote t̄1, t̄2, . . . , t̄m0 the selected break points

using the two-stage method as in (5) and (12) applied on the intervals Fj, j =

1, 2, . . . ,m0. Then, as n→ +∞, there exists a positive constant B > 0 such that

P
(
|t̄j − tj| ≤ Bnjγnj

dj
2
)
→ 1,

for j = 1, 2, . . . ,m0.

Appendix F: Alternative Procedure for Consistent Parame-

ter Estimation

An alternative to our third step is to use the full data and estimate the parameters by

using the selected break points as the end points in the piecewise high-dimensional

31



regression model. More specifically, we can form the following linear regression:



y′q
...

y′
t̃1−1

y′
t̃1

...

y′
t̃2−1

...

y′
t̃m0−1

...

y′T



=



Y ′q−1

... 0 . . . 0

Y ′
t̃1−2

Y ′
t̃1−1

0
... . . . 0

Y ′
t̃2−2

...
...

. . .
...

Y ′
t̃m0−2

0 0
...

Y ′T−1





β′1

β′2
...

β′m0+1


+



ζ ′q
...

ζ ′
t̃1−1

ζ ′
t̃1

...

ζ ′
t̃2−1

...

ζ ′
t̃m0−1

...

ζ ′T



. (47)

This regression can be written in compact form as

Yf = XfB + Ef

or, in a vector form, as

Yf = ZfB + Ef (48)

32



where Yf = vec(Yf), Zf = Ip⊗Xf, B = vec(B), Ef = vec(Ef). Not that, Yf ∈ Rnp×1,

Zf ∈ Rnp×π̃, B ∈ Rπ̃×1, and Ef ∈ Rnp×1. Estimating the VAR parameters by solving

B̂f = argminBN
−1 ‖Yf − ZfB‖2

2 + ρn,f ‖B‖1 , (49)

we obtain the following consistency result.

Theorem 1. Suppose A1–A5 hold, m0 is unknown and Rn = Bm0nγnd
?
n

2. Assume

also that ∆n > εn for some large positive ε > 0 and ρn,f = C

(√
log π̃
n

+ d?nMΦ
Rn

n

)
for large enough C > 0. Then, as n→ +∞, the minimizer B̂f of (49) satisfies

∥∥∥B̂f − Φ
∥∥∥
`

= Op

(
(d?n)1/`ρn,f

)
for ` = 1, 2.

As seen in Theorem 1, the consistency rate when using the full data has an

additional term d?nMΦ
Rn

n
. Depending on the magnitude of the sparsity level d?n, this

additional term may dominate the first term
√

log π̃
n

asymptotically, and can lead to

a worse consistency rate than the proposed estimator B̂ in Equation (15).

The rate of consistency for the above procedure suggests that removing the Rn-

radius of estimated break points in the third step of our procedure can play a crucial

role. The simulation results in Section 7.3 corroborate this theoretical finding.

Appendix G: Data-Driven Method For Selecting ωn

In this section, we describe, in details, the data-driven method used in Section 7.4

for choosing ωn. As mentioned, the idea is to first finish the backward elimination
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algorithm (BEA) until no break points are left. Then, we cluster the jumps in

the objective function Ln in Equation (10) into two subgroups, small and large.

Intuitively, if removing a break point leads to a small jump in Ln, then the break

point is likely redundant. In contrast, larger jumps correspond to true break points.

The smallest jump in the second group is thus a reasonable candidate for ωn. More

specifically, we apply the BEA to the candidate break points in the first step, i.e.{
t̂1, . . . , t̂m̂

}
, and remove them one by one to the end. Then, we rank the break points

based on the level they are removed in the BEA algorithm, say t̂i1 , t̂i2 , . . . , t̂im̂ . Now,

we compute the jumps in the objective function at each step of the BEA algorithm

denoting them by vk, with vk =
∣∣Ln(t̂ik , . . . , t̂im̂ ; ηn)− Ln(t̂ik−1

, . . . , t̂im̂ ; ηn)
∣∣, k =

1, 2, . . . , m̂. Then, we cluster V = {v1, v2, . . . , vm̂} into two subsets using k-means

clustering (Hartigan & Wong 1979). Denote the subset with smaller center as the

small subgroup, VS, and the other subset as the large subgroup, VL.

Intuitively, the points which their removal leads to jumps in VS are redundant,

and the rest, which made large jumps in the sum of squared error (SSE) in the BEA

algorithm, correspond to estimated break points. Therefore, minVL—which is the

smallest jump in the SSE occurred by removing a true estimated break point—is a

reasonable candidate for ωn. Note that if m0 = 0, then all m̂ selected break points

in the first step are redundant, and their removal make no significant jumps in the

SSE. To avoid keeping any points after the screening step in this case, we recommend

comparing the fit in the k-means clustering with two and one cluster. If k-means

with two clusters has a high ratio of between-group SS/total SS, then we proceed

as discussed. Otherwise, we remove all the m̂ selected break points in the first step,
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and claim that m0 = 0. In the latter, maxV is considered as the optimal value for

ωn. The proposed algorithm is summarized as follow:

(i) Apply the BEA algorithm to the set Ân until no break points are left. Denote

the ordered deleted break points as t̂i1 , t̂i2 , . . . , t̂im̂ .

(ii) For each k = 1, 2, . . . , m̂, set vk =
∣∣Ln(t̂ik , . . . , t̂im̂ ; ηn)− Ln(t̂ik−1

, . . . , t̂im̂ ; ηn)
∣∣.

Define V = {v1, v2, . . . , vm̂}.

(iii) Apply k-means clustering algorithm to the set V with two centers. Denote the

subset with smaller center as the small subgroup, VS, and the other subset as

the large subgroup, VL.

(iv) (a) If (between-group SS/total SS) in (iii) is high, set ωn = minVL.

(b) If (between-group SS/total SS) in (iii) is low, set ωn = maxV .
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