Supporting information

for

Comprehensive Evaluation of Models for Ammonia Binding to the Oxygen Evolving Complex of Photosystem II

Maria Drosou,^{a,b,*} Dimitrios A. Pantazis^{a,*}

^a Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany

^b Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15771, Greece

E-mail: drosou@kofo.mpg.de, dimitrios.pantazis@kofo.mpg.de

Figure S1. Complete computational model for the S_2 state of the OEC. Mn(III) ions are indicated in pink, Mn(IV) in dark purple, Ca in yellow, N in blue, O in red and Cl in green. Hydrogen atoms connected to carbon atoms are omitted for clarity. All amino-acid residues belong to the D1 subunit, except from Arg357 and Glu354 (shown in *italics*), which belong to the CP43 subunit.

	Mn1- Mn2	Mn1- Mn3	Mn2- Mn3	Mn3- Mn4	Mnª- NHx	Mn1- N(His)	Mn3- O5	Mn ^b - O5	Mn4- O(W1)	Mn4- O(W2)
S_2	2.765	3.386	2.814	2.768	-	2.022	1.846	1.881	2.032	1.862
S_2^H	2.772	3.373	2.800	2.755	-	2.016	1.860	1.861	2.008	2.039
A1	2.751	3.618	2.901	3.023	1.932	2.041	-	1.803	1.957	2.231
A2	2.797	3.565	2.833	2.866	1.885	2.041	-	2.139	2.002	2.066
A3	2.765	3.362	2.850	2.758	1.881	2.021	-	-	2.046	2.068
A4	2.757	3.412	2.830	2.903	2.005	2.021	-	-	1.968	1.850
A5	2.797	3.426	2.825	2.714	1.815	2.056	-	-	2.112	2.078
A6	2.764	3.382	2.813	2.804	1.924	2.031	-	-	2.071	1.867
A7	2.770	3.374	2.798	2.793	1.914	2.024	-	-	2.044	2.039
A8	2.770	3.271	2.835	2.695	1.879	2.033	-	-	2.198	1.890
A9	2.771	3.300	2.812	2.683	1.843	2.029	-	-	2.161	2.069
A10	2.768	3.387	2.809	2.892	2.009	2.009	-	-	1.946	2.015
B 1	2.766	3.350	2.810	2.771	2.061	2.025	1.832	1.917	-	1.869
B2	2.742	2.923	2.782	3.112	2.182	2.055	1.888	1.884	-	1.866
B3	2.773	3.342	2.799	2.759	2.059	2.018	1.848	1.891	-	2.039
B4	2.745	2.907	2.770	3.150	2.167	2.050	1.880	1.883	-	2.035
C1	2.766	3.360	2.807	2.773	2.056	2.025	1.812	1.985	1.814	-
C2	2.769	3.391	2.801	2.748	2.060	2.017	1.862	1.859	1.997	-
C3	2.745	2.909	2.768	3.118	2.062	2.052	1.884	1.886	2.114	-
D1	2.748	3.118	2.835	3.205	2.077	2.057	2.254	1.774	2.155	1.786
D2	2.787	3.595	2.854	2.882	2.050	2.062	1.858	1.857	-	2.280
D3	2.747	3.147	2.843	3.276	2.004	2.057	2.263	1.785	1.895	1.958
D4	2.786	3.533	2.826	2.830	2.043	2.064	1.852	1.879	-	1.871
D5	2.777	3.154	2.783	3.260	1.985	2.025	1.898	2.208	2.091	1.888
D6	2.749	3.193	2.831	3.232	2.030	2.051	2.210	1.873	2.112	1.861
D7	2.757	3.755	2.917	2.959	2.014	2.043	1.958	1.915	-	2.072
D8	2.747	3.096	2.819	3.287	1.981	2.056	2.230	1.779	1.940	2.125
E1	2.798	3.427	2.829	2.805	2.415	2.082	1.789	1.953	1.834	1.857
E2	2.857	3.548	2.842	2.803	2.018	2.359	1.859	1.848	2.001	1.872
E3	2.804	3.410	2.813	2.762	2.430	2.065	1.847	1.827	1.995	2.062
E4	2.783	3.572	2.853	2.789	1.980	2.066	1.843	1.875	1.975	2.072

Table S1. Structural parameters of BP86/ZORA-TZVP optimized S₂-state structures with various NH₃ binding sites. The corresponding core structures are shown in Figures 4–6 of the manuscript.

^aMn4 ion in binding modes A–D and Mn1 in mode E.

^bMn1 ion for closed-cubane structures and Mn4 ion for open-cubane structures.

Table S2. Calculated Mulliken Mn spin populations for the optimized S_2 and S_2 -NH₃ models calculated with broken-symmetry (BS) TPSSh using the lowest energy BS determinant. Very similar spin populations are computed with BP86 and with TPSSh using the high-spin determinant.

	Mn1	Mn2	Mn3	Mn4
S_2	3.90	-2.96	-2.90	2.91
S_2^H	3.89	-2.96	-2.93	2.92
A1	2.96	2.99	2.79	-3.99
A2	-3.89	2.94	3.12	3.10
A3	-3.88	2.97	2.99	3.02
A4	3.88	-2.98	-2.89	2.97
A5	3.92	-2.94	-2.84	2.73
A6	-3.90	2.95	2.99	3.02
A7	-3.88	2.95	3.03	3.03
A8	3.91	-2.92	-2.75	2.79
A9	3.90	-2.94	-2.80	2.70
A10	3.86	-2.97	-2.93	2.98
B1	3.94	-2.97	-2.92	2.96
B2	3.03	2.93	2.96	3.84
B3	3.89	-2.96	-2.93	2.95
B4	2.99	2.93	2.99	3.90
C1	3.90	-2.94	-2.89	2.84
C2	3.89	-2.96	-2.92	2.94
C3	2.97	2.93	2.87	-3.90
D1	2.87	2.91	-3.84	2.79
D2	2.91	2.96	2.78	-3.95
D3	2.88	2.90	-3.83	2.92
D4	3.90	-2.93	-2.93	2.95
D5	3.88	-2.90	2.95	-2.89
D6	2.98	2.90	-3.84	2.86
D7	2.99	2.99	3.89	-2.81
D8	2.88	2.91	-3.82	2.77
E 1	3.92	-2.93	-2.83	2.87
E2	3.90	-2.88	-2.93	2.91
E3	3.92	-2.95	-2.93	2.90
E4	2.97	-2.96	-2.81	3.91

(O,H)		BP86	TPSSh	BS-TPSSh
(2,4)	A6	15.0	19.6	19.4
	A9	24.4	26.7	25.5
	B 1	0.0	0.0	0.0
	B2	8.3	10.4	11.1
	C1	1.3	6.5	6.4
(2,5)	A4	32.5	39.9	39.9
	A7	20.0	21.9	21.7
	B3	3.5	1.3	1.4
	B4	8.6	5.2	6.0
	C2	0.0	0.0	0.0
	C3	5.1	4.6	5.1
(3,6)	A5	23.0	27.3	26.2
	D1	9.8	12.5	12.2
	D2	0.0	0.0	0.0
	D3	10.3	13.8	12.7
	D4	7.0	5.9	5.1
	E2	15.1	20.4	19.6
(3,7)	A1	24.1	26.8	26.4
	A2	33.2	36.9	36.4
	A3	34.6	45.0	45.5
	D5	10.9	13.4	13.7
	D6	3.9	8.0	8.2
	D 7	0.0	0.0	0.0
	D8	9.1	14.1	12.8
	E3	5.0	7.5	6.7
	E4	9.9	16.1	13.8

Table S3. Relative energies (kcal mol^{-1}) of BP86 optimized S₂-state structures with various NH₃ binding sites calculated with BP86, TPSSh using the high-spin determinant and broken-symmetry (BS) TPSSh using the lowest energy BS determinant.

Table S4. Calculated effective/projected axial (A_{\parallel}) and equatorial (A_{\perp}) ⁵⁵Mn hyperfine coupling constants, as well as isotropic (a_{\parallel}) and anisotropic (a_{\perp}) on-site hyperfine values and spin projection coefficients ρ_i for each Mn ion, Mn_i, of the S₂-NH₃ and the S₂-state models in the low-spin (S = 1/2) configuration.

_

		Mn1(III)	Mn2(IV)	Mn3(IV)	Mn4(IV)
A4	$A_{\mathrm{BS},x}{}^{\mathrm{a}}$	-179	402	369	-438
	$A_{\mathrm{BS},y}$	-468	415	377	-469
	$A_{{ m BS},z}$	-534	440	437	-498
	$A_{\parallel}{}^{\mathrm{b}}$	-85	-199	-240	-419
	$A_{\perp}{}^{c}$	-239	-185	-205	-463
	$ ho_i$	1.07	-0.76	-0.92	1.61
	$lpha_{ m iso}{}^{ m d}$	-175	249	234	-278
	$\alpha_{ m aniso}^{e}$	-143	-19	-38	-27
A5	$A_{\mathrm{BS},x}$	-265	397	404	-450
	$A_{\mathrm{BS},y}$	-579	407	460	-524
	$A_{\mathrm{BS},z}$	-605	447	471	-542
	A_{\parallel}	-229	-265	-173	-210
	A_{\perp}	-510	-238	-199	-248
	$ ho_i$	1.94	-1.00	-0.72	0.78
	$lpha_{ m iso}$	-215	247	264	-300
	$\alpha_{ m aniso}$	-145	-26	37	-49
A8	$A_{\mathrm{BS},x}$	-154	418	398	-427
	$A_{\mathrm{BS},y}$	-454	425	430	-525
	$A_{\mathrm{BS},z}$	-491	461	444	-539
	A_{\parallel}	-133	-273	-201	-209
	A_{\perp}	-407	-250	-187	-260
	$ ho_i$	1.94	-1.00	-0.76	0.82
	$lpha_{ m iso}$	-163	258	252	-295
	$\alpha_{ m aniso}$	-142	-23	-18	-62
A9	$A_{\mathrm{BS},x}$	-172	407	404	-446
	$A_{\mathrm{BS},y}$	-464	417	463	-525
	$A_{\mathrm{BS},z}$	-522	452	473	-549
	A_{\parallel}	-151	-266	-156	-177
	A_{\perp}	-433	-242	-181	-213
	$ ho_i$	1.97	-0.99	-0.65	0.67
	$lpha_{ m iso}$	-172	253	265	-301
	$lpha_{ m aniso}$	-143	-24	38	-54
A10	$A_{\mathrm{BS},x}$	-211	393	389	-429

	$A_{\mathrm{BS},y}$	-476	404	400	-470
	$A_{{ m BS},z}$	-579	431	446	-495
	A_{\parallel}	-96	-210	-220	-416
	A_{\perp}	-238	-194	-194	-468
	Di	1.01	-0.82	-0.83	1.63
	$\alpha_{\rm iso}$	-188	243	244	-276
	$\alpha_{ m aniso}$	-141	-19	-31	-32
B 1	$A_{\mathrm{BS},x}$	-167	404	369	-426
	$A_{\mathrm{BS},y}$	-463	416	384	-466
	$A_{{ m BS},z}$	-521	447	421	-503
	A_{\parallel}	-135	-263	-221	-315
	A_{\perp}	-398	-241	-198	-279
	$ ho_i$	1.82	-0.99	-0.89	1.06
	$lpha_{ m iso}$	-171	251	232	-276
	$lpha_{ m aniso}$	-144	-22	-27	-35
B3	$A_{\mathrm{BS},x}$	-176	392	390	-424
	$A_{\mathrm{BS},y}$	-466	405	417	-471
	$A_{\mathrm{BS},z}$	-535	437	449	-492
	A_{\parallel}	-131	-251	-261	-320
	A_{\perp}	-373	-229	-234	-364
	Di	1.68	-0.97	-0.98	-0.98
	aiso	-174	244	248	-274
	aniso.	-144	-23	-27	-34
	- uniso				
C1	$A_{\mathrm{BS},x}$	-167	406	369	-450
	$A_{\mathrm{BS},y}$	-461	417	378	-461
	$A_{\mathrm{BS},z}$	-521	450	407	-498
	A_{\parallel}	-147	-262	-147	-179
	A_{\perp}	-434	-240	-135	-164
	$ ho_i$	1.99	-0.98	-0.61	0.61
	$\alpha_{ m iso}$	-170	252	228	-279
	$lpha_{ m aniso}$	-144	-23	-20	25
C2	$A_{\mathrm{BS},x}$	-175	397	390	-442
	$A_{\mathrm{BS},y}$	-463	410	416	-476
	$A_{\mathrm{BS},z}$	-533	441	449	-483
	A_{\parallel}	-123	-247	-264	-354
	A_{\perp}	-352	-226	-238	-384
	$ ho_i$	1.59	-0.94	-0.99	1.35
	$lpha_{ m iso}$	-174	247	248	-277

	$\alpha_{ m aniso}$	-144	-23	-27	-22
D4	$A_{\mathrm{BS},x}$	-368	386	349	-419
	$A_{\mathrm{BS},y}$	-679	399	375	-453
	$A_{\mathrm{BS},z}$	-730	437	426	-500
	A_{\parallel}	-204	-196	-252	-447
	A_{\perp}	-391	-177	-214	-390
	$ ho_i$	1.25	-0.76	-1.00	1.51
	$lpha_{ m iso}$	-264	242	228	-271
	$lpha_{ m aniso}$	-150	-26	-38	38
D5	$A_{\mathrm{BS},x}$	-311	471	-430	397
	$A_{\mathrm{BS},y}$	-589	481	-447	422
	$A_{\mathrm{BS},z}$	-675	503	-509	464
	A_{\parallel}	-203	-231	-376	-258
	A_{\perp}	-412	-219	-324	-228
	$ ho_i$	1.47	-0.77	1.25	-0.94
	$lpha_{ m iso}$	-234	288	-274	254
	$lpha_{ m aniso}$	-143	-16	42	-33
E1	$A_{\mathrm{BS},x}$	-291	408	355	-475
	$A_{\mathrm{BS},y}$	-603	417	362	-484
	$A_{\mathrm{BS},z}$	-624	452	392	-503
	A_{\parallel}	-257	-267	-106	-139
	A_{\perp}	-542	-244	-97	-132
	$ ho_i$	1.99	-1.00	-0.45	0.46
	$lpha_{ m iso}$	-225	252	219	-289
	$lpha_{ m aniso}$	-143	-24	-20	14
E2	$A_{\mathrm{BS},x}$	-315	371	362	-437
	$A_{\mathrm{BS},y}$	-556	394	389	-473
	$A_{\mathrm{BS},z}$	-679	428	436	-512
	A_{\parallel}	-207	-218	-256	-417
	A_{\perp}	-405	-195	-220	-370
	$ ho_i$	1.47	-0.86	-0.99	1.37
	$lpha_{ m iso}$	-230	236	235	-281
	$lpha_{ m aniso}$	-135	-27	-36	34
E3	$A_{\mathrm{BS},x}$	-287	388	386	-439
	$A_{\mathrm{BS},y}$	-601	399	419	-481
	$A_{\mathrm{BS},z}$	-622	432	452	-493
	A_{\parallel}	-197	-228	-224	-343

	A_{\perp}	-421	-208	-252	-381
	$ ho_i$	1.55	-0.89	-0.98	1.32
	$lpha_{ m iso}$	-224	241	249	-280
	$lpha_{ m aniso}$	-145	-23	29	-28
S_2	$A_{\mathrm{BS},x}$	-165	405	366	-437
	$A_{\mathrm{BS},y}$	-459	418	385	-479
	$A_{{ m BS},z}$	-519	449	423	-515
	A_{\parallel}	-131	-261	-227	-287
	A_{\perp}	-387	-239	-202	326
	$ ho_i$	1.78	-0.98	-0.91	1.11
	$lpha_{ m iso}$	-170	251	232	-283
	$lpha_{ m aniso}$	-144	-22	-28	-35
S_2^H	$A_{\mathrm{BS},x}$	-175	393	386	-443
	$A_{\mathrm{BS},y}$	-463	407	415	-485
	$A_{{ m BS},z}$	-534	438	447	-494
	A_{\parallel}	-127	-249	-262	-344
	A_{\perp}	-363	-227	-235	-380
	$ ho_i$	1.64	-0.96	-0.99	1.31
	$lpha_{ m iso}$	-174	245	247	-281
	$\alpha_{ m aniso}$	-144	-22	-28	-27

^a $A_{BS,x}$, $A_{BS,y}$, $A_{BS,z}$ are the components of the hyperfine coupling tensor computed from the BS calculation and following the convention $|A_{BS,z}| > |A_{BS,y}| > |A_{BS,x}|$. The effective (observable) HFC components $-A_x$, A_y , A_{z-} of Mn_i are derived from: $A_x = A_{BS,x} \cdot \frac{\langle S_z \rangle_{BS}}{S_i} \cdot \rho_i \cdot 1.78$, where S_i is the site spin of Mn_i [2 for Mn(III) and 3/2 for Mn(IV)], $\langle S_z \rangle_{BS}$ the total M_S of the BS wavefunction (1/2 in all models), ρ_i the spin projection coefficient of Mn_i,¹ and 1.78 is a scaling factor used specifically for comparing the computed ⁵⁵Mn hyperfine coupling constants with experimental results (see also Computational Details section in the main text).

^b A_{\parallel} is defined as the component of the effective HFC components with the largest difference to $A_{iso} = (A_x + A_y + A_z)/3$ (Table 2), and A_{\perp} the average of those components with the smallest difference to A_{iso} .

^c The on-site hyperfine values $-a_x$, a_y , a_z - of Mn_i are derived from: $a_x = A_{BS,x} \cdot \frac{\langle S_z \rangle_{BS}}{S_i} \cdot 1.78$, and $\alpha_{iso} = (\alpha_x + \alpha_y + \alpha_z)/3$.

^b α_{aniso} is defined as $\alpha_{aniso} = \alpha_{\perp} - \alpha_{\parallel}$, where α_{\parallel} the on-site HFC component with the largest difference to α_{iso} and α_{\perp} the average of those components with the smallest difference to α_{iso} .

Table S5. Calculated effective/projected ¹⁴N hyperfine and NQI tensors (in MHz) for the electron–nuclear couplings of the bound NH_x-N and of the His332 imino-N, and ¹⁷O hyperfine tensors (in MHz) of the terminal W1 and W2 ligands and the bridging O5 ligand for the S₂-NH₃ and the S₂-state models in the low-spin (S = 1/2) configuration.

_

		14	'N		¹⁷ O	
		NH ₃	His332	05	W2	W1
A4	$A_{\mathrm{BS},x}$ ^a	3.64	-10.76		15.04	2.18
	$A_{\mathrm{BS},y}$	8.12	-13.25		-15.40	-3.04
	$A_{{ m BS},z}$	9.96	-14.26		-62.54	-15.96
	$ A_{\rm iso} ^{\rm b}$	3.06	3.42	-	16.66	3.80
	$A_{dip}{}^{c}$	0.76	0.27	-	-8.48	-2.20
	$A_{\eta}{}^{\mathrm{d}}$	0.51	0.51	-	0.01	0.10
	$ e^2Qq/h $	1.44	1.96			
	η	0.81	0.85			
4.5	4	6.64	2 29		0.07	0.19
Að	$A_{\mathrm{BS},x}$	0.04	-2.38		1.25	-0.18
	$A_{\mathrm{BS},y}$	14.00	-0.17		-1.23	-1./0
	$A_{\text{BS},z}$	-10.90	-0.89		-4.25	-0.51
	Aiso	1.55	2.49	-	0.30	0.72
	A dip	0.34	0.07	-	-0.27	-0.47
	P_{η}	0.54	0.20 2.23	-	0.15	0.45
	$ \nabla \mathcal{Q} q/n $	0.88	0.60			
	4	0.00	0.00			
A8	$A_{\mathrm{BS},x}$	5.66	-8.10		1.09	-1.93
	$A_{\mathrm{BS},y}$	-9.59	-11.39		-1.22	-4.41
	$A_{{ m BS},z}$	25.74	-12.65		-39.93	-6.27
	$ A_{\rm iso} $	3.61	5.18	-	3.87	1.16
	A_{dip}	-1.60	0.63	-	-3.55	0.31
	A_η	0.33	0.48	-	0.01	0.81
	$ e^2Qq/h $	0.87	2.23			
	η	0.97	0.50			
4.0	4	12.25	0 07		0.12	1 71
Ay	$A_{\text{BS},x}$	-12.55	-0.02		-0.15	-1./1
	ABS,y	12.91	-11.09		3.07	-5.81
	⊿BS,z	3 50	5 55	_	0 44	0.92
	A	-0.81	0.60	-	-0.22	-0.27
	An	0.08	0.47	-	0.84	0.86
	$ e^2Oa/h $	0.62	2.16			0.00
	n - 27	0.96	0.56			
	1					

A10	$A_{{\rm BS},x}$	1.53	-11.81		0.45	-2.50
	$A_{\mathrm{BS},y}$	6.51	-14.00		1.05	-30.93
	$A_{{ m BS},z}$	9.12	-15.04		-1.49	-30.93
	$ A_{ m iso} $	2.35	3.45	-	0.54	8.18
	A_{dip}	0.86	0.23	-	0.15	-4.33
	A_η	0.62	0.57	-	0.82	0.57
	$ e^2Qq/h $	1.33	1.86			
	η	0.80	0.82			
_						
B1	$A_{\mathrm{BS},x}$	-7.73	-9.65	6.62	10.71	
	$A_{\mathrm{BS},y}$	-7.90	-12.54	28.15	-11.25	
	$A_{{ m BS},z}$	-10.23	-13.69	-40.78	-52.28	
	$ A_{\rm iso} $	3.03	5.44	8.14	4.66	-
	A_{dip}	-0.28	0.52	3.00	-2.47	-
	A_η	0.10	0.50	0.68	0.24	-
	$ e^2 Qq/h $	1.27	2.09			
	η	0.77	0.71			
B3	$A_{\mathrm{BS},x}$	-7.54	-10.34	-10.28	1.41	
	$A_{\mathrm{BS},y}$	-7.57	-12.97	28.88	2.46	
	$A_{\mathrm{BS},z}$	-9.87	-14.04	-47.07	-6.01	
	$ A_{\rm iso} $	3.53	5.21	10.79	1.40	-
	A_{dip}	-0.33	0.44	3.46	-0.58	-
	A_η	0.02	0.51	0.99	0.39	-
	$ e^2 Qq/h $	1.29	2.00			
	η	0.91	0.79			
C1	$A_{\mathrm{BS},x}$	-5.88	-9.46	20.12	17.00	
	$A_{\mathrm{BS},y}$	-6.10	-12.43	26.68	-22.23	
	$A_{{ m BS},z}$	-6.21	-13.54	-40.98	-91.64	
	$ A_{\rm iso} $	1.23	5.87	11.87	-	8.82
	$A_{ m dip}$	0.02	0.58	-2.38	-	-4.85
	A_{η}	0.61	0.47	0.56	-	0.11
	$ e^2Qq/h $	1.84	2.12			
	η	0.30	0.70			
\mathbf{C}^{2}	400	_7 78	-10.31	-17 10	0 98	
<u> </u>	ADS	-7 97	-12.96	32.01	-4 03	
	Ang	-9.03	-12.90 -14.01	_43.88	-17 53	
	A :	3 71	4 93	12.00		3 38
	∕⊐ _{1SO} ⊿	-0.17	т.95 0.42	2 76	-	-2.25
	∠ 1 dıp	-0.17	0.42	2.70	-	-2.23

	A_η	0.25	0.50	0.78	-	0.30
	$ e^2 Qq/h $	1.68	2.00			
	η	0.34	0.79			
D4	$A_{\mathrm{BS},x}$	-8.17	-0.24	4.85	10.47	-41.35
	$A_{\mathrm{BS},y}$	-8.41	-4.11	-26.54	-11.25	-44.09
	$A_{\mathrm{BS},z}$	-11.09	-4.73	27.70	-51.66	-76.52
	$ A_{\rm iso} $	4.64	0.95	8.22	12.29	16.84
	A_{dip}	-0.47	0.43	3.10	-6.84	-3.51
	A_η	0.12	0.22	0.08	0.03	0.12
	$ e^2 Qq/h $	1.23	2.23			
	η	0.90	0.59			
D5	$A_{\mathrm{BS},x}$	5.21	-7.28	-50.40	1.48	2.27
	$A_{\mathrm{BS},y}$	5.54	-10.76	-94.61	-1.95	-10.72
	$A_{\mathrm{BS},z}$	8.33	-11.44	-115.06	-5.70	21.23
	$ A_{\rm iso} $	1.99	3.60	33.89	0.95	3.56
	A_{dip}	-0.31	0.47	7.09	-0.41	-1.54
	A_η	0.17	0.27	0.56	0.18	0.86
	$ e^2 Qq/h $	0.98	2.10			
	η	0.73	0.71			
E1	A _{BS r}	23.73	2.06	27.36	10.69	17.70
	$A_{\mathrm{BS},v}$	23.82	-2.25	-30.07	-25.77	-20.79
	$A_{\mathrm{BS},z}$	35.03	-2.85	36.09	-67.39	-67.36
	$ A_{\rm iso} $	13.68	1.18	4.77	5.35	5.46
	A_{dip}	-1.86	-0.11	-0.38	-2.53	-2.48
	A_n	0.01	0.40	0.55	0.46	0.10
	$ e^2 Qq/h $	2.89	2.48			
	η	0.31	0.47			
E2	$A_{\rm BS,r}$	-5.21	25.31	0.57	10.66	3.46
	$A_{\rm BS,v}$	-7.26	25.82	-26.76	-10.80	-5.85
	$A_{\mathrm{BS},z}$	-8.22	32.01	38.26	-51.07	6.26
	$ A_{\rm iso} $	3.15	10.21	8.60	11.06	2.37
	A_{dip}	0.39	-0.79	4.19	-5.51	0.47
	A_n	0.57	0.12	0.54	0.01	0.20
	$ e^2Oa/h $	1.73	3.37			
	η	0.72	0.18			
E3	A _{BS r}	23.85	0.30	-14.51	-1.35	-1.55
-	ABS v	23.94	-3.69	-36.67	-2.54	2.29
	D0,y				•	/

	$A_{\mathrm{BS},z}$	34.10	-4.24	39.40	-7.89	-13.57
	$ A_{\rm iso} $	10.56	1.06	11.54	1.73	2.55
	A_{dip}	-1.32	0.47	3.00	-0.87	-1.70
	A_η	0.01	0.22	0.17	0.30	0.10
	$ e^2 Qq/h $	2.94	2.27			
	η	0.19	0.61			
6			0.00	2.26	0.02	1.27
S_2	$A_{\mathrm{BS},x}$		-9.80	2.36	9.93	1.37
	$A_{\mathrm{BS},y}$		-12.66	36.65	-10.16	3.71
	$A_{{ m BS},z}$		-13.81	-37.39	-56.84	-5.09
	$ A_{\rm iso} $		5.38	8.53	9.45	1.25
	A_{dip}		0.51	3.87	-5.75	0.37
	A_η		0.50	0.03	0.01	0.68
	$ e^2Qq/h $		2.08			
	η		0.72			
S ₂ ^H	$A_{\mathrm{BS},x}$		-10.48	-14.56	-0.17	1.34
	$A_{\mathrm{BS},v}$		-13.09	35.52	0.75	-2.75
	$A_{{ m BS},z}$		-14.15	-44.25	-7.63	-13.26
	$ A_{\rm iso} $		5.14	12.02	1.24	2.52
	A_{dip}		0.43	3.23	-1.04	-2.27
	A_η		0.51	0.52	0.12	0.14
	$ e^2Qq/h $		1.99			
	η		0.80			

^a $A_{BS,x}$, $A_{BS,y}$, $A_{BS,z}$ are the components of the hyperfine coupling tensor computed from the BS calculation and they follow the convention $|A_{BS,z}| > |A_{BS,y}| > |A_{BS,x}|$. The effective (observable) HFC components $-A_x$, A_y , A_z - of ¹⁴N or ¹⁷O ligand to Mn_i are derived from: $A_x = A_{BS,x} \cdot \frac{\langle S_z \rangle_{BS}}{S_i} \cdot \rho_i$, where S_i is the site spin of Mn_i [2 for Mn(III) and 3/2 for Mn(IV)], $\langle S_z \rangle_{BS}$ the total M_S of the BS wavefunction (1/2 in all models), and ρ_i the spin projection coefficient of Mn_i. For a bridging ligand coordinated to Mn_j and Mn_k, such as NH_x in models A and O5, the effective HFC components are derived from $A_x = \frac{A_{BS,x}}{2} \cdot (\frac{\langle S_z \rangle_{BS}}{S_j} \cdot |\rho_j| + \frac{\langle S_z \rangle_{BS}}{S_k} \cdot |\rho_k|)$, where S_j and ρ_j are the site spin and the spin projection coefficient, respectively, of Mn_j.¹⁻³

^b $|A_{iso}|$ is defined as the average of the principal components of the effective hyperfine tensor: $|A_{iso}| = (|A_x| + |A_y| + |A_z|)/3$.

^c A_{dip} is defined as $A_{dip} = (T_1 + T_2)/2 = -T_3/2$, where T_1 , T_2 , and T_3 represent the three principal components of the hyperfine tensors minus A_{iso} , i.e. $|A_x| - |A_{iso}|$, $|A_y| - |A_{iso}|$, and $|A_z| - |A_{iso}|$, respectively, and are labeled such that $|T_1| \le |T_2| \le |T_3|$. ^d The rhombicity is defined as $A_\eta = (T_1 - T_2)/T_3$, respectively.

		ΔE (kcal mol ⁻¹)
\mathbf{S}_2	A5	8.73
	B1	2.19
	C1	4.43
	D4	2.39
	E2	0.68
$\mathbf{S_2}^{\mathrm{H}}$	A4	0.34
	A9	9.87
	B3	1.57
	C2	1.97
	D5	3.33
	E3	2.90

Table S6. Electron affinity (EA) differences between S₂-NH₃ and the S₂-state models, i.e. $\Delta E = EA(S_2) - EA(S_2-NH_3)$. Comparisons are made between structures having the same charge, thus models A5, B1, C1, D4, and E2 are compared with S₂ and models A4, A9, B3, C2, D5, and E3 are compared with S₂^H.

Figure S2. Frontier orbitals of model C1 of the ammonia-bound S_2 state of the OEC (left) and of the oxidized C1Y_z (right); hydrogen atoms are omitted for clarity.

 A_1 A_2 A_4 A_{1}/A_{2} A_2/A_3 A_{3}/A_{4} A_3 291 [4] 206 [3] **B1** 311 [1] 248 [2] 1.07 1.17 1.21 Ref 4 295 [1] 192 [2] 160 [4] 120 [3] 1.54 1.20 1.33

166 [3]

1.07

1.06

1.30

215 [2]

Ref 5

244 [1]

227 [4]

Table S7. Comparison of calculated ⁵⁵Mn HFCs (MHz) for the model in which ammonia binds on the W1 position (**B1**) between this work, Schraut and Kaupp,⁴ and Lohmiller et al.⁵

Table S8. Comparison of calculated ¹⁴N HFCs and NQI asymmetry (η) for **B1** between this work, Schraut and Kaupp,⁴ and Lohmiller et al.⁵

	NH ₃		His332		
	$ A_{\rm iso} $	η	$ A_{ m iso} $	η	
B 1	3.03	0.77	5.44	0.71	
Ref 4	3.39	0.35	5.67	0.94	
Ref 5	2.68	0.87	6.10	0.88	

Orca Input files

```
Broken-Symmetry:
! UKS TPSSh RIJCOSX ZORA ZORA-TZVP SARC/J
! Grid5 GridX7 NoFinalGrid TightSCF moread
%pal nprocs 10 end
%maxcore 3000
%moinp "filename.gbw"
%basis newgto C "ZORA-SVP" end
newgto H "ZORA-SVP" end
end
%method intacc 6.0 end
%scf maxiter 200
shift shift 0.10 erroff 0.1 end
FlipSpin 1,2 FinalMs 0.5
end
*xyzfile 1 14 filename.xyz
```

Mn hyperfine coupling tensors:

```
! UKS TPSSh RIJCOSX ZORA ZORA-def2-TZVP(-f) SARC/J
! Grid5 GridX7 NoFinalGrid Slowconv TightSCF moread
%pal nprocs 10 end
%maxcore 15000
%moinp "filename.gbw"
%basis newgto C "ZORA-def2-SVP" end
      newgto H "ZORA-def2-SVP" end
      newgto Mn
S 1
   1 4331015.6489100000
                             1.000000000
S
  1
                             1.000000000
  1 1732406.2595600000
S
  1
      692962.5038250000
                             1.000000000
  1
S
  1
      277185.0015300000
                             1.000000000
  1
S
  1
       41550.7698900000
                             1.000000000
  1
S 1
       9455.9700152000
                             1.000000000
  1
S
  1
        2676.5206482000
                             1.000000000
  1
S 1
         871.4668753000
                             1.000000000
  1
S
  1
         312.9830642000
                             1.000000000
  1
S 1
                             1.000000000
         121.4445405100
   1
S 1
                             1.000000000
          47.9225988300
  1
S 1
         303.6672316300
                             1.000000000
   1
```

S 1		
1	93.8814031900	1.000000000
S 1 1	14.8794212100	1.000000000
S 1 1	6.2865200700	-1.0000000000
S 1 1	9 4858591300	1 000000000
S 1	1.50070000	1.000000000
1 S 1	1.5698/06200	1.000000000
1 S 1	0.6590321400	-1.000000000
1 S 1	0.1068629200	-1.000000000
1 P 6	0.0392674400	-1.000000000
1	1444 7978182000	0 0032493630
2	342 0655119700	0 0237346473
2	100 5940090100	0 1067222624
3	109.3840089100	0.1007232034
4	40.7479881700	0.300/61//1/
5	16.1886265700	0.4790147038
6 P 1	6.5484506000	0.2708283465
1 P 1	25.3570864400	-1.000000000
 1 P 1	3.4830168800	1.000000000
1 D 1	1.3858800900	1.000000000
1 1 D 1	0.5255509500	-1.000000000
	0.1276500000	1.000000000
D 4 1	E6 E621901200	0 0102444440
1	16 2707247100	0.0192444440
2	16.2/8/34/100	0.1161060412
3	5.69642/3900	0.3/0656/953
4 D 1	2.1411147900	0.6570040408
1 1	0.7829180200	1.000000000
	0.2595231100	1.000000000
	0.0860000000	1.000000000
F 1 1	1.3260000000	1.000000000
end end		
%method	intacc 6.0	
	SpecialGridAtoms	25
	SpecialGridIntAcc	11
end	SpecialdilaintAcc	11
%rel pi	cturechange true en	nd
%scf ma	xiter 200	
sh CN	ift shift 0.10 erro VSOSCF true SOSCFs	off 0.1 end tart 0.001
end		-
*xyzfil	e 1 2 filename.xyz	
%eprnmr end	nuclei = all Mn	<pre>{ aiso, adip, aorb }</pre>

N and O hyperfine coupling tensors:

! (! (! UKS TPSSh RIJCOSX ZORA ZORA-def2-TZVP(-f) SARC/J ! Grid5 GridX7 NoFinalGrid Slowconv TightSCF moread								
<pre>%pal nprocs 10 end %maxcore 15000</pre>									
%mc	oinp	"filena	me.gbw'	ı					
%ba Ne	asis ewGT(O N							
S	1 1 1	308293.	7601093	3750	1	.0000	00000)0	
S	1 1	123317.	5040437	7500	1	.0000	00000)0	
s	1 1	49327.	0016175	5000	1	.0000	00000)0	
S	1 1	19730.	8006470	0000	1	.0000	00000)0	
S	1	2957.	8958745	5000	1		00000)0	
S	1	6/3.	2213359	9500	1)0	
S	1 1 1	190. 62	2951110	2000	1	0000		0	
S	1	22.	6541611	800	1	. 0000	00000)0)0	
S	1	8.	9791477	7400	1	.0000	00000	0	
S	1 1	3.	6863002	2400	1	.0000	00000	00	
S	1 1	0.	8466007	7700	1	.0000	00000	00	
S	1 1	0.	3364713	3400	1	.0000	00000	00	
S	1 1	0.	1364765	5400	1	.0000	00000	00	
Ρ	4	49.2	2003805	5100	0	.0115	513133	36	
	2 3	11.	3467905 4273972	5400 2400	0	0.0785	538607 97810	70 13	
	4	1.	1785525	5100	0	.7201	189681	L4	
Ρ	1	0	4164220		1	0000		20	
Р	1	0.	4104220	1500	1	•0000	00000	10	
Л	1	0.	1426082	2600	1	.0000	00000)0	
D	1	1.	6540000	0000	1	.0000	00000)0	
D	1	0.	4690000	0000	1	.0000	00000)0	
Nev	IG VGTO	0							
S	1	-							
S	1 1	422380.	9786093	3750	1	.0000	00000)0	
S	1 1	168952.	3914437	7500	1	.0000	00000)0	
ç	1	67580.	9565775	5000	1	.0000	00000)0	
S	1 1	27032.	3826310	000	1	.0000	00000)0	

1	4052.38	713920	00	1.000	00000000	
S 1 1	922.32	722710	00	1.000	0000000	
S 1						
1 S 1	261.24	070989	00	1.000	00000000	
1	85.35	464135	00	1.000	00000000	
1	31.03	503524	00	1.000	00000000	
S 1 1	12.26	086073	00	1.000	00000000	
S 1 1	4 99	870760	0.0	1 000	0000000	
S 1	1.77	070700	00	1.000		
1 S 1	1.17	031082	00	1.000	00000000	
1	0.46	474741	00	1.000	00000000000000	
1	0.18	504536	00	1.000	00000000	
P 4 1	63.27	495480	00	0.012	21096626	
2	14.62	704938	00	0.083	31734399	
3	4.45	012235	00	0.320	00012219	
4	1 52	757996	00	0 70	59790865	
P 1		005110	00	1 00		
1 P 1	0.52	935118	00	1.000	00000000	
1 D 1	0.17	478421	00	1.000	00000000000	
1	2.31	400000	00	1.000	00000000	
D 1 1	0.64	500000	00	1.000	00000000	
end						
end						
%method	intacc 6	• 0				
	SpecialG	ridAto	ms 8,7			
	SpecialG	ridInt	Acc 9,9)		
end						
%rel						
SO	CFLags 1,	3,3,1				
pi end	cturechan	ge tru	е			
ona						
<pre>%scf maxiter 200</pre>						
CNVSOSCF true SOSCFstart 0.001						
end						
*xyzfile 1 2 filename.xyz						
%enrnmr						
nucl	oj = 10 ∫	aiso	adin	aorh	forad l	
nucl	$c_{\perp} = \pm 0 \{$	aiso,	adir,	aorb	farad)	
nuclo	ei = 11 { ei = 12 {	aiso,	adip,	aorb,	fgrad }	
nucl	ei = 83 {	aiso,	adip,	aorb,	fgrad }	
end	-				·	

References

(1) Pantazis, D. A.; Orio, M.; Petrenko, T.; Zein, S.; Bill, E.; Lubitz, W.; Messinger, J.; Neese, F. A New Quantum Chemical Approach to the Magnetic Properties of Oligonuclear Transition-Metal Complexes: Application to a Model for the Tetranuclear Manganese Cluster of Photosystem II. *Chem. Eur. J.* **2009**, *15*, 5108-5123.

(2) Cox, N.; Ames, W.; Epel, B.; Kulik, L. V.; Rapatskiy, L.; Neese, F.; Messinger, J.; Wieghardt, K.; Lubitz, W. Electronic Structure of a Weakly Antiferromagnetically Coupled Mn^{II}Mn^{III} Model Relevant to Manganese Proteins: A Combined EPR, ⁵⁵Mn-ENDOR, and DFT Study. *Inorg. Chem.* **2011**, *50*, 8238-8251.

(3) Rapatskiy, L.; Ames, W. M.; Pérez-Navarro, M.; Savitsky, A.; Griese, J. J.; Weyhermüller, T.; Shafaat, H. S.; Högbom, M.; Neese, F.; Pantazis, D. A.; Cox, N. Characterization of Oxygen Bridged Manganese Model Complexes Using Multifrequency ¹⁷O-Hyperfine EPR Spectroscopies and Density Functional Theory. *J. Phys. Chem. B* **2015**, *119*, 13904-13921.

(4) Schraut, J.; Kaupp, M. On Ammonia Binding to the Oxygen-Evolving Complex of Photosystem II: A Quantum Chemical Study. *Chem. Eur. J.* **2014**, *20*, 7300-7308.

(5) Lohmiller, T.; Krewald, V.; Navarro, M. P.; Retegan, M.; Rapatskiy, L.; Nowaczyk, M. M.; Boussac, A.; Neese, F.; Lubitz, W.; Pantazis, D. A.; Cox, N. Structure, ligands and substrate coordination of the oxygen-evolving complex of photosystem II in the S₂ state: a combined EPR and DFT study. *Phys. Chem. Chem. Phys.* **2014**, *16*, 11877-11892.