| 1   | Supplementary Information                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2   |                                                                                                                                                              |
| 3   | Evolutionarily related host and microbial pathways regulate fat desaturation                                                                                 |
| 4   | in <i>C. elegans</i>                                                                                                                                         |
| 5   |                                                                                                                                                              |
| 6   | Bennett W. Fox <sup>1</sup> , Maximilian J. Helf <sup>1,#</sup> , Russell N. Burkhardt <sup>1,#</sup> , Alexander B. Artyukhin <sup>2</sup> , Brian J.       |
| 7   | Curtis <sup>1</sup> , Diana Fajardo Palomino <sup>1</sup> , Allen F. Schroeder <sup>1</sup> , Amaresh Chaturbedi <sup>3</sup> , Arnaud                       |
| 8   | Tauffenberger <sup>1</sup> , Chester J.J. Wrobel <sup>1</sup> , Ying K. Zhang <sup>1</sup> , Siu Sylvia Lee <sup>3</sup> , Frank C. Schroeder <sup>1,*</sup> |
| 9   |                                                                                                                                                              |
| 10  | <sup>1</sup> Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell                                                              |
| 11  | University, Ithaca, New York 14853, United States                                                                                                            |
| 12  | <sup>2</sup> Chemistry Department, College of Environmental Science and Forestry, State University of                                                        |
| 13  | New York, Syracuse, New York 13210, United States                                                                                                            |
| 14  | <sup>3</sup> Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853,                                                       |
| 15  | United States                                                                                                                                                |
| 16  |                                                                                                                                                              |
| 17  | <sup>#</sup> These authors contributed equally.                                                                                                              |
| 18  |                                                                                                                                                              |
| 4.0 |                                                                                                                                                              |

19 \*Correspondence to <u>fs31@cornell.edu</u>

| 20<br>21 | Contents                           |    |
|----------|------------------------------------|----|
| 22       | Supplementary Figures              | 2  |
| 23       | Supplementary Methods              | 14 |
| 24       | Supplementary Tables               | 21 |
| 25       | Supplementary References           | 26 |
| 26       | NMR Spectra of Synthetic Compounds | 27 |
| 27       |                                    |    |

#### 28 Supplementary Figures



29

20

# Supplementary Fig. 1. Comparison of free fatty acid profiles of WT and *acdh-11(n5878) C. elegans.*

32 Volcano plot for 85 fatty acids detected by HPLC-HRMS (negative ion, post-column ion pairing) 33 in the endo-metabolomes of WT and acdh-11(n5878) mutant C. elegans fed BW25113 (WT) E. 34 coli. P-values were calculated by unpaired, two-sided Welch's t-test; no adjustments were made 35 for multiple comparisons. The most significantly enriched free fatty acid in acdh-11 mutants is 36 becyp#1; additional cyclopropane-containing medium chain fatty acids are also enriched in 37 acdh-11 mutants relative to WT C. elegans. Several PUFAs were depleted in acdh-11 relative to 38 WT, e.g., eicosapentaenoic acid (20:5), likely due to reduced growth of these animals when 39 reared on WT E. coli. This data is also displayed as part of Fig. 2C.



#### 41 Supplementary Fig. 2. Cyclopropane fatty acids are incorporated into host lipids.

42 A) EICs for *m*/*z* 508.3398, corresponding to lysophosphatidylcholine (LPC) isomers bearing a

43 singly unsaturated C<sub>17</sub> acyl group (17:1) with formula  $C_{25}H_{51}NO_7P^+$ , in extracts of WT and *acdh*-

44 11(5878) mixed-stage cultures reared on WT *E. coli* or *E. coli*  $\Delta cfa$ , as indicated. The feature

45 marked with an arrow is present in animals reared on WT *E. coli* but absent from animals reared

46 on *E. coli*  $\Delta cfa$ .

47 B) MS/MS spectrum (positive ion mode) of LPC-17:1 with major fragmentation reactions and48 product ions.

- 49 C) EICs for *m*/*z* 598.2998, corresponding to *N*-acyl glycoglycerophosphoethanolamine (GLEA)
- 50 bearing a singly unsaturated  $C_{15}$  acyl group (15:1) with formula  $C_{26}H_{49}NO_{12}P^{-}$ , in extracts of WT
- 51 and *acdh-11(5878)* mixed-stage cultures reared on WT *E. coli* or *E. coli*  $\Delta cfa$ , as indicated.
- 52 GLEA-15:1 is abundant in animals reared on WT *E. coli* but absent from animals reared on *E.*
- 53 *coli*  $\Delta cfa$ . Structure proposal based on previous characterization of GLEA<sup>47</sup>.
- 54 **D)** MS/MS spectrum (negative ion mode) of GLEA-15:1 with major fragmentation reactions and 55 product ions.
- **E)** EICs for m/z 542.2372, corresponding to GLEA bearing a singly unsaturated C<sub>11</sub> acyl group
- 57 (11:1, becyp#1) with formula  $C_{22}H_{41}NO_{12}P^{-}$ , in extracts of WT and *acdh-11(5878)* mixed-stage
- 58 cultures reared on WT *E. coli* or *E. coli* Δ*cfa*, as indicated. GLEA-becyp#1 is abundant in *acdh*-
- 59 11(n5878) mutants reared on WT E. coli.
- F) MS/MS spectrum (negative ion mode) of GLEA-becyp#1 with major fragmentation reactionsand product ions.
- 62 G) Volcano plots for 85 fatty acids detected by HPLC-HRMS (negative ion, post-column ion
- 63 pairing) in the endo-metabolomes of WT or acdh-11(n5878) mutant C. elegans fed WT E. coli
- 64 as compared to  $\Delta cfa E. coli$ . *P*-values were calculated by unpaired, two-sided Welch's t-test; no
- 65 adjustments were made for multiple comparisons. Odd-chain singly unsaturated fatty acids
- 66 containing the cyclopropane moiety were detected only in animals fed WT *E. coli*, and becyp#1
- 67 was enriched only in *acdh-11(n5878*). Vaccenic (18:1n7) and palmitoleic acid (16:1n7) were
- 68 increased in animals reared on  $\Delta cfa E. coli$ , consistent with a previous report<sup>48</sup>. In addition, a
- 69 specific subset of PUFAs was enriched in animals fed  $\Delta cfa E. coli$ , e.g., 18:5 and 22:6, some of
- 70 which have been previously observed in fatty acid desaturation mutants that accumulate
- 71 palmitoleic acid<sup>50</sup>.



Supplementary Fig. 3. FAT-7::GFP expression in eggs of *acdh-11* mutants is dependent on
 parental diet.

A) Representative brightfield and fluorescence micrographs of eggs of acdh-11(n5878); P<sub>fat-7</sub>::fat-

7: *GFP* mutants reared on BW25113 (WT) or JW1653-1 (Δ*cfa*) *E. coli* for four generations at 20

<sup>°</sup>C. The scale bar represents 0.05 mm. Six independent experiments were performed.

**B)** Representative brightfield and fluorescence micrographs of eggs of *acdh-11(n5878);P<sub>fat-7</sub>::fat-*79 *7::GFP* mutants reared on BW25113 (WT) or JW1653-1 ( $\Delta cfa$ ) *E. coli* for four generations, then

switched to the other bacterial diet, maintained at 20 °C. Eggs and larvae had high levels of FAT-

7::GFP when the parental generation was reared on WT *E. coli*. The scale bar represents 0.05

82 mm. Three independent experiments were performed.

72



84 Supplementary Fig. 4. Supplementation with lactobacillic acid (LBA) restores βCPFAs.

**A)** EICs for *m/z* 199.1340, corresponding to becyp#2, bemeth#2, and structural isomers of  $C_{11}H_{19}O_3^-$ , in extracts of WT and *acdh-11(n5878)* mixed-stage cultures reared on WT *E. coli, E. coli*  $\Delta cfa$  supplemented with 20  $\mu$ M LBA (see **Fig. 2**), or *E. coli*  $\Delta cfa$ , as indicated. becyp#2 is strongly enriched in *acdh-11* mutants fed WT *E. coli*, abolished in animals fed *E. coli*  $\Delta cfa$ , and partially restored in animals fed *E. coli*  $\Delta cfa$  supplemented with 20  $\mu$ M LBA, whereas bemeth#2 is unaffected. An unknown isomer is marked with an asterisk. Y-axes are scaled as indicated to clearly show traces.

**B)** EICs for m/z 213.1123, corresponding to becyp#4, bemeth#321, and structural isomers of  $C_{11}H_{17}O_4^-$ , in extracts of WT and *acdh-11(n5878)* mixed-stage cultures reared on the same diets as above. Levels of becyp#4 are partially restored by feeding LBA, whereas bemeth#321 is unaffected. An unknown isomer is marked with an asterisk. Y-axes are scaled as indicated to clearly show traces.



98 Supplementary Fig. 5. FAT-7::GFP is not induced in *hacl-1* mutants nor following 99 supplementation with bemeth#2.

100 **A**) Representative brightfield and GFP fluorescence micrographs of  $P_{fat-7}$ :*fat-7::GFP* and *hacl-1(tm6725);P<sub>fat-7</sub>:fat-7::GFP* adults reared at 25 °C supplemented with vehicle (0.5% ethanol), 102 bemeth#1, or bemeth#2, as indicated. Scale bar represents 0.1 mm. Supplementation with 103 bemeth#2 does not cause overt changes in the abundance of FAT-7::GFP in either genotype. 104 Four independent experiments were performed.

105 **B**) Chemical structures of bemeth#1 and its α-hydroxylated derivative, bemeth#2. Several α-106 hydroxylated  $\beta$ MFAs accumulate in *hacl-1* mutants but do not cause increased *fat-7* expression.



108 Supplementary Fig. 6. bemeth#1 supplement does not change FAT-6::GFP.

109 Representative brightfield and fluorescence micrographs of P<sub>fat-6</sub>::*fat-6*::*GFP* animals reared on

110 BW25113 (WT), JW1653-1 (Δ*cfa*), or JW1653-1 *E. coli* supplemented with 100 μM bemeth#1. No

111 FAT-6::GFP induction was observed under supplementation conditions. The scale bar represents

112 0.1 mm. Three independent experiments were performed.



#### 114 Supplementary Fig. 7. $D_3$ -methyl is incorporated in $\beta$ MFAs.

115 **A**) EICs for m/z 215.1289 and 218.1477, corresponding to  $C_{11}H_{19}O_4^-$  and  $D_3-C_{11}H_{16}O_4^-$ , from *exo*-

116 metabolome extracts of *hacl-1(tm6725)* larvae supplemented with methionine (Met) or D<sub>3</sub>-methyl-

117 methionine ( $D_3$ -Met). Red dashed lines highlight bemeth#3 stereoisomers with  $D_3$ -enrichment. EIC

118 Y-axis for *m*/*z* 218.1477 is scaled 50-fold to clearly show traces for labeled features. Asterisks

119 mark unrelated features present in both Met- and D<sub>3</sub>-Met-supplemented samples.

**B**) EICs for *m*/*z* 183.1391 and 186.1579, corresponding to  $C_{11}H_{19}O_2^-$  and  $D_3-C_{11}H_{16}O_2^-$ , from *endo*metabolome extracts of *hacl-1(tm6725)* larvae supplemented with Met or  $D_3$ -Met. Under these chromatographic conditions, bemeth#1 elutes as a shoulder of an unidentified isobaric compound (undecenoic acid). Blue box highlights  $D_3$ -enrichment in later-eluting bemeth#1, which was resolved from the earlier metabolite via method optimization (see **Fig. 3B**).



#### 126 Supplementary Fig. 8. βMFAs are detected in *C. briggsae*.

127 EICs for *m*/z 215.1289, corresponding to bemeth#3 and isomers of C<sub>11</sub>H<sub>19</sub>O<sub>4</sub>-, in extracts of *hacl*-

128 *1(tm6725),* N2 (WT), *fcmt-1(gk155709),* and *fcmt-1(tm2382),* as well as in independently grown *C.* 129 *elegans* and *C. briggsae* cultures, as indicated. bemeth#3 and its stereoisomer (bemeth#32) are

130 marked with arrows and detected in *C. elegans* and *C. briggsae*, enriched in *hacl-1* but not 131 detected in *fcmt-1* mutants. An unrelated FCMT-1-independent isomer is marked with an asterisk 132 (\*). Additional minor isomers in *C. elegans* are marked with arrowheads. Y-axes are scaled as

133 indicated to clearly show traces.



135 Supplementary Fig. 9. Isotopic enrichment from cis-D<sub>13</sub>-vaccenic acid supplement

A) Proposed biosynthesis of bemeth#1 based on isotopically labeled D<sub>13</sub>-VA feeding experiment (see Fig. 5B). The number of deuterium atoms on each carbon is labeled green. Methyl transfer results in abstraction of one deuterium atom (highlighted with green arrow) and distal oxidation (highlighted with green arrow) results in metabolites with a diagnostic number of deuterium atoms remaining.

**B)** EICs for *m/z* 229.1082 and 238.1648, corresponding to bemeth#4 and D<sub>9</sub>-bemeth#4, respectively, in extracts of *hacl-1* mixed-stage cultures supplemented with D<sub>13</sub>-*cis*- or D<sub>13</sub>-*trans*-VA. Oxidation of the ω-carbon results in the loss of three additional deuterium atoms, for a total loss of four deuterium atoms and a diagnostic isotope label. Y-axis for *m/z* 238.1648 is scaled 8fold to clearly show traces for labelled features.

146 **C)** EIC for *m/z* 286.1660, corresponding to  $C_{14}H_{25}NO_5^-$ , in extract of N2 (WT) mixed-stage culture 147 supplemented with  $D_{13}$ -*cis*-VA. Earlier eluting isomers are  $D_{11}$ -enriched (bemeth#73-75), whereas 148 later eluting isomers are  $D_{12}$ -enriched (bemeth#7, bemeth#72). Representative structures 149 proposed based on isotope labeling and MS/MS fragmentation.



151 Supplementary Fig. 10. FAT-7::GFP induction is independent of *hlh-30* and *nhr-66*.

**A)** Representative brightfield and fluorescence micrographs of  $P_{fat-7}$ ::*fat-7::GFP* animals reared on HT115 expressing *hlh-30* or *nhr-66* RNAi and supplemented with vehicle only (0.5% ethanol), 75 µM bemeth#1, or 75 µM becyp#1. Animals were supplemented in parallel with animals reared on HT115 expressing L4440 (vector control), see **Fig. 5**. Scale bar represents 0.1 mm. Five independent experiments were performed.



157

158 Supplementary Fig. 11. Unique metabolites enriched in *fcmt-1(tm2382*)

A) Volcano plot for subset of features detected by HPLC-MS (negative ion) in the *exo*-metabolome of *fcmt-1(tm2382)* relative to wildtype (N2) control. *P*-values were calculated by unpaired, twosided Welch's t-test; no adjustments were made for multiple comparisons. Red points represent m/z 150.0421, including isotopes and adducts, corresponding to guanine; blue points represent m/z 135.0312, corresponding to hypoxanthine. Both metabolites were confirmed by commercial standards.

B) Representative EICs for *m/z* 150.0421, corresponding to guanine, in *exo*-metabolome extracts
of synchronized adult N2 (WT), *hacl-1(tm6725), fcmt-1(gk155709),* and *fcmt-1(tm2382)* animals,
or from extract of *E. coli* OP50 only (bacterial diet).

C) Representative EICs for *m/z* 135.0312, corresponding to hypoxanthine, in *exo*-metabolome extracts of synchronized adult N2 (WT), *hacl-1(tm6725), fcmt-1(gk155709),* and *fcmt-1(tm2382)* animals, or from extract of *E. coli* OP50 only (bacterial diet).

171

#### 172 Supplementary Methods

#### 173 General synthetic procedures.

174 Unless stated otherwise, all reactions were carried out under argon (Ar) atmosphere in flame-dried 175 glassware. All commercially available reagents were used as purchased unless otherwise stated. 176 All solvents were dried over activated 3Å molecular sieves for a minimum of 24 hours unless used 177 in reactions containing aqueous reagents. Solutions and solvents sensitive to moisture and 178 oxygen were transferred via standard syringe and cannula techniques. Reactions were cooled 179 with ice-water or dry ice-acetone baths or heated with mineral oil baths depending on reaction 180 temperature. Titanium (IV) isopropoxide was distilled under vacuum and stored under argon. Thin-181 layer chromatography (TLC) was performed with J.T. Baker Silica Gell IB2-F plastic-backed plates 182 with analysis via UV and p-anisaldehyde stain. Flash chromatography was performed using 183 Teledyne ISCO CombiFlash Rf and Rf+ systems with Teledyne ISCO RediSep Rf and Rf Gold 184 silica columns. All deuterated solvents were purchased from Cambridge Isotopes. Nuclear 185 Magnetic Resonance (NMR) spectra were recorded on a Varian INOVA 600 (600 MHz) or Bruker 186 AV 500 (500 MHz) in the Cornell University NMR Facility. <sup>1</sup>H NMR chemical shifts are reported in 187 ppm ( $\delta$ ) relative to the residual solvent peaks (7.26 ppm for CDCl<sub>3</sub> and 3.31 ppm for CD<sub>3</sub>OD) and 188 <sup>13</sup>C NMR shifts relative to their respective residual solvent peaks (77.16 for CDCl<sub>3</sub> and 49.00 for 189  $CD_3OD$ ). NMR-spectroscopic data are reported as follows: chemical shift, multiplicity (s = singlet, 190 d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), and 191 integration and often tabulated including 2D NMR data. All NMR data processing was done using 192 MNOVA 12.0.1 (https://mestrelab.com/).

193



196 cis-3,4-methylenedecanoic acid, becyp#1. From an 8:1 cis:trans solution of 1 (40 mg, 0.256 197 mmol, 1.00 equiv.) in 1.5 mL DCM was added Zn(Et)<sub>2</sub> (1M in hexanes, 1.28 mL, 1.28 mmol, 5.00 198 equiv.). The solution was cooled to 0 °C followed by the addition of  $CH_2I_2$  (102 µL, 1.28 mmol, 5.00 199 equiv.). The resulting suspension was allowed to reach room temp with stirring and remained at 200 room temp. overnight. The yellow mixture was directly purified via flash column chromatography 201 on silica gel using a gradient of 5-100% EtOAc in hexanes, affording cyclopropyl alcohol 202 intermediate (2, 40 mg) with some uncharacterized impurities. To a solution of the cyclopropyl 203 alcohol intermediate (2, 10 mg) in 1 mL of acetone at 0 °C was added 6 drops of freshly prepared 204 Jones reagent (enough to maintain an orange color). The solution was stirred at 0 °C for 1 hr and 205 then directly purified via flash column chromatography on silica gel using a gradient of 5-100% 206 EtOAc in hexanes, affording becyp#1 (8 mg, 69% over two steps) as a colorless oil, determined as 207 a mixture of 8:1 *cis : trans* isomers. 208 <sup>1</sup>H NMR (600 MHz, chloroform-d): δ 2.42 (dd, J = 16.6, 7.0 Hz, 1H), 2.30 (dd, J = 16.6, 7.6 Hz, 209 1H), 1.44 – 1.20 (m, 10H), 1.15 (m, 1H), 1.09 (m, 1H), 0.88 (t, J = 6.8 Hz, 3H), 0.74 (td, J = 8.4,

4.6 Hz, 1H), -0.11 (q, J = 5.2 Hz, 1H). These chemical shifts were nearly identical to those

211 previously reported<sup>1</sup>.

<sup>13</sup>C NMR (126 MHz, chloroform-*d*): δ 180.1, 33.8, 32.2, 30.0, 29.4, 28.9, 22.8, 15.6, 14.2, 11.3,
11.



214

215 (E)-4-Hydroxy-non-2-ene (5). n-Pentylmagnesium bromide (3, 10 mL, 20 mmol in THF) was 216 added to a diethyl ether (20mL) at 0 °C under an argon atmosphere. Crotonaldehyde (4, 1.66 217 mL, 20 mmol) was added to the stirring solution over 10 minutes via an addition funnel and 218 stirred for one hour. The reaction was guenched with saturated agueous NH4CI (20 mL) and extracted with EtOAc (3×20 mL). The combined organics were dried over MgSO<sub>4</sub>, filtered, and 219 220 concentrated under reduced pressure. The resulting liquid was purified by flash chromatography 221 on silica gel. Elution with a gradient of 0-20% EtOAc/Hexanes gave the resulting alcohol (5) (2.61 222 g, 92%) as a colorless liquid<sup>2</sup>.

<sup>1</sup>H NMR (CDCI3, 500 MHz): δ (ppm) 5.65 (dqd 15.3, 6.5, 0.8 Hz, 1H), 5.48 (ddq 15.3, 7.7, 1.5
Hz, 1H), 4.03 (q, 6.6 Hz, 1H), 1.70 (dd 6.5, 1.3 Hz, 3H), 1.25-1.58 (m, 9H), 0.89 (t, 6.8 Hz, 3H).
<sup>13</sup>C NMR (CDCI3, 125 MHz): δ (ppm) 134.5, 126.9, 73.4, 37.4, 31.9, 25.3, 22.8, 17.8, 14.2.

226 (**ESI**) *m/z*: Calculated: (M+H)<sup>+</sup> 143.1430. Actual: 143.1428 Δ ppm: -1.64

227



228 (S,E)-4-Hydroxy-non-2-ene ((S)-5). (-)-Diisopropyl D-tartrate (183 µL, 0.88 mmol) was added to a suspension of powdered 4 Å molecular sieves (0.4 g) in DCM (21 mL) at ambient temperature 229 230 under an argon atmosphere. The solution was cooled to -20 °C and titanium (IV) isopropoxide 231 (212 µL, 0.7 mmol) was added. The solution was stirred for one hour and *tert*-butylhydroperoxide 232 (382 µL, 2.1 mmol in decane) added. The solution was further stirred for 30 minutes and cooled to 233 -40 °C, upon which racemic (E)-4-hydroxy-non-2-ene (5) (3.5 mL, 3.5 mmol in DCM) was added 234 dropwise. After 20 hours the reaction was guenched with (-)-diisopropyl D-tartrate (366 µL, 1.75 235 mmol) in water (7 mL). The layers were separated, and the aqueous solution extracted with  $Et_2O$ 236 (3×20 mL). The combined organics were washed with saturated aqueous NaHCO<sub>3</sub>, dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The resulting liquid was purified by 237 238 flash chromatography on silica gel as above, yielding chiral alcohol (S)-5 (236 mg, 94%) as a 239 colorless liquid<sup>3</sup>. Enantiomeric excess was determined to be up to 88% by Mosher derivatization<sup>4</sup>. 240 All NMR spectra and mass spectrometric data are identical to racemic alcohol (5).



241 (S,E)-4-(Vinyloxy)-non-2-ene ((S)-6). (S,E)-4-Hydroxy-non-2-ene ((S)-5, 307 mg, 2.16 mmol) 242 was added to ethyl vinyl ether (5.75 mL, 60.5 mmol) at ambient temperature under an argon 243 atmosphere. Mercury (II) acetate (688 mg, 2.16 mmol) was added to the solution<sup>5</sup>. After two hours AcOH (302 µL) was added with stirring. After 30 minutes the reaction was diluted with 244 245 hexanes (45 mL) and washed with 5% aqueous KOH (4.5 mL). The organics were dried over MgSO<sub>4</sub>, filtered, and concentrated under reduced pressure. The resulting liquid was purified by 246 247 flash chromatography on alumina. Elution with a gradient of 0-10% EtOAc/Hexanes yielded vinyl 248 ether ((S)-6, 178 mg, 76% BRSM) as a colorless liquid.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ (ppm) 6.31 (dd, 14.1, 6.6 Hz, 1H), 5.65 (dqd 15.3, 6.6, 0.8 Hz, 249 250 1H), 5.38 (ddq, 15.3, 7.6, 1.6 Hz, 1H), 4.28 (dd, 14.1, 1.4 Hz, 1H), 4.05 (q, 7 Hz, 1H), 3.96 (dd, 6.6, 251 1.4 Hz, 1H), 1.71 (dd, 6.5, 1.4 Hz, 3H), 1.61-1.70 (m, 1H), 1.46-1.54 (m, 1H), 1.23-1.40 (m, 6H), 252 0.88 (t, 6.8 Hz, 3H). 253 <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz) δ (ppm) 151.0, 131.4, 128.7, 88.4, 81.2, 35.3, 31.8, 25.0, 22.7, 17.9. 254 14.2. 255 HRMS (ESI) m/z: Calculated: (M+H)<sup>+</sup> 169.1587 (M+Na)<sup>+</sup> 191.1406. Actual: 169.1584 ∆ ppm: -256 1.99



257

258 (*R*,*E*)-3-Methyl-dec-4-enal ((*R*)-7). Vinyl ether ((*S*)-6, 107 mg, 0.64 mmol) was added to toluene 259 (5 mL) and stirred with condenser at reflux under an argon atmosphere. After 23 hours the 260 reaction was concentrated to yield aldehyde ((*R*)-7, 100 mg, 93%) as a colorless liquid which was 261 used without purification<sup>5-7</sup>.

<sup>1</sup>H NMR (CDCI3, 500 MHz) δ (ppm) 9.72 (t, 2.4 Hz, 1H), 5.44 (dtd, 15.4, 6.6, 1.0 Hz, 1H), 5.34

263 (ddt, 15.4, 7.0, 1.3 Hz, 1H), 2.72 (m, 6.9 Hz, 1H), 2.40 (ddd, 16.0, 7.3, 2.4 Hz, 1H), 2.33 (ddd, 16.0,

264 6.7, 2.4 Hz, 1H), 1.97 (q, 7.0 Hz, 2H), 1.21-1.37 (m, 6H), 1.06 (d, 6.8 Hz, 3H), 0.88 (t, 7.0 Hz, 3H).

265 <sup>13</sup>C NMR (CDCl3, 125 MHz) δ (ppm) 203.0, 133.9, 130.2, 50.7, 32.6, 31.8, 31.5, 29.3, 22.7, 20.9,

- 266 14.2.
- 267 HRMS (ESI) *m/z*: Calculated: (M+Na)<sup>+</sup> 191.1406. Actual: 191.1411 Δ ppm: 2.49



268

(*R*,*E*)-3-Methyl-dec-4-enoic acid, (*R*)-bemeth#1. Aldehyde ((*R*)-13, 53 mg, 0.32 mmol) was
 dissolved in DMSO (1.1 mL) and stirred under ambient atmosphere. Sodium chlorite (40 mg, 0.35
 mmol) was dissolved in minimal water and the pH adjusted to ~4.5 with NaH<sub>2</sub>PO<sub>4</sub>. The aqueous
 solution was added to the aldehyde and the reaction stirred in an open atmosphere. After 30
 minutes, more sodium chlorite was added to the reaction (20 mg, 0.18 mmol) dissolved in water

and buffered as above. After 45 minutes the reaction was diluted with water (2 mL) and extracted

with EtOAc (3×2 mL). The combined organics were dried over MgSO<sub>4</sub>, filtered, and concentrated

- 276 under reduced pressure. The resulting oil was purified by flash chromatography on silica gel.
- Elution with a gradient of 0-20% EtOAc(0.1% AcOH)/hexanes yielded (R)-bemeth#1 (4, 44 mg,
- 278 76%) as a colorless oil. Enantiomeric excess was determined to be 65% by 2,2,2- trifluoro-1-
- 279 phenethylamine derivatization and subsequent analysis by UHPLC-MS.
- 280 <sup>1</sup>H NMR (CDCI3, 500 MHz) δ (ppm) 5.45 (dtd, 15.4, 6.7, 0.8 Hz, 1H), 5.33, ddt, 15.3, 7.2, 1.3,
- 281 1H), 2.63 (m, 7.0 Hz, 1H), 2.35 (dd, 14.9, 7.3 Hz, 1H), 2.28 (dd, 14.9, 7.3 Hz, 1H), 1.96 (q, 7.0,
- 282 2H), 1.21-1.36 (m, 6H), 1.05 (d, 6.7 Hz, 3H), 0.88 (t, 6.9 Hz, 3H).
- <sup>13</sup>C NMR (CDCI3, 125 MHz) δ (ppm) 178.8, 133.7, 1.0.1, 41.8, 33.5, 32.6, 34.4, 29.3, 22.7, 20.5,
  14.2.
- 285 **HRMS (ESI)** *m*/*z*: Calculated: (M-H)<sup>-</sup> 183.1391. Actual: 183.1383. Δ ppm: -4.16.
- 286

287 (S,E)-3-Methyl-dec-4-enoic acid, (S)-bemeth#1. Following Sharpless resolution using (+)-

288 Diisopropyl L-tartrate, parallel reactions yielded (S)-bemeth#1 with identical physical and

289 spectroscopic properties.



290

291 Methyl-(R, E)-3-methyl-dec-4-enoate ((R)-8). Trimethylsilyldiazomethane (1.2 mL, 0.72 mmol) 292 was added dropwise to a solution of (R)-bemeth#1 in DCM (3 mL) and MeOH (3 mL). After stirring 293 for 15 minutes, the reaction was concentrated under reduced pressure. The resulting oil was 294 purified by flash chromatography on silica gel. Elution with a gradient of 0- 10% EtOAc/hexanes 295 yielded methyl ester ((R)-8, 42 mg, 89%) as a colorless oil. 296 <sup>1</sup>H NMR (CDCI3, 500 MHz) δ (ppm) 5.42 (dtd, 15.3, 6.7, 0.9 Hz, 1H), 5.31 (ddt, 15.3, 7.3, 1.2 Hz, 297 1H), 3.63 (s, 3H), 2.61 (m, 7.0 Hz, 1H), 2.30 (dd, 14.7, 7.3 Hz, 1H), 2.24 (dd, 14.7, 7.3 Hz, 1H), 1.95 (q, 6.9 Hz, 2H), 1.21-1.35 (m, 6H), 1.02 (d, 6.9 Hz, 3H), 0.87 (t, 6.9 Hz, 3H). 298 299 <sup>13</sup>C NMR (CDCI3, 125 MHz) δ (ppm) 173.3, 134.0, 129.8, 51.5, 42.0, 33.8, 32.6, 31.4, 29.3, 22.7, 300 20.6, 14. 301 **HRMS (ESI)** *m*/*z*: Calculated: (M+H)<sup>+</sup> 199.1693. Actual: 199.1690. Δ ppm: -1.49. 302 303 304 305 18



307 Methyl-(2R,3S,E)-2-hydroxy-3-methyl-dec-4-enoate ((2R,3S)-9). n-Butyl lithium (72 µL, 0.18 308 mmol) was added dropwise to a stirring solution of N.N-diisopropylamine (21 µL, 0.15 mmol) in 309 THF (4 mL) at -15°C and stirred 10 minutes under an argon atmosphere. The solution was cooled 310 to  $-78^{\circ}$ C and methyl ester ((R)-8) was added and the reaction stirred at  $-15^{\circ}$ C for 15 minutes. The 311 reaction was cooled to -78°C and (+)-(8, 8-dichlorocamphorylsulfonyl) oxaziridine (90 mg, 0.3 mmol) was added in THF (2 mL) and stirred to -15°C<sup>8</sup>. After stirring for one hour, the reaction was 312 quenched with aqueous saturated NaHCO<sub>3</sub> (3 mL) and the layers separated. The aqueous layer 313 was extracted with DCM (3×5mL) and the combined organics dried over MgSO<sub>4</sub>, filtered, and 314 315 concentrated under reduced pressure. The resulting oil was purified by flash chromatography on 316 silica gel. Elution with a gradient of 0-20% EtOAc/hexanes yielded alpha-hydroxy ester ((2R,3S)-9, 9 mg, 69% BRSM). 317 <sup>1</sup>H NMR (CDCI3, 500 MHz) δ (ppm) 5.53 (dtd, 15.3, 6.7, 0.9 Hz, 1H), 5.39 (ddt, 15.3, 7.9, 1.4 Hz, 318 319 1H), 4.12 (d, 4.2, 1H), 3.78 (s, 3H), 3.76 (g, 4.3 Hz, 1H), 2.52-2.67 (m, 1H), 2.00 (gd, 7.1, 1.2 Hz, 320 2H), 1.21-1.38 (m, 8H), 0.99 (d, 7.0, 3H), 0.88 (t, 6.9, 3H).

321 <sup>13</sup>C NMR (CDCI3, 125 MHz) δ (ppm) 174.8, 132.4, 130.6, 74.6, 52.4, 41.3, 32.7, 31.5, 29.2, 22.7,

322 14.8, 14.2.

323 HRMS (ESI) *m/z*: Calculated: (M+Na)<sup>+</sup> 237.1461. Actual: 237.1475. Δ ppm: 5.87.



324

306

325 (2R,3S,E)-2-hydroxy-3-methyl-dec-4-enoic acid, (2R,3S)-bemeth#2. Lithium hydroxide (40 mg, 326 2 mmol) was added to a stirring solution of ester ((2R,3S)-9, 11 mg, 0.05 mmol) in MeOH (0.4 327 mL), THF (0.4 mL), and water (0.2 mL). After one hour, the reaction was acidified with 1 M HCI 328 and extracted with DCM (3×5 mL). The combined organics were dried over MgSO4, filtered, and 329 concentrated under reduced pressure. The resulting oil was purified by flash chromatography on 330 silica gel. Elution with a gradient of 0-100% DCM/MeOH(0.1% AcOH) yielded alpha-hydroxy acid 331 (2R,3S)-bemeth#2 (8.6 mg, 86% BRSM, d.r. 67.8% as determined by Mosher analysis<sup>9</sup>). 332 <sup>1</sup>H NMR (CDCI3, 500 MHz) δ (ppm) 5.58 (dt, 15.4, 6.8 Hz, 1H), 5.42 (dd, 15.4, 7.6 Hz, 1H), 4.22 333 (d, 3.6, 1H), 2.68 (m, 1H), 2.02 (g, 6.9 Hz, 2H), 1.22-1.40 (m, 6H), 1.05 (d, 7.0, 3H), 0.89 (t, 6.7, 334 3H).

- <sup>13</sup>C NMR (CDCI3, 125 MHz) δ (ppm) 177.4, 133.1, 130.1, 74.2, 40.7, 32.7, 31.5, 29.2, 22.7, 14.3,
- 336 14.2
- 337 **HRMS (ESI)** *m*/*z*: Calculated: (M-H)<sup>-</sup> 199.1340. Actual: 199.1339. Δ ppm: -0.28.



**Determination of bemeth#2 stereochemistry.** bemeth#2 was dissolved in DCM with DMAP and stirred under argon at ambient temperature. (*R*)-(+)- $\alpha$ -Methoxy- $\alpha$ -(trifluoromethyl)phenylacetyl chloride (**10**, 1.2 equivalents) was added and the reaction stirred for 30 minutes and quenched with MeOH. The reaction was concentrated under reduced pressure, taken up in MeOH, and analyzed by HPLC-HRMS. Integration of the EIC after Mosher derivatization of synthetic bemeth#2 yielded a diastereomeric enrichment of 68%.

345

#### Supplementary Tables

**Supplementary Table 1. Metabolites enriched in** *acdh-11(n5878)* **mutants.** Subset of dereplicated metabolites that are i) at least 8-fold enriched in *acdh-11(n5878);P<sub>fat-7</sub>::fat-7::GFP* relative to WT  $P_{fat-7}::fat-7::GFP$ , ii) mean intensity > 500,000 AU for *acdh-11*, iii) not detected in bacteria only, and iv) dependent on cyclopropane lipid biosynthesis in *E. coli*. These data were filtered using stringent criteria and hundreds of additional differential features were detected (not dereplicated) using mean intensity cutoff at 100,000 AU. Note: these metabolites were detected in *acdh-11(n5878)* animals reared on OP50, HB101, and BW25113.

| ES(-) Obs. | RT    | Molecular                                          | ES(-) Theor. | <i>m/z</i> error | SMID-DB  | Comments                                          |
|------------|-------|----------------------------------------------------|--------------|------------------|----------|---------------------------------------------------|
| m/z        | (min) | Formula                                            | m/z          | (ppm)            | #        |                                                   |
| 242.10394  | 6.90  | C11H17NO5                                          | 242.10340    | 2.226            |          |                                                   |
| 171.06656  | 6.96  | C <sub>8</sub> H <sub>12</sub> O <sub>4</sub>      | 171.06628    | 1.592            |          | likely<br>dicarboxylate,<br>Na adduct in<br>ES(-) |
| 457.14896  | 7.14  | C17H31O12P                                         | 457.14804    | 2.013            |          | endo                                              |
| 574.20697  | 7.19  | C <sub>25</sub> H <sub>38</sub> NO <sub>12</sub> P | 574.20589    | 1.881            |          | endo                                              |
| 576.22237  | 7.32  | C <sub>25</sub> H <sub>40</sub> NO <sub>12</sub> P | 576.22154    | 1.449            |          | endo                                              |
| 396.17978  | 7.47  | C <sub>16</sub> H <sub>32</sub> NO <sub>8</sub> P  | 396.17928    | 1.261            |          | endo                                              |
| 427.13823  | 7.62  | C <sub>16</sub> H <sub>28</sub> O <sub>11</sub> P  | 427.13747    | 1.769            |          |                                                   |
| 215.12915  | 7.75  | C <sub>11</sub> H <sub>20</sub> O <sub>4</sub>     | 215.12888    | 1.225            | becyp#32 |                                                   |
| 229.10845  | 7.85  | C11H18O5                                           | 229.10815    | 1.331            |          |                                                   |
| 215.12920  | 7.94  | C <sub>11</sub> H <sub>20</sub> O <sub>4</sub>     | 215.12888    | 1.483            | becyp#33 |                                                   |
| 185.08227  | 7.95  | C9H14O4                                            | 185.08193    | 1.797            |          | likely<br>dicarboxylate,<br>Na adduct in<br>ES(-) |
| 227.09299  | 8.02  | C11H16O5                                           | 227.09250    | 2.131            |          |                                                   |
| 213.11365  | 8.12  | C11H18O4                                           | 213.11323    | 1.979            |          | endo                                              |
| 576.22271  | 8.15  | C <sub>25</sub> H <sub>40</sub> NO <sub>12</sub> P | 576.22154    | 2.029            |          | endo                                              |
| 213.11378  | 8.16  | C11H18O4                                           | 213.11323    | 2.591            |          |                                                   |
| 215.12918  | 8.18  | C <sub>11</sub> H <sub>20</sub> O <sub>4</sub>     | 215.12888    | 1.360            | becyp#3  |                                                   |
| 213.11380  | 8.18  | C11H18O4                                           | 213.11323    | 2.662            |          |                                                   |
| 439.13818  | 8.27  | C <sub>17</sub> H <sub>28</sub> O <sub>11</sub> P  | 439.13747    | 1.600            |          | endo, MOGL                                        |
| 229.10852  | 8.30  | C11H18O5                                           | 229.10815    | 1.630            |          |                                                   |
| 286.16662  | 8.31  | C <sub>14</sub> H <sub>25</sub> NO <sub>5</sub>    | 286.16600    | 2.179            |          |                                                   |
| 441.15367  | 8.35  | C <sub>17</sub> H <sub>30</sub> O <sub>11</sub> P  | 441.15312    | 1.239            |          | endo, MOGL                                        |
| 286.16672  | 8.38  | C <sub>14</sub> H <sub>25</sub> NO <sub>5</sub>    | 286.16600    | 2.528            |          | formate<br>adduct                                 |
| 276.13761  | 8.38  | C <sub>13</sub> H <sub>24</sub> NO <sub>3</sub> CI | 276.13720    | 1.509            |          |                                                   |
| 288.18226  | 8.41  | C <sub>14</sub> H <sub>27</sub> NO <sub>5</sub>    | 288.18165    | 2.143            |          | formate                                           |

|           |       |                                                                  |              |       |          | adduct                                            |
|-----------|-------|------------------------------------------------------------------|--------------|-------|----------|---------------------------------------------------|
| 213.11378 | 8.47  | C <sub>11</sub> H <sub>18</sub> O <sub>4</sub>                   | 213.11323    | 2.591 |          | endo                                              |
| 591.17201 | 8.49  | C <sub>22</sub> H <sub>32</sub> N <sub>4</sub> O <sub>13</sub> P | 591.1708979  | 1.878 |          | endo                                              |
| 441.15376 | 8.54  | C <sub>17</sub> H <sub>30</sub> O <sub>11</sub> P                | 441.15312    | 1.451 |          | endo                                              |
| 254.14035 | 8.61  | C13H21NO4                                                        | 254.13978    | 2.243 |          |                                                   |
| 405.17729 | 8.62  | C <sub>18</sub> H <sub>29</sub> O <sub>10</sub>                  | 405.17662    | 1.652 |          | formate<br>adduct                                 |
| 256.15597 | 8.63  | C13H23NO4                                                        | 256.15543    | 2.092 |          |                                                   |
| 361.18767 | 8.70  | C <sub>17</sub> H <sub>30</sub> O <sub>8</sub>                   | 361.18680    | 2.444 |          |                                                   |
| 199.09793 | 8.88  | C <sub>10</sub> H <sub>16</sub> O <sub>4</sub>                   | 199.09758    | 1.747 |          | likely<br>dicarboxylate,<br>Na adduct in<br>ES(-) |
| 716.30686 | 9.12  | C <sub>33</sub> H <sub>52</sub> NO <sub>14</sub> P (?)           | 716.30527    | 2.226 |          | endo                                              |
| 270.17162 | 9.13  | C <sub>14</sub> H <sub>25</sub> NO <sub>5</sub>                  | 270.17108    | 1.999 |          |                                                   |
| 758.35478 | 9.42  | C <sub>36</sub> H <sub>57</sub> NO <sub>14</sub> P (?)           | 758.35222    | 3.383 |          | endo                                              |
| 756.33820 | 9.44  | C <sub>36</sub> H <sub>55</sub> NO <sub>14</sub> P               | 756.33657    | 2.165 |          | endo                                              |
| 560.22734 | 9.58  | C <sub>25</sub> H <sub>40</sub> NO <sub>11</sub> P               | 560.22662    | 1.285 |          | endo                                              |
| 199.13434 | 9.77  | $C_{11}H_{20}O_3$                                                | 199.13397    | 1.850 | becyp#2  | characterized<br>by 2D-NMR                        |
| 213.11365 | 9.79  | C11H18O4                                                         | 213.11323    | 1.970 | becyp#4  | likely<br>dicarboxylate,<br>Na adduct in<br>ES(-) |
| 560.19103 | 9.89  | C <sub>24</sub> H <sub>36</sub> NO <sub>12</sub> P               | 560.19024    | 1.420 |          | MOGL                                              |
| 197.11851 | 9.90  | C <sub>11</sub> H <sub>18</sub> O <sub>3</sub>                   | 197.11832    | 0.988 |          | endo                                              |
| 558.17604 | 9.93  | C <sub>24</sub> H <sub>34</sub> NO <sub>12</sub> P               | 558.17459    | 2.603 |          |                                                   |
| 542.23839 | 9.96  | C <sub>22</sub> H <sub>42</sub> NO <sub>12</sub> P               | 542.23719    | 1.864 |          | GLEA                                              |
| 199.13420 | 10.02 | C <sub>11</sub> H <sub>20</sub> O <sub>3</sub>                   | 199.13397    | 1.183 | becyp#22 | endo, minor                                       |
| 639.27995 | 10.36 | C <sub>28</sub> H <sub>48</sub> O <sub>14</sub> P                | 639.27871    | 1.928 |          | endo                                              |
| 411.14319 | 10.47 | C <sub>16</sub> H <sub>28</sub> O <sub>10</sub> P                | 411.14255786 | 1.533 |          | endo                                              |
| 560.19090 | 10.57 | C <sub>24</sub> H <sub>36</sub> NO <sub>12</sub> P               | 560.19024    | 1.179 |          | endo, MOGL,<br>anthranilate                       |
| 558.17534 | 10.66 | C <sub>24</sub> H <sub>34</sub> NO <sub>12</sub> P               | 558.17459    | 1.345 |          | endo                                              |
| 584.19113 | 10.68 | C <sub>26</sub> H <sub>35</sub> NO <sub>12</sub> P               | 584.19023    | 1.537 |          | endo                                              |
| 540.20149 | 10.74 | C <sub>25</sub> H <sub>36</sub> NO <sub>10</sub> P               | 540.20041    | 2.009 | iglu#202 | MOGL                                              |
| 411.14318 | 10.80 | C <sub>16</sub> H <sub>28</sub> O <sub>10</sub> P                | 411.14256    | 1.512 |          | endo                                              |
| 377.18250 | 11.16 | C <sub>17</sub> H <sub>30</sub> O <sub>9</sub>                   | 377.18171    | 2.100 |          | formate<br>adduct                                 |
| 544.19667 | 12.58 | C <sub>24</sub> H <sub>36</sub> NO <sub>11</sub> P (?)           | 544.19532    | 2.468 |          |                                                   |
| 335.17716 | 17.31 | C <sub>21</sub> H <sub>24</sub> N <sub>2</sub> O <sub>2</sub>    | 335.17650    | 1.950 |          |                                                   |
| 183.13906 | 9.95  | C <sub>11</sub> H <sub>20</sub> O <sub>2</sub>                   | 183.13905    | 0.037 | becyp#1  | post-column<br>ion pairing                        |

**Supplementary Table 2. FCMT-1-derived metabolites.** A comprehensive list of FCMT-1derived metabolites that were detected in the conditioned media (*exo-*) or worm body (*endo-*) metabolome of N2 (WT) synchronized gravid adults in liquid culture, unless otherwise indicated.

| ES(-) Obs. | RT<br>(min) | Molecular<br>Formula                                             | ES(-) Theor. m/z | m/z<br>error | SMID-DB #   | Comments                                                 |
|------------|-------------|------------------------------------------------------------------|------------------|--------------|-------------|----------------------------------------------------------|
| 11// 2     | ()          | Tornula                                                          |                  | (ppm)        |             |                                                          |
| 231.12393  | 7.18        | C <sub>11</sub> H <sub>20</sub> O <sub>5</sub>                   | 213.12380        | 0.584        | bemeth#401  | enriched <i>endo</i> , H/D                               |
| 045 40000  | 0.00        |                                                                  | 045 40000        | 0.705        |             | exchange D <sub>8</sub> /D <sub>9</sub> /D <sub>10</sub> |
| 215.12902  | 8.33        | $C_{11}H_{20}O_4$                                                | 215.12888        | 0.725        | bemeth#33   | minor, D <sub>11</sub>                                   |
| 215.12902  | 8.40        | $C_{11}H_{20}O_4$                                                | 215.12888        | 0.725        | bemeth#34   | minor, D <sub>11</sub>                                   |
| 215.12900  | 8.57        |                                                                  | 215.12000        | 0.345        | bemeth#73   |                                                          |
| 213 11345  | 8.58        | C14H125NO5                                                       | 213 11323        | 1 014        | bemeth#322  | enriched endo H/D                                        |
|            | 0.00        | 01111004                                                         | 210.11020        |              |             | exchange D <sub>5</sub> /D <sub>6</sub> /D <sub>7</sub>  |
| 215.12904  | 8.61        | C <sub>11</sub> H <sub>20</sub> O <sub>4</sub>                   | 215.12888        | 0.731        | bemeth#3    | major, D <sub>11</sub>                                   |
| 220 10922  | 0.65        |                                                                  | 220 10915        | 0 779        | homoth#4    | presumed 2R,3S                                           |
| 229.10633  | 0.00        |                                                                  | 229.10013        | 0.770        | berneth#74  |                                                          |
| 286.16620  | 8.69        | C14H25NO5                                                        | 286.16600        | 0.711        | bemetn#74   | D11                                                      |
| 286.16618  | 8.76        | C14H25NO5                                                        | 286.16600        | 0.641        | bemeth#75   | D11                                                      |
| 215.12901  | 8.78        | $C_{11}H_{20}O_4$                                                | 215.12888        | 0.616        | bemeth#32   | secondary, D <sub>11</sub>                               |
| 546.21123  | 8.80        | C <sub>24</sub> H <sub>38</sub> NO <sub>11</sub> P               | 546.21097        | 0.478        | IBD         | detected only in N2,                                     |
| 231,12395  | 8.93        | C11H20O5                                                         | 213,12380        | 0.684        | bemeth#402  | detected only in hacl-                                   |
|            |             | C 111 120 C 0                                                    |                  |              |             | 1(tm6725)                                                |
| 215.12894  | 9.01        | C <sub>11</sub> H <sub>20</sub> O <sub>4</sub>                   | 215.12888        | 0.266        | bemeth#37   | minor, D <sub>11</sub>                                   |
| 361.18722  | 9.08        | C17H30O8                                                         | 361.18679        | 1.194        | bemeth#8    | putative glucoside                                       |
| 591.17185  | 9.13        | C22H33N4O13P                                                     | 591.17090        | 1.615        | gluric#421  | MOGL, enriched                                           |
|            |             |                                                                  |                  |              |             | endo, co-eluting                                         |
|            |             |                                                                  |                  |              |             | D <sub>11</sub>                                          |
| 215.12885  | 9.14        | C <sub>11</sub> H <sub>20</sub> O <sub>4</sub>                   | 215.12888        | 0.152        | bemeth#38   | minor, D <sub>11</sub>                                   |
| 576.22211  | 9.21        | C <sub>25</sub> H <sub>39</sub> NO <sub>12</sub> P               | 576.22154        | 1.003        | oglu#421    | MOGL, endo                                               |
| 591.17178  | 9.26        | C22H33N4O13P                                                     | 591.17090        | 1.506        | gluric#422  | MOGL, enriched                                           |
|            |             |                                                                  |                  |              |             | <i>endo</i> , D <sub>11</sub>                            |
| 607.16641  | 9.28        | C22H33N4O14P                                                     | 607.16581        | 0.984        | gluric#431  | MOGL, enriched                                           |
| 268.15553  | 9.28        | C14H23NO4                                                        | 268.15543        | 0.369        | bemeth#622  | endo                                                     |
| 441 15345  | 9.29        |                                                                  | 441 15312        | 0 747        | bemeth#82   | nutative                                                 |
|            | 0.20        |                                                                  | 11110012         | 0.7 17       | bonnoun, oz | phosphorvlated                                           |
|            |             |                                                                  |                  |              |             | glulcoside, <i>endo</i>                                  |
| 558.21201  | 9.64        | C <sub>25</sub> H <sub>38</sub> NO <sub>11</sub> P               | 558.21097        | 1.854        | TBD         | D <sub>12</sub>                                          |
| 213.11343  | 10.06       | C11H18O4                                                         | 213.11323        | 0.529        | bemeth#321  | H/D exchange D <sub>8</sub> /D <sub>9</sub>              |
| 199.13413  | 10.26       | C <sub>11</sub> H <sub>20</sub> O <sub>3</sub>                   | 199.13397        | 0.811        | bemeth#25   | co-eluting isomer,                                       |
|            |             |                                                                  |                  |              |             | clearly differential in                                  |
| 215 12900  | 10.46       | $C_{11}H_{20}O_4$                                                | 215 12888        | 0 559        | bemeth#39   | minor                                                    |
| 201 14983  | 10.10       | C11H22O2                                                         | 201 14962        | 1 050        | bemeth#203  | minor                                                    |
| 591 17166  | 10.71       |                                                                  | 591 17090        | 1.000        | aluric#423  | MOGL enriched                                            |
| 001.17100  | 10.50       | 0221 1331 40 131                                                 | 001.17000        | 1.207        | giuno#420   | endo. D <sub>12</sub>                                    |
| 607.16623  | 10.98       | C <sub>22</sub> H <sub>33</sub> N <sub>4</sub> O <sub>14</sub> P | 607.16581        | 0.690        | gluric#432  | MOGL, enriched                                           |
| 050 45555  | 44.00       |                                                                  | 050 455 40       | 0.470        | 1           | endo                                                     |
| 256.15555  | 11.36       | C <sub>13</sub> H <sub>23</sub> NO <sub>4</sub>                  | 256.15543        | 0.472        | bemeth#53   | minor                                                    |
| 286.16616  | 11.37       | C <sub>14</sub> H <sub>25</sub> NO <sub>5</sub>                  | 286.16600        | 0.574        | bemeth#7    | major, D <sub>12</sub>                                   |
| 256.15555  | 11.42       | C <sub>13</sub> H <sub>23</sub> NO <sub>4</sub>                  | 256.15543        | 0.472        | bemeth#54   | minor, D <sub>12</sub>                                   |

| 286.16624                | 11.57       | $C_{14}H_{25}NO_5$                                 | 286.16600                  | 0.873                        | bemeth#72  | secondary, D <sub>12</sub>                               |
|--------------------------|-------------|----------------------------------------------------|----------------------------|------------------------------|------------|----------------------------------------------------------|
| 256.15535                | 11.76       | C <sub>13</sub> H <sub>23</sub> NO <sub>4</sub>    | 256.15543                  | 0.301                        | bemeth#5   | major, D <sub>12</sub>                                   |
| 256.15558                | 11.93       | C <sub>13</sub> H <sub>23</sub> NO <sub>4</sub>    | 256.15543                  | 0.571                        | bemeth#52  | minor                                                    |
| 284.15051                | 11.95       | C <sub>14</sub> H <sub>23</sub> NO <sub>5</sub>    | 284.15035                  | 0.568                        | bemeth#721 | minor                                                    |
| 268.15553                | 12.19       | C <sub>14</sub> H <sub>23</sub> NO <sub>4</sub>    | 268.15543                  | 0.365                        | bemeth#621 | minor                                                    |
| 270.17116                | 12.46       | C <sub>14</sub> H <sub>25</sub> NO <sub>4</sub>    | 270.17108                  | 0.275                        | bemeth#6   | major, D <sub>12</sub>                                   |
| 199.13412                | 12.59       | $C_{11}H_{20}O_3$                                  | 199.13397                  | 0.794                        | bemeth#23  | unknown structure,<br>D <sub>12</sub> ,                  |
| 201.14976                | 12.62       | C <sub>11</sub> H <sub>22</sub> O <sub>3</sub>     | 201.14962                  | 0.718                        | bemeth#202 | minor                                                    |
| 270.17118                | 12.65       | C <sub>14</sub> H <sub>25</sub> NO <sub>4</sub>    | 270.17108                  | 0.350                        | bemeth#62  | secondary, D <sub>12</sub>                               |
| 199.13408                | 12.67       | C <sub>11</sub> H <sub>20</sub> O <sub>3</sub>     | 199.13397                  | 0.580                        | bemeth#22  | 2 <i>S,3S</i> ( <i>anti</i> ), minor,<br>D <sub>12</sub> |
| 199.13408                | 12.83       | $C_{11}H_{20}O_3$                                  | 199.13397                  | 0.580                        | bemeth#2   | 2 <i>R,3S</i> ( <i>syn</i> ), major,<br>D <sub>12</sub>  |
| 197.11838                | 12.89       | C <sub>11</sub> H <sub>18</sub> O <sub>3</sub>     | 197.11832                  | 0.300                        | bemeth#221 |                                                          |
| 540.20039                | 13.18       | C <sub>25</sub> H <sub>36</sub> NO <sub>10</sub> P | 540.20041                  | 0.033                        | iglu#201   | MOGL, enrichced exo, D <sub>12</sub>                     |
| 252.16065                | 13.20       | C <sub>14</sub> H <sub>23</sub> NO <sub>3</sub>    | 252.16052                  | 0.523                        | bemeth#521 |                                                          |
| 201.14977                | 13.52       | C <sub>11</sub> H <sub>22</sub> O <sub>3</sub>     | 201.14962                  | 0.762                        | bemeth#201 |                                                          |
| 199.13413                | 14.37       | C <sub>11</sub> H <sub>20</sub> O <sub>3</sub>     | 199.13397                  | 0.807                        | bemeth#24  | unknown structure                                        |
| 183.13928                | 26.65       | C <sub>11</sub> H <sub>20</sub> O <sub>2</sub>     | 183.13905                  | 1.239                        | bemeth#1   | Long HPLC method,<br>post-column ion<br>pairing          |
| ES(+) Obs.<br><i>m/z</i> | RT<br>(min) | Molecular<br>Formula                               | ES(+) Theor.<br><i>m/z</i> | <i>m/z</i><br>error<br>(ppm) | SMID-DB #  | Comments                                                 |
| 260.18523                | 8.90        | $C_{13}H_{25}NO_4$                                 | 260.18564                  | 1.576                        | bemeth#101 |                                                          |
| 244.19040                | 11.56       | C <sub>13</sub> H <sub>25</sub> NO <sub>3</sub>    | 244.19072                  | 1.330                        | bemeth#102 |                                                          |
| 246.20612                | 12.12       | C13H27NO3                                          | 246.20637                  | 1.022                        | bemeth#103 | enriched in <i>hacl-</i><br>1(tm6725)                    |
| 246.20606                | 12.36       | C <sub>13</sub> H <sub>27</sub> NO <sub>3</sub>    | 246.20637                  | 1.272                        | bemeth#104 | detected only in <i>hacl-</i><br>1(tm6725)               |
| 230.21103                | 12.98       | C <sub>13</sub> H <sub>27</sub> NO <sub>2</sub>    | 230.21146                  | 1.689                        | bemeth#105 |                                                          |

### Supplementary Table 3. Primers used for genotyping.

| Strain                             | Primer Sequence                   |
|------------------------------------|-----------------------------------|
|                                    | Fwd: GAAGTAGGAATGGCAGCACAAG       |
| FCS7 hacl-1(tm6725) II             | Rev: GGCACTGCTGAACTTGTGTAGCTC     |
|                                    | Int. Fwd: CTGCTGGCCTGTAGTCTGTATTG |
| ECS40 fcmt-1(ak155709) II          | Fwd: CCGAGCACTCTGGGAGATTG         |
|                                    | Rev: GTGCTCACCAAATCCCACCG         |
| ECS20 formt 1/tm2282) II           | Fwd: CATCCAGGCGCTGGAATTC          |
| FC320 <i>ICITIE-T(LITI2302)</i> II | Rev: GCTCAATCGAAACCCGTGC          |

| Gene Primer Sequence |                               |  |
|----------------------|-------------------------------|--|
| act 1                | Fwd: ACGACGAGTCCGGCCCATCC     |  |
| act-1                | Rev: GAAAGCTGGTGGTGACGATGGTT  |  |
| fot 7                | Fwd: GGAAGGAGACAGCATTCATTGCG  |  |
| 1al-7                | Rev: GTCTTGTGGGAATGTGTGGTGG   |  |
| fat 6                | Fwd: GGAAATTGTGTGGCGTAACG     |  |
| 181-0                | Rev: GTATGATTTGTGGGACCAGAGACG |  |

Supplementary Table 4. Primers used for gene expression analysis by RT-PCR.

**Supplementary Table 5.** <sup>1</sup>H NMR spectroscopic data of natural becyp#2, methanol-d<sub>4</sub> (800 MHz, CD<sub>3</sub>OD).



| becyp#2 |
|---------|
|---------|

| Position | Proton                               | <sup>1</sup> H chemical shift [ppm] | [ <sup>1</sup> H, <sup>1</sup> H]-Coupling constants [Hz]                                 |
|----------|--------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------|
| 1        |                                      |                                     |                                                                                           |
| 2        | 2-H <sub>a</sub><br>2-H <sub>b</sub> | 2.16<br>2.28                        | $J_{2-\text{Ha},2-\text{Hb}} = 15.8, J_{2-\text{Ha},2-3} = 7.8, J_{2-\text{Hb},3} = 6.0,$ |
| 3        | 3-H                                  | 1.09                                |                                                                                           |
| 4        | 4-H <sub>a</sub><br>4-H <sub>b</sub> | -0.15<br>0.68                       |                                                                                           |
| 5        | 5-H                                  | 0.78                                |                                                                                           |
| 6-9      | 6-9H                                 | 1.3-1.5                             |                                                                                           |
| 10       | 10-H                                 | 3.72                                | $J_{9,10} \approx J_{10,11} = 6.1$                                                        |
| 11       | 11-H                                 | 1.14                                | J <sub>10,11</sub> = 6.1                                                                  |

#### **Supplementary References**

- 1. Wilson, S.R., and Prodan, K.A. (1976). The synthesis and stereochemistry of cascarillic acid. Tetrahedron Lett. *17*, 4231–4234.
- Naef, R., Velluz, A., and Jaquier, A. (2007). New Volatile Sulfur-Containing Constituents in a Simultaneous Distillation–Extraction Extract of Red Bell Peppers (Capsicum annuum). J. Agric. Food Chem. 56, 517–527.
- Gao, Y., Sharpless, K.B., Klunder, J.M., Hanson, R.M., Ko, S.Y., and Masamune, H. (1987). Catalytic Asymmetric Epoxidation and Kinetic Resolution: Modified Procedures Including in Situ Derivatization. J. Am. Chem. Soc. *109*, 5765–5780.
- Francke, W., Schröder, F., Philipp, P., Meyer, H., Sinnwell, V., and Gries, G. (1996).
   Identification and synthesis of new bicyclic acetals from the mountain pine beetle,
   Dendroctonus ponderosae hopkins (Col.: Scol.). Bioorg. Med. Chem. *4*, 363–374.
- Paquette, L.A., Eizember, R.F., Chapman, O.L., Rettig, T.A., Griswold, A.A., Dutton, A.I., Fitton, P., Abrahamson, W., F Littler, J.G., Vo, K., et al. (1963). Photochemistry of the cisand trans-Bicyclo [6.1.0]nonan-2-ones1 Wiberg and deMeijere have estimated that an enthalpy difference of 3.5 kcal/mole separates 1 from 2,4 (6) E. Tetrahedron Lett *21*, 59.
- 6. Fallis, A.G., and Souweha, M.S. (2008). Sigmatropic Rearrangements. Polyynes, Arynes, Enynes, and Alkynes *53*, 1.
- Coggins, A.J., and Powner, M.W. (2016). Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis. Nat. Chem. 2016 94 9, 310–317.
- Davis, F.A., Haque, M.S., Ulatowski, T.G., and Towson, J.C. (1986). Asymmetric Oxidation of Ester and Amide Enolates Using New (Camphorylsulfonyl)oxaziridines. J. Org. Chem. *51*, 2402–2404.
- Hoye, T.R., Jeffrey, C.S., and Shao, F. (2007). Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat. Protoc. 2007 210 *2*, 2451–2458.

#### NMR Spectra of Synthetic Compounds

*cis*-3,4-methylenedecanoic acid, becyp#1, <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>)





*cis*-3,4-methylenedecanoic acid, becyp#1, <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>)



### (E)-4-Hydroxy-non-2-ene (5), <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>)



### (*E*)-4-Hydroxy-non-2-ene (**5**), <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>)





### (*S*,*E*)-4-(Vinyloxy)-non-2-ene (**6**), <sup>1</sup>H NMR spectrum(500 MHz, CDCl<sub>3</sub>)



# (*S*,*E*)-4-(Vinyloxy)-non-2-ene (**6**), <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>)



### (*R*,*E*)-3-Methyl-dec-4-enal (**7**), <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>)



### (R,E)-3-Methyl-dec-4-enal (**7**), <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>)



### ((*R*,*E*)-3-Methyl-dec-4-enoic acid, (*R*)-bemeth#1, <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>)



# (*R*,*E*)-3-Methyl-dec-4-enoic acid, (*R*)-bemeth#1, <sup>13</sup>C NMR spectrum(125 MHz, CDCl<sub>3</sub>)



### Methyl-(R, E)-3-methyl-dec-4-enoate (**8**), <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>)



# Methyl-(*R*,*E*)-3-methyl-dec-4-enoate (**8**), <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>)



### Methyl-(2R,3S,E)-2-hydroxy-3-methyl-dec-4-enoate (9), <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>)



# Methyl-(2R,3S,E)-2-hydroxy-3-methyl-dec-4-enoate (9), <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>)



### (2R,3S,E)-2-hydroxy-3-methyl-dec-4-enoic acid, (2R,3S)-bemeth#2, <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>)



### (2R,3S,E)-2-hydroxy-3-methyl-dec-4-enoic acid, (2R,3S)-bemeth#2, <sup>13</sup>C NMR spectrum (125 MHz, CDCl<sub>3</sub>)

Comparison of <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) spectra for Mosher analysis. Earlier and later eluting diastereomers were separated following derivatization with (*R*)-MTPA-CI. Derivatization of the major natural isomer, (*2R*,*3S*)-bemeth#2, exhibited identical chromatographic retention and chemical shifts as the later eluting fraction.

