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Supplementary Figure 1. Principal component analysis (PCA). Left: PC1 resolves samples by
mouse genotype versus PC2. Right : PC2 versus PC3 resolves samples by timepoint (proportion of
variation from top 5 PC in parentheses). The proteins with the highest PCA loadings for PC1 include
serine/threonine-protein kinase DCLK1, protein kinase C beta type, and protein phosphatase 3 catalytic
subunit alpha. Proteins with the highest PCA loadings for PC2 include 116 kDa U5 small nuclear
ribonucleoprotein component, ras-related protein Rab-12, and secretory carrier-associated membrane
protein 5. Proteins with the highest PCA loadings for PC3 include heat shock protein HSP 90-beta,
small ribosomal subunit protein uS15m, and voltage-gated potassium channel subunit beta-2. Source
data are provided as a Source Data file.
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Supplementary Figure 2. Weighted correlation network analysis reveals 8 defined modules in
proteomics of control and rNLS8 mice, of which three are age dependent. a, Module eigenprotein
network showing hierarchical clustering and heatmap of eigenprotein correlation adjacency table. Red
in the heatmap represents more closely correlated modules. b-c, green, red, and pink modules are age-
dependent modules that show similar changes in protein abundance in control and rNLS8 mice, which
may be attributed to the age of the mice at the timepoints analyzed. The number of proteins in each
module is listed in parentheses. Left, Log fold change of module proteins in control and rNLS8 samples
at each disease stage. Center, Heat map of module proteins. Right, Gene ontology of the biological
processes enriched in each module. The size of the circles is dependent on enrichment ratio and the
top 5 proteins belonging to the most significant term are shown ranked by kMe value (module
membership score) for b, green (ribosome), ¢, red (mitochondria), and d, pink (cytoskeletal
organization) modules. Source data are provided as a Source Data file.
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Supplementary Figure 3. Gene ontology analysis of the black module identifies myelin
ensheathment of neurons and gliogenesis as key increased pathways in the rNLS8 cortex.
Proteins in the black module showed a time-dependent increase in abundance in rNLS8 mouse cortex
but were stable across time in control animals (Figure 3c). The abundance of these proteins remained
high in rNLS8 cortex in recovery, suggesting that disease-associated changes in this module may not
directly correlate with TDP-43 pathology burden, and these alterations may be required for initiation of
motor recovery after inhibition of hnTDP-432N-S expression. Proteins in the black module were enriched
in proteins expressed highly in oligodendrocytes, the myelinating glia of the central nervous system
(enrichment ratio = 4.79, P < 0.00001; Figure 3g). Complex heatmap of protein abundance ratios (left)
of each protein identified in the black module and the top 10 gene ontology terms plotted by significance
(right). Overlaid with callouts that list 5 proteins that comprise the top biological process in each module
ranked by kME value. Source data are provided as a Source Data file.
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Supplementary Figure 4. Gene ontology of protein subsets that comprise the turquoise module
identifies the neuronal system as a key decreased pathway in disease. Complex heatmaps of
protein abundance ratios (left) of each protein identified in the turquoise module and the top 10 gene
ontology terms plotted by significance (right). Overlaid with callouts that list 5 proteins that comprise the
top biological process in each module ranked by kME value. Source data are provided as a Source

Data file.
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Supplementary Figure 5. Gene ontology analysis revealed that the brown module was enriched
in ubiquinone biosynthesis and small molecule catabolic processes that are increased in late
disease and are partially reversed with recovery in rNLS8 mice. Proteins in the brown module
showed a time-dependent increase in abundance in rNLS8 mice beginning in later disease stages, with
no change over time in control mice. The elevated abundance of these proteins was partially reversed
in rNLS8 recovery mice compared to controls. The brown module was enriched for microglial proteins
(enrichment ratio = 2.05, P < 0.05) (Figure 3g). a, Heatmap of protein abundance of all proteins in the
brown (catabolism) module. b, Gene ontology of enriched biological processes in the brown module.
Ranked by P-value and circle size is dependent on enrichment ratio. ¢, Protein abundance ratio from
quantitative temporal proteomics of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3)
and glial fibrillary acid protein (GFAP). IFIT3, an antiviral protein expressed in response to interferon-
alpha, and GFAP, a marker of astrogliosis, exhibited the highest fold changes in the brown module. d,
Immunoblot of RIPA-soluble whole cortex tissue lysates after 6 weeks of cytoplasmic TDP-43
expression. Tissue was probed for GFAP (50 kDa) and human TDP-43 (43 kDa). e, Immunoblot
densitometry, fold change protein levels relative to the mean of control mice and normalized to total
protein loading. f, Immunofluorescence microscopy of the primary motor cortex in control and rNLS8
mice after 6 weeks of cytoplasmic TDP-43 expression. Samples were immunolabeled for GFAP (fop fo
bottom), and co-labeled for TDP-43, NeuN (pan-neuronal marker) and DAPI. Scale bar = 20 um. g,
Fold change in mRNA transcript level of target genes relative to the mean of control mice and
normalized to GAPDH housekeeping gene by gPCR. Antibodies tested against IFIT3 were ineffective;
however, we detected a 4.2-fold increase in /fit3 mRNA in cortex tissue from mice in late disease,
suggesting that the brown module represents transcriptionally mediated inflammatory activation. GFAP
demonstrated an increase in mMRNA (4.1-fold increase), protein levels by immunoblot (2.3-fold
increase), and astrocytic localization by immunohistochemistry in late-disease cortex tissue. All data is
from n = 5 mice per group (open circle points) with a line at the mean and range displayed by floating
bars. Differences in the means of control and rNLS8 mice were determined using a two-tailed paired t-
test, where a value of P < 0.05 was considered statistically significant. Source data are provided as a
Source Data file.
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Supplementary Figure 6. Proteins involved in transport in the blue module demonstrate early
and sustained altered levels in the rNLS8 cortex that return to control levels in recovery. The
blue module was characterized by early increases in abundance at pre-onset (1 wk) that were sustained
throughout the disease course in the rNLS8 cortex, with no change over time in control mice (Figure
3c). The abundance of proteins in the blue module returned to control levels in recovery and correlated
with levels of hTDP-43ANLS. a, Heatmap of protein abundance of all proteins in the blue module. b,
Gene ontology of enriched biological processes in the blue module revealed that ER to Golgi
anterograde transport and regulation of intracellular transport were the top two significantly enriched
biological processes. Ranked by P-value, with circle size being dependent on enrichment ratio. ¢,
Protein abundance ratio from quantitative temporal proteomics of Poly [ADP-ribose] polymerase 1
(PARP1) and dynactin subunit 2 (DCTN2). d, Immunoblot of RIPA-soluble whole cortex tissue lysates
after 4 weeks of cytoplasmic TDP-43 expression. Tissue was probed for PARP1 (115 kDa), DCTN2 (50
kDa), and human TDP-43 (43 kDa). e, Immunoblot densitometry, fold change protein levels relative to
the mean of control mice and normalized to total protein loading. f, Fold change in mRNA transcript
level of target genes relative to the mean of control mice and normalized to the GAPDH housekeeping
gene by gPCR. Immunoblotting and immunohistochemistry validated the increase in DCTN2 in rNLS8
mice compared to controls; however, there was no change in Dctn2 transcript level, indicating that
protein level increases were not due to increased gene expression. All data are from n = 5 mice per
group (open circle points) with a line at the mean and range displayed by floating bars. Differences in
the means of control and rNLS8 mice were determined using a two-tailed paired t-test, where a value
of P < 0.05 was considered statistically significant. g, Immunofluorescence microscopy of the primary
motor cortex in control and rNLS8 mice in early disease (4 wk). Samples were immunolabeled for each
target, PARP1 and DCTN2 (top to bottom), and co-labeled for TDP-43, NeuN (pan-neuronal marker)
and DAPI. Scale bar = 20 um. Immunohistochemistry validated the increase in PARP1 in the nucleus
of neurons in the primary motor cortex of rNLS8 mice compared to controls, but there was no significant
change in Parp1 at the transcript level or by immunoblot. h, Protein-protein interaction network for
proteins, including DCTN2, in the blue module that are involved in ER to Golgi anterograde transport.
Source data are provided as a Source Data file.
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Supplementary Figure 7. Magenta module proteins, HSP90AB1, DNAJB5 and CDC37 are
increased at pre-onset and disease onset but normalize to control levels in early disease.
Immunoblot analysis of control and rNLS8 mouse cortex RIPA-soluble lysates at pre-onset (1 wk; top)
and in early disease (4 wk; bottom). Samples were probed for HSP90AB1, DNAJB5, CDC37, TDP-43,
and Revert total protein stain and the relative abundance of each protein was normalized to the total
protein loading. Data are presented as open circles to represent individual mice (n = 5/group), and
floating bars show the mean and range of the data. Differences between the means were determined
using a paired t-test, where P<0.05 was considered statistically significant. Source data are provided
as a Source Data file.
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Supplementary Figure 8. Validation of DNAJB5 antibody in Dnajb5%9%° knockout mice. RIPA-
soluble cortex tissue from wild-type (WT/WT), heterozygous DNAJB5 knockout (KO/WT) and
homozygous DNAJB5 knockout (KO/KO) mice (n = 3) were probed for DNAJB5 using the Proteintech
16453-1-AP antibody and TDP-43. The DNAJBS antibody detected multiple bands between 37-75 kDa,
three of which were eliminated or decreased with DNAJB5 KO that represent DNAJBS5 isoforms in the
cortex. Source data are provided as a Source Data file.
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Supplementary Figure 9. Not all chaperone proteins in the magenta module are sequestered to
the insoluble protein fraction in the cortex of rNLS8 mice. The cortex of rNLS8 mice at onset (2 wk)
and in early disease (4 wk) was harvested and fractionated into soluble and insoluble fractions. The
insoluble protein fraction was immunoblotted and probed for HSP90AB1, DNAJB5, and CDC37 to
determine whether there was sequestration of these proteins into the insoluble fraction. We observed
HSP90AB1 and DNAJBS in the insoluble fraction of control and rNLS8 cortex tissue at disease onset
and early disease, but there was no insoluble CDC37 at either timepoint. Data from n = 5 mice per

group.
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Supplementary Figure 10. Transcript levels of magenta module proteins are not significantly
increased in the cortex of rNLS8 mice, despite increased protein levels at pre-onset and onset
shown in Figure 4 and Supplementary Figure 8. ¢ Denotes data that was shown in Figure 4, which
are shown again here for a complete dataset of the transcript levels at each timepoint, pre-onset (1 wk),
onset (2 wk) and early disease (4 wk). Data are shown as the fold change in mRNA transcript level of
target genes relative to the mean of control mice and normalized to the GAPDH housekeeping gene by
gPCR. All data are from n = 5 mice per group (open circle points) with a line at the mean and range
displayed by floating bars. Differences in the means of control and rNLS8 mice were determined using
a two-tailed paired t-test, where P < 0.05 was considered statistically significant. Source data are
provided as a Source Data file.
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Supplementary Figure 11. Over-expression of cytoplasmic TDP-43 variants has a variable effect
on chaperone abundance in HEK293 cells. HEK293 cells were transfected to express WT or
cytoplasmic mutant TDP-43 for 48 h. a, RIPA soluble proteins were immunoblotted and probed for
HSP90AB1, DNAJB5, and CDC37. b, Fold change DNAJBS5. ¢, Fold change HSP90AB1. d, Fold
change CDC37. All data are from n = 3 independent experiments (open circles) with a line at the mean
and the range displayed by floating bars. Differences in the means were determined using a one-way
ANOVA and Dunnett’s posthoc test, where P < 0.05 was considered statistically significant. Source
data are provided as a Source Data file.
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Supplementary Figure 12. Magenta module chaperones are not altered in the cortex or spinal
cord of TDP-43%3'K mice. TDP-43%%%'K and non-transgenic littermate controls were aged to 3 months,
which represents a disease onset stage of the ALS model, or 16 months, a mid-disease stage. Cortex
and spinal cord tissues were harvested for whole tissue homogenization and lysis in RIPA buffer. a,
RIPA soluble protein lysates of cortex and spinal cord at 3 months, were immunoblotted and probed for
magenta module chaperones HSP90AB1, DNAJB5, CDC37 and human TDP-43 (hTDP-43). b, Fold
change of DNAJB5, CDC37, and HSP90AB1 in 3-month cortex tissue. ¢, Fold change of DNAJBS5,
CDC37, and HSP90AB1 in 3-month spinal cord tissue. d, RIPA soluble protein lysates of cortex from
16-month-old mice, were immunoblotted and probed for magenta module proteins HSP90AB1,
DNAJB5, CDC37, and hTDP-43. e, Fold change of DNAJB5, CDC37, and HSP90AB1 in cortex at 16
months. Data are presented as open circles to represent individual mice (n = 3/group), and floating bars
show the mean and range of the data. Differences between the means were determined using a paired
t-test, where P<0.05 was considered statistically significant. Source data are provided as a Source Data
file.
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Supplementary Figure 13. Chaperone proteins show diverging patterns of abundance in the
rNLS8 cortex. a, Heatmap of a subset of the longitudinal proteomics data representing 119 chaperones
identified in the cortex. Samples are from control and rNLS8 mice 1, 2, 4, 6 weeks off dox and recovery
mice (6 weeks off dox + 2 weeks on dox). Red is high and blue is low relative protein abundance. b-d,
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Analysis of cortex tissue from recovery mice (6 wk off dox + 2 weeks on dox) b, Relative protein
abundance of HSPB5 from quantitative longitudinal proteomics. ¢, Fold change in mRNA transcript
level of Cryab (which codes for HSPB5) relative to the mean of control mice and normalized to the
Gapdh housekeeping gene by gPCR. d, Immunofluorescence microscopy of the primary motor cortex
in control and rNLS8 mice in recovery shows clearance of cytoplasmic TDP-43 and nuclear localization
of TDP-43. Samples were immunolabeled for HSPB5, and co-labeled for TDP-43, NeuN (pan-neuronal
marker), and DAPI. e, Protein abundance ratio from quantitative temporal proteomics of heat shock
protein family H member 1 (HSPH1), and DnaJ heat shock protein family member (Hsp40) member B6
(DNAJBG6). f, Immunoblot of RIPA-soluble whole cortex tissue lysates after 4 weeks of cytoplasmic
TDP-43 expression. Tissue was probed for HSPH1 (105 kDa), DNAJB6b (26 kDa), and human TDP-
43 (43 kDa). h, Immunoblot densitometry, fold change protein levels relative to the mean of control mice
and normalized to total protein loading. g, Fold change in mRNA transcript level of target genes relative
to the mean of control mice and normalized to the Gapdh housekeeping gene by gPCR. i,
Immunofluorescence microscopy of the primary motor cortex in control and rNLS8 mice in early
disease. Samples were immunolabeled for each target, HSPH1 and DNAJB6 (top fo bottom), and co-
labeled for TDP-43, NeuN (pan-neuronal marker), and DAPI. All data shown are from n = 5 mice per
group (open circle points) with a line at the mean and range displayed by floating bars. Differences in
the means of control and rNLS8 mice were determined using a two-tailed paired t-test, where a value
of P < 0.05 was considered statistically significant. Scale bar = 20 um. Source data are provided as a
Source Data file.
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Supplementary Figure 14. Over-expression of DNAJB5 decreases soluble and insoluble mutant
TDP-43 in HEK293 cells. HEK293 cells were co-transfected to express wild-type or mutant forms of
TDP-43-mGFP and DNAJB5-FLAG or a negative control (CTRL-FLAG). Cell lysates were fractionated
into RIPA-soluble and urea-soluble fractions for immunoblotting. a, Immunoblot of RIPA-soluble TDP-
43"T-mGFP and densitometry of b, TDP-43, and ¢, endogenous TDP-43. d, Inmunoblot of urea-soluble
TDP-43"T and densitometry of e, TDP-43"T-mGFP and f, phospho-TDP-43 (S403/S404). g,
Immunoblot of RIPA-soluble TDP-43*N'S-mGFP and densitometry of h, TDP-43*N"S-mGFP, and i,
endogenous TDP-43. j, Immunoblot of urea-soluble TDP-43 and densitometry of k, TDP-43*N-S-mGFP,
I, phospho-TDP-43 (S403/S404), and m, phospho-TDP-43 (S409/S410). n, Immunoblot of RIPA-
soluble TDP-43 and densitometry of o, TDP-43*N-S4FL.mGFP, and p, endogenous TDP-43. q,
Immunoblot of urea-soluble TDP-43 and densitometry of r, TDP-43*N-S4FL.mGFP, s, phospho-TDP-43
(S403/S404), and t, phospho-TDP-43 (S409/S410). Statistically significant differences between the
means were determined using unpaired t-tests, where P < 0.05 was considered significant. Data are
from n = 3 independent experiments. Source data are provided as a Source Data file.
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Supplementary Figure 15. Over-expression of DNAJB5 decreases the proportion of cells with
mutant TDP-43 inclusions and the number of inclusions per cell. HEK293 cells were co-transfected
to express wild-type or mutant forms of TDP-43-mGFP and DNAJB5-FLAG or a negative control (CTRL-
FLAG). Cells were fixed and immunolabeled with anti-FLAG, imaged by microscopy, and subjected to
non-biased single cell analysis using Cell Profiler. Cells over-expressing a, TDP-43"T-mGFP, g, TDP-
43°"NS.mGFP, or m, TDP-43*NSA4FL.mGFP and CTRL or DNAJBS5 were analyzed to determine b/h/n,
the percent of cells with TDP-43WT-mGFP inclusions (data are from n = 3 independent experiments),
clilo, fluorescence intensity of mGFP in relative fluorescence units (RFU), d/j/p, number of inclusions
per cell, e/k/q, inclusion size, and f/l/r, inclusion mGFP fluorescence intensity. Statistically significant
differences between the means were determined using unpaired Welch'’s t-tests, where P < 0.05 was
considered significant. Single cell (c/i/o/d/j/p) and single inclusion (e/k/q/f/l/r) data are representative of
n = 3 independent experiments. Source data are provided as a Source Data file.
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Supplementary Figure 16. DNAJB5 overexpression does not alter exogenous TDP-43
transcription levels. HEK293 cells were transfected to co-express wild-type or cytoplasmic mutant
TDP-43 with DNAJB5-FLAG (or a negative control protein; CTRL-FLAG). Cells were lysed for RNA
extraction, cDNA synthesis, and qPCR to quantify a, DNAJB5 and b, TARDBP transcript levels. ¢, Fold
change in endogenous DNAJBS transcripts in samples transfected with the negative control CTRL-
FLAG plasmid (this data is replotted from a). Data is relative to the mean of the control sample (nGFP
+ CTRL-FLAG) and normalized to the GAPDH housekeeping gene. All data are from n = 3 independent
experiments (open circles) with a line at the mean and the range displayed by floating bars. Differences
in the means were determined using a one-way ANOVA and Dunnett’'s posthoc test, where P < 0.05
was considered statistically significant. Source data are provided as a Source Data file.
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Supplementary Figure 17. CRISPR knockout of DNAJBS5 significantly increases insoluble TDP-
43°N'S.mGFP levels. HEK293 cells stably expressing Cas9 endonuclease, were co-transfected to
express TDP-43*N'S.mGFP and sgRNA targeting DNAJB5 or non-targeting (NT) negative control
sgRNA. a, Cells were lysed and fractionated into soluble (RIPA) and insoluble (urea) protein fractions
for immunoblot analysis of TDP-43 and DNAJBS levels. b, Fold change insoluble DNAJB5 levels from
immunoblot densitometry shows knockout of DNAJBS5. ¢, Fold change insoluble TDP-43 levels. d, Fold
change insoluble phosphoTDP-43 (S409/410) levels. All data are from n = 3 independent experiments
(open circles) with a line at the mean and the range displayed by floating bars. Differences between the
means were determined by a student’s t-test and were statistically significant when P < 0.05. Source
data are provided as a Source Data file.
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Supplementary Figure 18. CRISPR knockout of DNAJB5 significantly increases insoluble
cytoplasmic mutant TDP-432N-S2KA.mGFP phosphoTDP-43 protein levels. HEK293 cells stably
expressing Cas9 endonuclease, were co-transfected to express TDP-432N-S2KQ gnd sgRNA targeting
DNAJBS5 or non-targeting (NT) negative control sgRNA. a, Cells were lysed and fractionated into
insoluble (urea) protein fractions for immunoblot analysis of TDP-43 and DNAJBS5 levels. b, Fold change
insoluble DNAJB5 levels from immunoblot densitometry shows knockout of DNAJBS. ¢, Fold change
insoluble TDP-43 levels. d, Fold change insoluble phosphoTDP-43 (S409/410) levels. All data are from
n = 3 independent experiments (open circles) with a line at the mean and the range displayed by floating
bars. Differences between the means were determined by a student’s t-test and were statistically
significant when P < 0.05. Source data are provided as a Source Data file.
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Supplementary Figure 19. DNAJBS5 interacts with soluble cytoplasmic TDP-43 to direct TDP-43
to HSPA1A for re-folding. HEK-293 cells co-transfected or singly transfected to overexpress TDP-
43°NLS2KA.mGFP and DNAJB5-FLAG were lysed in RIPA buffer to generate a soluble protein fraction.
Immunoprecipitation (IP) experiments were conducted with rabbit anti-GFP (for pull-down of TDP-
43°NLS2KA.mGFP) and mouse anti-FLAG (for pull-down of DNAJB5-FLAG). Technical controls were
rabbit or mouse anti-Myc antibody and a no-antibody control to visualise non-specific interactions to
beads. Input and immunoprecipitated samples were immunoblotted (IB) and probed for TDP-43, FLAG
or DNAJB5 and HSPA1A. Data is representative of n = 3 independent experiments.
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Supplementary Figure 20. Open field behaviour testing of Dnajb5 knockout mice injected with
TDP-432N"S.myc or GFP-myc (control) AAVs. Dnajb5 wildtype (WT/WT), heterozygous (KO/WT), and
homozygous Dnajb5 knockout (KO/KO) PO pups were injected with human cytoplasmic TDP-432N-S-
myc or GFP-myc (control) AAVs via bilateral intracerebroventricular injections. Mice at 12 weeks of age
were subjected to open field testing to assess their relative a, ambulatory distance (in meters) and b,
vertical counts. Data shown is the mean + standard error of the mean and data points represent
individual mice (n = 9-21/group, exact number of mice per group is noted in italics underneath each
bar). Source data are provided as a Source Data file.
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Supplementary Figure 21. Weight and grip strength testing of Dnajb5 knockout mice injected
with TDP-43*N'S.myc or GFP-myc (control) AAVs. Dnajb5 wildtype (WT/WT), heterozygous
(KO/WT), and homozygous Dnajb5 knockout (KO/KO) PO pups were injected with human cytoplasmic
TDP-43*NS-myc or GFP-myc (control) AAVs via bilateral intracerebroventricular injections. Mice were
subjected to weekly weighing and grip strength testing every other week. a, Weight in grams of males
over time. b, Weight in grams of females over time. ¢, Latency to fall in seconds in the rotarod test over
time. d, Grip strength (gram force) of males and females combined over time. Data shown is the mean
+ standard error of the mean and data points represent individual mice (n = 9-21/group, exact number
of mice per group is noted in italics in the key). Source data are provided as a Source Data file.
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Supplementary Figure 22. Dnajb5 knockout does not exacerbate TDP-43 pathology after 3
months in mice injected with TDP-43*N'S-myc. a, Immunoblot analysis of soluble and insoluble
protein fractions from the cortex of 3 month old WT, heterozygous, and homozygous Dnajb5 knockout
mice injected with TDP-43*NS-myc AAV. Immunoblots were probed for TDP-43, phosphoTDP-43, myc,
and DNAJBS. b, Fold change in total insoluble TDP-43 levels. ¢, Fold change in total soluble TDP-43
levels. d, Fold change in myc-tagged TDP-43*N'S, e, Fold change in soluble DNAJBS5 levels. f, Scatter
plot showing relative TDP-43 levels as a function of DNAJBS5 levels. g, Immunofluorescence microscopy
of the cortex of 3-month-old WT, heterozygous, and homozygous Dnajb5 knockout mice injected with
EGFP-myc or TDP-43"N-S-myc AAV. Immunolabelled for myc, TDP-43, and nuclei counterstained with
DAPI. Scale bar = 20 um. Source data are provided as a Source Data file.
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Supplementary Figure 23. Protein/transcript abundance (log fold change) of protein folding
magenta module proteins in human postmortem TDP-43 proteinopathies and the rNLS8 mouse
cortex. Proteins/transcripts for magenta module proteins are listed on the top and define each column.
Each comparison made within each study is listed on the y-axis where each row of the table represents
the log fold change of each protein/transcript in each comparison. Circle size is dependent on the
magnitude of change and circle colour is dependent on log fold change where blue is decreased and
red is increased compared to controls. Source data are provided as a Source Data file.
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Related Supplementary Figure 6 d
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Related to Supplementary Figure 7

Pre-onset (1 wk)

Early (4 wk)

29



Related to Supplementary Figure 8

Dnajb5K0/Ko oluble protein: Cortex tissue

Total prote | | —50



Related to Supplementary Figure 9

Insoluble protein fraction: Cortex

Onset (2 wk) Early (4 wk)

i
!
%
X
i
a2
a8
oL
e
’.b'
2B
-
£
¥

31



Related to Supplementary Figure 11
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Related to Supplementary Figure 12
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Related to Supplementary Figure 13 f
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Related to Supplementary Figure 14
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Related to Supplementary Figure 17 a
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Related to Supplementary Figure 18
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Related to Supplementary Figure 19
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Related to Supplementary Figure 22 a
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